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ABSTRACT
Many modern spatial models express the stochastic variation component as a basis expansion with ran-
dom coe!cients. Low rank models, approximate spectral decompositions, multiresolution representations,
stochastic partial di"erential equations, and empirical orthogonal functions all fall within this basic frame-
work. Given a particular basis, stochastic dependence relies on #exible modeling of the coe!cients. Under
a Gaussianity assumption, we propose a graphical model family for the stochastic coe!cients by param-
eterizing the precision matrix. Sparsity in the precision matrix is encouraged using a penalized likelihood
framework—we term this approach the basis graphical lasso. Computations follow from a majorization-
minimization (MM) approach, a byproduct of which is a connection to the standard graphical lasso. The
result is a #exible nonstationary spatial model that is adaptable to very large datasets with multiple
realizations. We apply the model to two large and heterogeneous spatial datasets in statistical climatology
and recover physically sensible graphical structures. Moreover, the model performs competitively against
the popular LatticeKrig model in predictive cross-validation but improves the Akaike information criterion
score and a log score for the quality of the joint predictive distribution.
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1. Introduction

Many modern spatial models express the stochastic variation
component as a basis expansion with random coe!cients. Low
rank models, approximate spectral decompositions, multireso-
lution representations, stochastic partial di"erential equations,
and empirical orthogonal functions all fall within this basic
framework. The essential di"erence between these methods is
the amount of modeling e"ort placed on the basis versus the
coe!cients.

We introduce a novel approach applicable to any model
within this framework that allows for nonstationarity and easily
adapts to large datasets using o"-the-shelf popular basis models.
The method allows for straightforward graphical interpretations
of the conditional independence structure of the stochastic coef-
#cients.

Most spatial statistical models for an observational process
Y(s) with s ∈ Rd can be written

Y(s) = µ(s) + Z(s) + ε(s), (1)

which decomposes the observations into a mean function µ,
a spatially correlated random deviation Z, and a white noise
process ε. Flexible models for the correlated deviation Z are
necessary, and much research has been devoted to exploring
classes of practical speci#cations.

In this work, we focus on a particularly popular framework
where

Z(s) =
"∑

j=1
cjφj(s) (2)
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for " #xed basis functions φ1, . . . , φ" and stochastic coe!cients
c = (c1, . . . , c")

T ∼ N(0, Q−1). Such a spatial basis expansion
subsumes many popular approaches including discretized fre-
quency domain models (Fuentes 2002; Bandyopadhyay and
Lahiri 2009; Matsuda and Yajima 2009), empirical orthogonal
functions (Cressie and Wikle 2011, chap. 5), low rank repre-
sentations (Banerjee et al. 2008; Cressie and Johannesson 2008;
Guhaniyogi and Banerjee 2018), multiresolution and wavelet
representations (Nychka, Wikle, and Royle 2002; Nychka et al.
2015; Katzfuss 2017), and stochastic partial di"erential equa-
tion models (Bolin and Lindgren 2011; Lindgren, Rue, and
Lindström 2011).

To set the stage, let us brie$y describe some speci#c models
of (2). Fixed rank kriging uses bisquare basis functions and
sets " to be relatively small compared to other approaches, with
sample size as a reference, and Q−1 is not modeled but rather
estimated by minimizing a squared Frobenius distance from a
binned empirical covariance matrix (Cressie and Johannesson
2008). The more recent LatticeKrig model is a multiresolution
model that places a large number of compactly supported basis
functions with varying supports on a grid and speci#es c as a
Gaussian Markov random #eld (Nychka et al. 2015). Discretized
frequency domain approaches and empirical orthogonal func-
tions set the basis functions to be globally supported with
independent coe!cients (diagonal Q), mirroring the spectral
representation theorem or the Karhunen–Loève expansion for
stochastic processes. In this work, we attempt to relax the mod-
eling assumptions on the structure of the stochastic coe!cients c
(equivalently Q) by assuming only that they arise from a Gaus-
sian graphical model. We use the fact that the graph structure
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of a multivariate Gaussian is equivalent to the zero/nonzero
pattern in the precision matrix Q (Rue and Held 2005). A major
distinction of this work is that we do not specify the structure
of the graph but instead try to infer its edges by estimating the
entries of Q.

Our model setup is distinct from nonspatial methods that
require direct realizations of c to estimate the structure of
the undirected graphical model Q, such as the graphical lasso,
which estimates Q by adding an "1 penalty to the negative log-
likelihood to encourage sparsity, just as in lasso regression. In
our problem, we observe realizations of

∑"
j=1 cjφj(s) + ε(s)

and have the goal of #tting a graphical model to the (latent)
vector c. Thus, the graphical lasso and other methods for sparse
inverse covariance estimation (Meinshausen and Bühlmann
2006; Cai, Liu, and Luo 2011) are not directly applicable in
our setup. Latent variable graphical model selection has been
studied in the context of directly observing a subset of the
elements of c (Chandrasekaran, Parrilo, and Willsky 2012). To
our knowledge, no one has considered the problem of estimating
a latent graph given noisy realizations of $c for an arbitrary
basis matrix $. Penalized likelihood optimization for estimating
a nonstationary covariance matrix appears in Nandy, Lim, and
Maiti (2016), but their method considers a single realization of
the process and regularizes the Cholesky factor of Q−1 rather
than the precision matrix Q. Caveats of our approach are that
it works best when multiple realizations of the observational
process are available and that it can su"er from drawbacks of low
rank models discussed in Stein (2014) depending on the choice
of basis functions.

Extending the "1 penalization framework to the basis graph-
ical lasso gives rise to a nonconvex optimization problem. We
show it can be solved e!ciently using an MM algorithm which
amounts to iteratively solving the graphical lasso. We perform
a relatively detailed simulation study to assess the algorithm
and model’s ability to recover unknown graphical structures,
and also apply the method to two challenging large and het-
erogeneous datasets: the #rst a global reforecast dataset of sur-
face temperature, and second a historical observational dataset
of minimum temperatures over a portion of North America.
The results from these real data applications suggest that our
method can appropriately capture nonstationary spatial corre-
lations with minimal modeling e"ort and produce better joint
predictive distributions than a LatticeKrig competitor.

2. Methods

For ease of exposition, we suppose µ(s) = 0 in (1). Thus, the
observational model is

Y(s) =
"∑

j=1
cjφj(s) + ε(s). (3)

We suppose we have m independent realizations Y1(s), . . . ,
Ym(s) of the observational process at spatial locations s =
s1, . . . , sn. Group a realization as Yi = (Yi(s1), . . . , Yi(sn))T. A
matrix representation of the model is

Yi = $ci + εi, i = 1, . . . , m, (4)

where $ is an n × " matrix with (i, j)th entry φj(si), ci =
(ci1, . . . , ci")T are m independent vectors of the stochastic coef-
#cients, and εi = (εi(s1), . . . , εi(sn))T are m independent real-
izations of the white noise process. The stochastic assumptions
of our model are that εi is a mean zero white noise process
with variance τ 2 > 0, commonly referred to as the nugget
e"ect in the geostatistical literature, and that ci is a mean zero
"-variate Gaussian random vector with precision matrix Q. The
zero structure of Q encodes the graphical model for ci.

The model (3) plays a crucial role in modern statistics: it
is the framework for a variety of popular statistical techniques
including factor analysis, principal component analysis, linear
dynamical systems, hidden Markov models, and relevance vec-
tor machines (Roweis and Ghahramani 1999; Tipping 2001).
In the spatial context, there are two main features that arise
from using a model of the form (3): #rst, the resulting model
of the spatial #eld is nonstationary, and second, common com-
putations involving the covariance matrix can be sped up with
particular choices for $ and Q, in particular using compactly
supported basis functions and a sparse precision matrix.

2.1. Basis Graphical Lasso

With m realizations Y1, . . . , Ym of (4), the negative log-
likelihood can be written, up to multiplicative and additive
constants, as

log det($Q−1$T + τ 2In) + tr(S($Q−1$T + τ 2In)
−1), (5)

where S = 1
m

∑m
i=1 YiYT

i is an empirical covariance matrix.
Our goal is to estimate Q under the assumption that it follows

a graphical structure. A few connections are worth noting.
When $ = I" and τ 2 = 0, (5) is, up to the regularization
term, the graphical lasso problem studied in Friedman, Hastie,
and Tibshirani (2008). In particular, this is equivalent to directly
observing c1, . . . , cm. The graphical lasso uses an "1 penalty to
induce a graph structure on Q, from which we draw inspira-
tion next. Our situation is substantially more complicated due
to observational error and indirect observations of ci that are
modulated by $.

Our proposal is to estimate Q by minimizing a penalized
version of (5). The estimator of Q, deemed the basis graphical
lasso (BGL), is

Q̂ ∈ arg min
Q%0

log det($Q−1$T + τ 2In)

+ tr(S($Q−1$T + τ 2In)
−1) + ‖& ◦ Q‖1. (6)

The notation Q % 0 indicates that Q must be positive semide#-
nite, and ‖&◦Q‖1 = ∑

i,j &ij|Qij| is a penalty term that enforces
sparsity on the elements of Q. Here, &ij are nonnegative penalty
parameters, with higher values in the matrix & encouraging
more zeros in the estimate. In this article, we assume that the
diagonal elements of & are zero, re$ecting the fact that we are
searching for sparsity in the o"-diagonal elements of Q.

At #rst glance it is hard to determine whether the BGL (6) is
convex or nonconvex. We address this issue in the next section.
In either case, it will be di!cult to work with the objective
function presented in (6) due to the dependence on the spatial
dimension n and the nested inverses surrounding Q. The fol-
lowing result’s proof is in Appendix A.
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Proposition 1. The minimizer of (6) is also the minimizer of

log det
(
Q + τ−2$T$

)
− log det Q

− tr
(
τ−4$TS$

(
Q + τ−2$T$

)−1) + ‖& ◦ Q‖1. (7)

A%er precomputing the matrix products $T$ and $TS$,
evaluating (7) only involves " × " matrices. This is the essential
computational strategy of #xed rank kriging and LatticeKrig
which is harnessed in di"erent ways: by making either " notice-
ably smaller than n (#xed rank kriging), or by making " large
but ensuring the resulting matrices are sparse (LatticeKrig). It is
important to observe that the n × n sample covariance matrix
S does not need to be explicitly calculated in this procedure,
so $TS$ can be computed more e"ectively than O(n2") naive
matrix multiplication. Indeed, writing S = YYT/m where Y has
columns Y1, . . . , Ym leads to an O(n"m + "2m) representation:

$TS$ = 1
m ($TY)(YT$). (8)

2.2. Optimization Approach

In the " = 1 case, (7) is a univariate function that is twice dif-
ferentiable on the positive real line. It is straightforward to select
$T$, $TS$, and τ 2 so that the second derivative has a negative
value at some point along the positive real line. Thus (7) is, in
general, a nonconvex function on Q % 0. We can, however, show
that the four summands in (7) are concave, convex, concave,
and convex, respectively, on Q % 0; see Appendix A for details.
Therefore, the objective function in (7) can be written as

arg min
Q%0

f (Q) + g(Q) + ‖& ◦ Q‖1, (9)

where f (Q) + ‖& ◦ Q‖1 is convex and g(Q) is concave and
di"erentiable. A natural approach for this nonconvex problem
is a di"erence-of-convex (DC) program (Dinh Tao and Le Thi
1997) where we iteratively linearize the concave part g(Q) at the
previous guess Qj and solve the resulting convex problem:

Qj+1 = arg min
Q%0

(
f (Q) + tr(∇g(Qj)Q) + ‖& ◦ Q‖1

)
. (10)

Motivating the DC framework requires describing a more gen-
eral scheme called an MM algorithm (Hunter and Lange 2004).
We say that a function h(θ) is majorized by m(θ | θ∗) at θ∗

if h(θ) ≤ m(θ | θ∗) for all θ and h(θ∗) = m(θ∗ | θ∗).
Instead of directly minimizing h(θ), which can be very com-
plicated, an MM algorithm solves a sequence of minimization
problems where the majorizing function at the previous guess is
minimized:

θj+1 = arg min
θ

m(θ | θj). (11)

Combining (11) with the de#nition of a majorant yields the
inequality

h(θj+1) ≤ m(θj+1 | θj) ≤ m(θj | θj) = h(θj)

and thus the algorithm is forced to a local minimum (or saddle
point) of h(θ). The most famous instance of MM in statistics
is the expectation-maximization (EM) algorithm, which under

this framework uses Jensen’s inequality to construct majoriz-
ing functions for the conditional expectation of log-likelihood
equations.

DC programming, also called the concave-convex-
procedure, is a subclass of MM where the supporting hyperplane
inequality g(θ) ≤ g(θj) + 〈∇g(θj), θ − θj〉 is used to construct
a majorizing function when h(θ) is written as the sum of a
concave di"erentiable function g(θ) and a convex function;
that is, when h(θ) is a di"erence of convex functions. An added
bene#t under the DC framework is that the majorizing function
is convex by construction and hence we solve a series of convex
optimization problems in each step of (11).

In our likelihood function, the convex part is

f (Q) = − log det Q

and the concave part is

g(Q) = log det
(
Q + τ−2$T$

)

− tr
(
τ−4$TS$

(
Q + τ−2$T$

)−1) ,

so the DC algorithm (10) becomes

Qj+1 = arg min
Q%0

(
− log det Q + tr

(
∇g(Qj)Q

)
+ ‖& ◦ Q‖1

)
,

(12)

where ∇g(Qj) =
(
Qj + τ−2$T$

)−1 (
Qj + τ−2$T$+

τ−4$TS$
) (

Qj + τ−2$T$
)−1. The inner minimization

problem in (12) is well-studied and known in statistics as the
graphical lasso problem. Traditionally, the graphical lasso is used
to estimate an undirected graphical model of a multivariate
Gaussian vector c under the assumption that we observe c
directly, without noise. The standard graphical lasso estimate is
obtained from the penalized negative log-likelihood

arg min
Q%0

− log det Q + tr(ScQ) + ‖& ◦ Q‖1, (13)

where Sc is the sample covariance of c. In summary, we have
shown that the BGL (6) for estimating the graphical structure of
Q given realizations from $c + ε can be discerned through a
concave-convex-procedure where the inner solve is the graphi-
cal lasso (13) with “sample covariance” matrix depending upon
the previous guess Qj.

Another note is in order: the linearization step of (12)
involves matrix solves using the matrix Qj + τ−2$T$. If the
basis functions are chosen to be compactly supported or orthog-
onal, then both Qj and $T$ are sparse, and sparse matrix meth-
ods can potentially be used to speed up matrix solves (which is
the computational technique exploited by LatticeKrig). For an
arbitrary basis, common computations under our model have
the same complexity, O(n"2), as standard low rank or #xed rank
methods (Cressie and Johannesson 2008).

A variety of numerical techniques have been proposed for the
graphical lasso. Yuan and Lin (2007) and Banerjee, El Ghaoui,
and d’Aspremont (2008) both use interior point methods, but
the latter examine the dual problem of (13)

arg min
|U|≤&

− log det(Sc + U) − ", (14)
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where |U| ≤ & is understood elementwise, and solve (14) one
column at a time via quadratic programming. Friedman, Hastie,
and Tibshirani (2008) took an identical approach but write
the dual problem of the columnwise minimization as a lasso
regression, which they solve quickly using their own coordinate
descent algorithm (Friedman et al. 2007). This implementation
is available in the popular R package glasso.

Advances in solving (13) in recent years have stemmed from
the use of second-order methods that incorporate Hessian
information instead of simply the gradient. A current state of
the art algorithm is QUIC (Hsieh et al. 2014) which also features
an R package of the same name. Brie$y, the QUIC algorithm
uses coordinate descent to search for a Newton direction based
on a quadratic expansion about the previous guess and then
an Armijo rule to select the corresponding stepsize. During
the coordinate descent update, only a set of free variables are
updated, making the procedure particularly e"ective when Q
is sparse. In the BasisGraphicalLasso package, available
at github.com/mlkrock/BasisGraphicalLasso,
we provide code to solve (12) using QUIC. A recent paper
(Fattahi, Zhang, and Sojoudi 2019) shows that reformulating
(13) as a maximum determinant matrix completion problem is
a promising strategy.

2.2.1. Estimating the Nugget Variance
In practice, we must produce an estimate τ̂ 2 which is #xed
during the algorithm (12). For this purpose, we return to (5),
now rewritten as
f (Q, τ 2) = log det

(
Q + τ−2$T$

)
− log det Q

− tr
(
τ−4$TS$

(
Q + τ−2$T$

)−1) + n log τ 2 + τ−2tr(S).

We minimize f jointly over τ 2 and α under the assumption that
Q = αI" with α > 0. Our estimates τ̂ 2 and α̂ are retrieved
from an L-BFGS optimization routine via the optim function
in R. In the simulation study below, this approach is seen to
empirically work very well. Jointly estimating a full model of
Q and τ 2 is complicated and unlikely to result in substantial
empirical improvement (see Section 3.3.2).

2.2.2. Estimating the Penalty Weight
All that remains to specify is the penalty weight matrix &.
One option follows Bien and Tibshirani (2011), in which a
likelihood-based cross-validation approach is used to select &

in the context of estimating a sparse covariance matrix. More
formally, suppose we use k folds and consider t penalty matrices
(&1, . . . , &t). Let Q̂&(S) be the estimate we get from applying
our algorithm with empirical covariance S = 1

m
∑m

i=1 YiYT
i and

penalty &. For A ⊆ {1, . . . , m}, let SA = |A|−1 ∑
i∈A YiYT

i . We
seek & so that α(&) = "(Q̂&(S), S) is small, where

"(Q, S) = log det
(
Q + τ−2$T$

)
− log det Q

− tr
(
τ−4$TS$

(
Q + τ−2$T$

)−1) (15)

is the unpenalized version of (7). The cross-validation
approach is to partition {1, . . . , m} into disjoint sets {A1, . . . ,
Ak} and select &̂ = arg min

&∈{&1,...,&t}
α̂(&) where α̂(&) =

k−1 ∑k
i=1 "(Q̂&(SAc

i
), SAi).

Another option is through spatial cross-validation, where we
use training data to estimate Q̂&1(Strain), . . . , Q̂&t (Strain) and
then krig to the held out locations in the testing data. The
penalty weight matrix producing the smallest RMSE is then used
in conjunction with the full sample covariance S to obtain the
#nal estimate Q̂.

2.2.3. Initial Guess and Convergence
The nonconvex nature of this problem prohibits use of com-
mon convergence criterion available for convex optimization
problems. Instead, we say that the DC scheme has “converged”
when ‖Qj+1−Qj‖F

‖Qj‖F
< ε for some loose tolerance ε = 0.01. In

this article, we use the initial guess Q0 = I", and this choice
can produce large diagonal entries Qii . 0 since the diagonal
penalty weights of & are set to zero (see results in Section 4.1).

3. Simulated Data Studies

This section contains three perspectives of the proposed model.
The #rst is a comparison study against two possible alternative
estimation procedures, the second a timing study to illustrate
the tradeo" between realizations and graph dimension, and
the third a simulation study under di"erent basis and graph
structures.

3.1. Comparison Study

Let us consider alternatives to the BGL for estimating the preci-
sion (or covariance) matrix of the Gaussian vector c under the
basis model. A naive but easy-to-compute estimator involves
projecting the data onto the basis and using the projected
data with standard shrinkage methods for estimating sparse
precision matrices. Following notation in (4), the estimated
regression coe!cients of Yi onto $ comprise the columns of
the least squares projected data matrix ĉ. If $ is not full rank,
we cannot consider this least squares projection—a ridge regres-
sion may be more suitable, for example. Once ĉ is created, its
sample covariance is substituted into the graphical lasso; we
call this approach the regression method. For small samples, this
approach is expected to be statistically ine!cient as it does not
explicitly use any likelihood information and moreover fails to
incorporate the white noise process ε.

Another possible approach in the style of #xed rank kriging
is to retrieve K = Q−1 by minimizing the loss function

arg min
K%0

‖$K$T + τ 2In − S‖F (16)

as proposed by Cressie and Johannesson (2008). From equation
(3.8) in Cressie and Johannesson (2008), the optimal parameter
estimate is K̂ = R−1QT(S−τ 2In)Q(R−1)T where $ = QR is the
QR decomposition of $. Again, if $ is not full rank, we cannot
consider this method. The R package FRK is designed for one
realization and (16) is an analogous estimate for multiple real-
izations. By default,FRKparameterizes K as a block-exponential
covariance matrix, but we use the “unstructured” option which
is a more comparable nonparametric estimate. The connection
to graphical modeling here is lost, as we cannot expect a sparse
inverse of the estimated covariance matrix.
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Figure 1. Displaying the hub graph structure for Q and a realization from the basis model.

Table 1. Comparing methods: loss is the !xed rank kriging approach for multiple
realizations (FRK is used when m = 1), regression is the projection estimate, and
BGL is the proposed basis graphical lasso.

Statistic m Loss/FRK Regression BGL

1 1839.8 1.21 1.10
5 97.7 0.78 0.74

Frobenius error 10 77.9 0.64 0.63
20 53.6 0.59 0.59
50 25.3 0.59 0.59

1 1,349,412 89.2 78.2
5 – 48.3 44.0

KL divergence 10 – 29.4 27.8
20 – 17.4 17.2
50 – 12.3 12.4

NOTE: Values are means based on 100 independent trials; the best score is indicated
in bold. Missing values for Loss/FRK are due to numerically singular covariance
matrix estimates.

The setup of the experiment is as follows: we have n =
900 observations on the two-dimensional grid {(i, j)}30

i,j=1. Basis
functions are a series of bisquare functions taken from the FRK
package. Two resolutions are used in the basis for a total of
" = 90 bisquare basis functions. We consider the graph Q to
be a hub graph where the nodes are separated into groups and
each member of that group is only neighbors with a central
node. The hub graph is generated with default parameters from
the R package huge (Zhao et al. 2015) for high-dimensional
undirected graph estimation. The graphical structure is inher-
ently tied to the spatial registration of the basis functions, but
we are ignoring this and simply focusing on the ability of the
methods to recover the precision matrix. Finally, the noise-
to-signal ratio τ 2/(tr($Q−1$T)/n) is #xed at 0.1 and hence
determines the true nugget variance τ 2 ≈ 0.102. See Figure 1
for an illustration of the graph structure and a realization of
the process $c. The penalty matrix is populated with 0.25; we
found that regularizing the diagonal helped when the number
of realizations was small.

To compare these estimators, we conduct 100 trials and
report summary statistics based on the Frobenius norm ‖Q̂ −
Q‖F/‖Q‖F and the Kullback–Leibler (KL) divergence tr(Q̂Q)−
log det(Q̂Q) − ". Results are shown in Table 1. Generally, the
estimates based on minimizing the loss function (16) were
poorly behaved, and the versions which did not directly call the
FRK package produced singular matrices. The BGL method is
superior to the regression-based idea, especially for one or a

handful of realizations. For data with more ensemble members
the two are comparable. The next two sections consider the
e"ect of multiple realizations in further detail.

3.2. Timing Study

Here, we consider timing results to solve the BGL (6) using
our DC algorithm (10). The runtime is most in$uenced by
the number of basis functions ", the number of realizations m
(i.e., the quality of the sample covariance S), the sparsity of Q,
and the choice of penalty. Again we emphasize that the spatial
dimension n is no longer relevant to the estimation of Q once
$T$ and $TS$ are stored. The latter matrix $TS$ is also the
only way that the data directly enters the BGL and should be
computed using (8) to avoid storing the full sample covariance
matrix S. With the QUIC algorithm, each inner solve of (10)
is guaranteed to converge quadratically (Hsieh et al. 2014). It
is di!cult to say anything about the overall complexity of (6),
however.

The spatial domain in consideration is the unit square [0, 1]×
[0, 1], and basis functions are compactly supported Wendland
bases from the LatticeKrig R package, described in detail
in the next section. We observe data at n = 2500 uniformly
randomly sampled spatial locations with a noise-to-signal ratio
of 0.1. The #xed penalty matrix is populated with 0.2 and zeros
on the diagonal—no cross-validation is performed. The initial
guess is the identity matrix Q0 = I", as in the rest of the article.
We stop the BGL at a relative error of 0.01.

In Figure 2, we display the elapsed time for the BGL and
the number of calls to QUIC in the MM scheme. In general,
the computation time increases faster than linearly with respect
to the number of basis functions, while the number of itera-
tions scales linearly. Later MM iterations o%en spend increased
amounts of time in QUIC without much reduction in relative
error. Here, we see that having multiple realizations helps reduce
computation time due to a more stable estimate of the sample
spatial covariance matrix S.

3.3. Simulation Study

We close this section with a set of simulation studies to assess the
ability of our proposed algorithm to recover unknown precision
structures under the model (4). The section is broken into
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Figure 2. Illustrating the time to convergence for the algorithm (10). Plots show (a) the elapsed time and (b) the number of MM iterations.

two classes of basis functions: localized bases whose support is
spatially compact, and global basis functions that are nonzero
over the entire domain. For each class, we entertain multiple
types of precision structures that are common in the graphical
modeling literature.

For each choice of n, $, and Q, the noise-to-signal ratio
τ 2/(tr($Q−1$T)/n) is #xed at 0.1 and hence determines the
true nugget variance τ 2. Our estimated nugget variance τ̂ 2 is
retrieved from Section 2.2.1. Although in these simulations the
population mean is zero, in practice it is unknown, so through-
out we use the standard unbiased estimator S that includes an
empirical demeaning which will re$ect practical implications
better than using the known mean.

3.3.1. Local Basis
First, we consider a localized problem where we use a basis of
compactly supported functions on a grid using the LatticeKrig
model setup (Nychka et al. 2015), which we brie$y describe here:
basis functions are compactly supported Wendland functions
whose range of support is set so that each function overlaps with
2.5 other basis functions along axial directions. The model basis
functions will correspond to either a single level or multires-
olution model. In the single level setup, functions are placed
on a regular grid. In the multiresolution setup, higher levels
of resolution are achieved by increasing the number of basis
functions and nodal points (e.g., the second level doubles the
number of nodes in each axial direction). The precision matrix
Q is set to a stationary spatial autoregressive structure, see
Nychka et al. (2015) for details.

We specify the variance of the multiresolution levels to
behave like an exponential covariance by setting parameter
ν = 0.5. In LatticeKrig, the precision matrix Q is constructed
according to a spatial autoregression parameterized by the value
α, which we #x at α = 4.05. For simplicity, we employ no bu"er
region when constructing the Wendland bases; that is, there are
no basis functions centered outside of the spatial domain. We
use the R packageLatticeKrig to set up the aforementioned
basis and precision matrices. A total of m = 500 realizations
from the process (4) under this model are generated, and we

repeat this entire spatial data-generation process over 30 inde-
pendent trials.

The spatial domain is [0, 1] × [0, 1], and n observation
locations are chosen uniformly at random in this domain for
di"erent sample sizes n ∈ {1002, 1502, 2002}. For the single level
Wendland basis, we use " ∈ {100, 225, 400} basis functions.
Attempting to mirror these dimensions in the multiresolution
basis, we use " ∈ {119, 234, 404} which, respectively, corre-
sponds to (1) four multiresolution levels, the coarsest containing
two Wendland basis functions, (2) three multiresolution levels,
the coarsest containing four Wendland basis functions, and
(3) four multiresolution levels, the coarsest containing three
Wendland basis functions.

We parameterize the penalty matrix & according to

&ij =
{

λ, i 0= j,
0, i = j,

(17)

allowing for free estimates of the marginal precision parameters.
A 5-fold cross-validation as described in Section 2.2.2 is used
to select a penalty matrix & from eight equally spaced values
from 0.005 to 0.1. The optimal value is then used with the full set
of simulated realizations to produce a best guess Q̂. To validate
our proposed estimation approach, we report several summary
statistics, each averaged over the 30 trials: the Frobenius norm
‖Q̂ − Q‖F/‖Q‖F , the KL divergence tr(Q̂Q) − log det(Q̂Q) −
", the percentage of zeros in Q that were missed by Q̂, the
percentage of nonzero elements in Q that were missed by Q̂,
the di"erence of the estimated nugget e"ect τ̂ 2 and the true
nugget e"ect τ 2, and the ratio of the estimated and true negative
log-likelihoods f (Q̂, τ̂ 2) and f (Q, τ 2), where f is de#ned in
Section 2.2.1.

3.3.2. Comments
Tables 2 and 3 contain results from this simulation study. We
see that estimating the nugget e"ect τ 2 by treating the process as
stationary is quite accurate; here and in the rest of the article, the
unreported standard deviations of the averaged di"erences τ̂ 2 −
τ 2 are many orders of magnitude smaller than the magnitude of
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Table 2. Simulation study results for the single level case.

n " Frob KL %MZ %MNZ τ̂2 − τ2 f (Q̂, τ̂2)/f (Q, τ2)

100 0.41 6.5 21 5 0.000008 1.0001
10,000 225 0.49 26 20 2 −0.000042 1.00081

400 0.72 110 4.7 0.8 −0.00016 0.998709

100 0.38 5.6 22 6 0.0000093 1.00005
22,500 225 0.43 21 21 2 −0.0000041 1.00037

400 0.65 82 4.8 1 −0.000033 0.999366

100 0.37 5.3 23 6 0.0000084 1.00002
40,000 225 0.41 19 22 3 0.0000038 1.00021

400 0.61 70 4.9 1 −0.0000079 0.999617

NOTE: Scores are averaged over 30 independent trials. Each column represents
the number of observation samples, number of basis functions, Frobenius norm,
KL divergence, percent of true zeros missed, percent of true nonzeros missed,
estimated nugget minus true nugget, and the estimated negative log-likelihood
divided by the true negative log-likelihood.

Table 3. Simulation study results for the multiple level case.

n " Frob KL %MZ %MNZ τ̂2 − τ2 f (Q̂, τ̂2)/f (Q, τ2)

119 0.82 645 5.6 7 −0.000035 1.00002
10000 234 0.89 2020 6.4 4 −0.00013 1.00022

404 0.85 3790 0.07 3 −0.0002 0.999782

119 0.77 640 7.1 6 −0.0000078 1
22,500 234 0.85 2050 10 3 −0.000043 1.00017

404 0.93 4280 0.085 2 −0.0001 0.99983

119 0.79 635 7.8 6 0.0000012 0.999998
40,000 234 0.84 1940 11 3 −0.000015 1.00011

404 0.94 4440 0.087 2 −0.000046 0.99986

NOTE: Scores are averaged over 30 independent trials. Each column represents
the number of observation samples, number of basis functions, Frobenius norm,
KL divergence, percent of true zeros missed, percent of true nonzeros missed,
estimated nugget minus true nugget, and the estimated negative log-likelihood
divided by the true negative log-likelihood.

the true nugget e"ect. Estimates under the multiresolution basis
are clearly lackluster when compared to the single resolution
counterpart. The Frobenius norm and KL divergence tend to
increase with the size of ", but this is to be expected as the
dimensions of the target precision matrix Q grow in ". The
percentage of zeros in Q that are missed (i.e., nonzero) in Q̂
drops sharply as " increases to 400, but this is the consequence of
a harsher penalty weight matrix selected in the cross-validation
scheme.

3.3.3. Global Basis
Next, we consider a spatial basis de#ned globally, that is, without
compact support. In particular, we set up a harmonic basis

via the model φi(s) = cos(2πωT
i s) where the frequencies

ω1, . . . , ω" ∈ R2 are all pairwise combinations of the form
( k√

n , j√
n ) for k, j = 1, . . . ,

√
" − 1. Given n samples, the cor-

responding n × " basis matrix $ has (i, j)th entry cos(2πωT
j si).

Such a model can be interpreted as a discretized approximation
to the representation theorem for stationary processes (see, e.g.,
Stein 1999).

Whereas compactly supported basis functions laid on a grid
suggest natural nearest-neighbor structures for Q, in the case
of global basis functions it is not as clear what natural models
might be. We consider four traditional undirected graphical
models from the literature, described brie$y below and depicted
in Figure 3.

1. Random graph: Edges of the graph are randomly selected.
2. Cluster graph: The diagonal of Q consists of block matrices

with random graph edges in each block.
3. Scale-free graph: Generated from the algorithm of Barabási

and Albert (1999).
4. Band graph: Q is tridiagonal.

Our experiment is similar to the local basis experiment: the
n spatial observation locations are randomly uniformly sampled
from the square [0,

√
n] × [0,

√
n] where we entertain n ∈

{1002, 1502, 2002} and " ∈ {100, 225, 400}. The four graphs
above are each generated with the R package huge (Zhao
et al. 2015) using default parameters. The same test statistics as
reported in the previous section, again averaged over 30 trials,
are recorded in Tables A.1–A.4 in Appendix A. We display an
abbreviated version in Table 4 with n = 10,000 as we saw little
variability in the summary statistics upon increasing n.

3.3.4. Comments
Tables A.1–A.4 contain the results of the global basis simula-
tion study and are shown in Appendix A. As in the compactly
supported basis study, we note the same behavior in τ̂ 2 in
that the independent identical coe!cient assumption (constant
diagonal Q) yields robust estimates of τ 2. The cluster graph
appears highest in Frobenius norm and KL divergence, but this
should not be surprising given the fact that there are more
nonzero elements in the cluster graph than its counterparts and
we are searching for a sparse estimate. The percentage of missed
zeros and missed nonzeros in Q also behave similarly to the
local basis study with respect to the dimension ". Overall, the
proposed method seems to supply reasonable estimates of the

Figure 3. Illustration of the various graph structures of the precision matrix used in our simulation study.
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Table 4. Condensed simulation study results for the various graphical models.

Graph " Frob KL %MZ %MNZ τ̂2 − τ2 f (Q̂, τ̂2)/f (Q, τ2)

100 0.19 1.7 9.6 0 0.00066 0.999961
Random 225 0.2 4.8 5.2 0 −0.00042 0.999931

400 0.22 9.8 2.6 0.0002 0.0019 0.99995

100 0.26 3.1 16 0.026 0.0008 0.999948
Cluster 225 0.3 8.9 8.9 0.036 −0.00086 0.999913

400 0.32 18 5 0.049 0.0026 0.999922

100 0.21 1.4 6.1 0.01 0.00061 0.999978
Scale-free 225 0.21 3.5 2.8 0.05 −0.00081 0.999972

400 0.21 6.3 2.6 0.06 0.0032 0.999883

100 0.17 1.5 8.5 0 0.0008 0.999967
Band 225 0.19 4.2 4.6 0 0.0015 0.999944

400 0.21 8.7 2.3 0 0.0017 0.999963

NOTE: Here, n is !xed at 10,000. Full results with n = 22,500 and 40,000 are
shown in Appendix A. Scores are averaged over 30 independent trials. Each
column represents the graph type, number of basis functions, Frobenius norm,
KL divergence, percent of true zeros missed, percent of true nonzeros missed,
estimated nugget minus true nugget, and the estimated negative log-likelihood
divided by the true negative log-likelihood.

zero structure of the precision matrix as well as its nonzero
values.

3.3.5. Changing the Number of Realizations and the
Noise-to-Signal Ratio

We consider a brief study to assess the e"ect realizations on the
algorithm’s ability to recover Q. In the prior section, we #xed
the number of realizations at m = 500. Here we #x " = 100
to ease computation times but vary the number of realizations
according to m ∈ {100, 200, 500, 1000} and number of spatial
locations according to n ∈ {1002, 1502, 2002, 2502, 3002}. The
same Wendland basis and precision matrix Q as in the local basis
study (Section 3.3.1) are used to generate m realizations of the
additive model (4) where we have observations at n uniformly
randomly sampled locations in [0, 1] × [0, 1]. We record the
KL divergence tr(Q̂Q) − log det(Q̂Q) − " and the percentage
of zeros in Q that Q̂ fails to capture. The penalty parameter is
#xed at λ = 0.005, the value which was favored in our previous
simulations when (", m, n) = (100, 500, 10,000). Figure 4 shows
results from this study. The plots suggest that the number of

realizations m has a prominent e"ect on KL divergence and
missed zeros, with larger values of m increasing the quality of
the estimate, but increasing the sample size n has much less of
an e"ect. We also noticed that increasing n noticeably lowered
the Frobenius norm ‖Q̂ − Q‖F/‖Q‖F (not displayed in the
#gure), but more unexpectedly, increasing m did not necessarily
decrease the Frobenius error, an oddity which we attribute to
instability of this norm (Tropp 2015).

Up to this point, the noise-to-signal ratio has been #xed at
0.1. We conducted a brief experiment where, for #xed $ and
Q, we increased the noise-to-signal ratio to 0.25 and 0.5. The
penalty matrix was also kept constant across these various noise
levels. Increasing the ratio from 0.1 to 0.25 slightly worsened
the Frobenius norm and KL divergence, but the jump from
0.25 to 0.5 demonstrated a substantial decrease in ability to
accurately capture the true precision matrix. At a noise-to-signal
ratio of 0.5, however, the resulting model is extremely noisy and
expecting accurate estimates is not entirely reasonable.

4. Data Analysis

4.1. Reforecast Data

The Global Ensemble Forecast System from the National Center
for Environmental Prediction provides an 11 member daily
reforecast of climate variables available from December 1984
to present day. We take all readings from January of each year
through 2018, giving a total of m = 1054 global #elds of the two-
meter temperature variable. Measurements were recorded at
each integer valued longitude and latitude combination, totaling
n = 65,160 spatial locations. We use a set of Wendland basis
functions spread over the globe in a way that ensures that the
" = 2531 centers are equispaced with respect to the great circle
distance. See Figure 5 for an illustration of the data and basis
functions. We opt for 2531 as it provides a reasonably dense
network of basis functions that still allows for computational
tractability.

Throughout this section, we work with temperature anoma-
lies, that is, residuals a%er removing a pixelwise mean over real-
izations. Although these residuals are not strictly independent,
they do decorrelate over a few days and we use the assumption of

Figure 4. Results of a small simulation study where we !x the basis size " = 100 but vary the number of realizations m and sample size n. Plots (a) and (b) show our
estimate’s error in the form of KL divergence and the missed nonzero percentage.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 383

Figure 5. Two meter temperature (Kelvin) on January 1, 1984. Dots indicate nodal points.

Figure 6. Estimated pointwise standard deviations under the model (3) using Q estimated from the DC algorithm. Units are Kelvins.

independence for convenience. Moreover, considering data over
an approximately 30 year period is standard for climatological
studies, even if there are slowly changing climate signals within
the period. The technique introduced in Section 2.2.1 is used to
estimate the nugget e"ect τ̂ 2 = 1.74.

An interesting idea when using localized basis functions with
a notion of distance between them is to adjust the penalty matrix
so that neighbors are encouraged to remain in close proximity
to the center point. In particular, we make & proportional to
the distance matrix of the centers of the basis functions. This
idea was pursued in Davanloo Tajbakhsh, Serhat Aybat, and Del
Castillo (2014) but in the context of direct spatial observations
with the graphical lasso rather than working through basis
functions with our DC algorithm.

We consider & = λD where D is the pairwise distance matrix
of the nodal points registering the Wendland basis functions.
To select the penalty parameter λ, we use 2-fold likelihood-
based cross-validation as described in Section 2.2.2 for values
λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. Smaller
values than 0.0001 were examined but failed to converge a%er a
reasonable runtime. Despite the fact that it sits on the boundary
of our parameter set, the value λ = 0.0001 was chosen as yielded
a signi#cant drop in negative log-likelihood when compared to
larger penalties.

Figure 6 contains a global plot of the implied estimated
local standard deviations. Note similar behavior in Figure 4 of
Legates and Willmott (1990), which depicts standard deviations
for mean air surface temperature over the globe. Both plots
illustrate a clear land-ocean di"erence and increased variability
in higher latitudes where the overall land area is greater.

Figure 7 shows a plot of estimated spatial correlation func-
tions centered at three di"erent geographical locations in the
southern tip of South America, the Middle East, and central
North America. There is clear evidence of nonstationarity in all
three cases as well as negative correlation at medium distances.
An interesting feature of the estimated covariance structure is
the negative correlation between Alaska and the central United
States, indicative of medium-range teleconnections, and may be
a result of Rossby waves that occur during winter in the northern
hemisphere.

An interesting byproduct of the BGL is that we can exam-
ine the GMRF neighborhood structure of the estimated pre-
cision matrix. Recall that each random coe!cient ci in our
model is registered to a nodal grid shown in Figure 5, and
thus we can identify estimated spatial neighborhood patterns
according to this grid. We illustrate some of these neighbor-
hood structures, colored by their respective Q values, in Fig-
ure 8. For nodal points over the ocean, the tendency is large,
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Figure 7. Estimated spatial correlation functions centered at a point in southern South America (a), central Middle East (b), and central North America (c).

Figure 8. The estimated neighborhood structure of Q registered at the nodal points of the basis functions. Colors correspond to neighborhood entries in Q with a center
point that is clockwise starting top left: over United States (a); in Paci!c Ocean near Australia (b); over the Paci!c Ocean near the equator (c); over Russia (d).

positive precision values with few neighbors; we note that this
does not necessarily correspond to low spatial correlation of
temperature over the ocean, in fact the opposite is true—the
fact that there are smooth, overlapping basis functions over
the ocean imply spatially correlated temperatures as we would
expect. For nodal points over land, we observe that the most
signi#cantly nonzero neighbor elements are geographically near
the center node, implying more complicated spatial covariance
structure.

The utility of examining neighborhood structures as in Fig-
ure 8 allows for model interpretation (with respect to the chosen
basis), but also model interrogation. In particular, a model
like LatticeKrig or the SPDE approach of Lindgren, Rue, and
Lindström (2011) uses compactly supported bases distributed
throughout the domain, but both models use simple stationary
spatial autoregressive processes for the random amplitudes c.
The substantial variation in neighborhoods seen in Figure 8 sug-
gests that these stationary models are not appropriate for highly
nonstationary processes, but our approach accommodates such

nonstationarity readily and without much extra modeling
e"ort.

Finally, we display simulations from the continuous stochas-
tic process model (i.e., without white noise) in Figure 9. The
bottom row of this #gure illustrates a limitation of our low rank
model—we cannot adequately study the small scale structure of
the process (Stein 2014). A multiresolution design in the style of
LatticeKrig (or, more simply, using more basis functions) could
help capture more small scale variability, but this would require
innovations for computing with larger graph structures.

4.2. Observational Data

The Topography Weather dataset (Oyler et al. 2015) contains
observed air temperatures from a set of observation networks
over the continental United States. We consider daily minimum
temperatures during the month of June from 2010 to 2014,
giving a total of m = 150 realizations. Network locations are
chosen to have no missing values, yielding n = 4577 spatial
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Figure 9. Example residual !elds (top row) and simulations (bottom row).

Figure 10. Minimum temperature (Celsius) on June 1, 2010, overlaid with a grid of
basis function nodes.

locations. Figure 10 shows an example day of data on June 1,
2010.

We work with minimum temperature residuals a%er remov-
ing a pixelwise mean over realizations and also transform the
raw spatial coordinates with a sinusoidal projection. Our statis-
tical model for the temperature residuals uses Wendland basis
functions centered at nodes displayed in Figure 10. We opt
for " = 1160 functions using a single level of resolution.
The nodal grid and Wendland functions are chosen to match
up with a LatticeKrig model speci#cation but with relaxed
assumptions on the precision matrix governing the random
coe!cients.

The nugget estimate τ̂ 2 = 2.18 is retrieved following Sec-
tion 2.2.1. As with the previous dataset, the penalty matrix
& is parameterized according to & = λD, where D is the
distance matrix of node points. We selected a scaling param-
eter of 7 from λ ∈ {1, 2, . . . , 30} using the likelihood-based
cross-validation scheme in Section 2.2.2. Code to reproduce

the estimated precision matrix with this data is available at
github.com/mlkrock/BasisGraphicalLasso.

Figures 11 and 12 show graphical model neighborhoods and
estimated correlation functions centered at locations in Utah
and Kansas. Clear anisotropy and nonstationarity is present in
the estimated correlation functions with greater north-south
directionality of correlation, while the neighborhood structure
for the Utah nodal point (a) displays greater complexity than the
relatively nearby neighbors of the nodal point in the midwest
(b). In particular, the estimated graphs in Figure 11 suggest
that the stationary spatial autoregressive assumption underlying
both LatticeKrig and the standard SPDE approach are inappro-
priate for these data.

Due to lack of data availability over the ocean there is an
identi#ability problem with our method. Since several of the
Wendland basis functions lie over the ocean where there is no
observed data, we cannot expect the algorithm to give reason-
able estimates for the diagonal elements of Q corresponding to
those nodes. Moreover, the diagonal of the penalty matrix & is
identically zero, and thus the corresponding diagonal elements
of Q remained unchanged no matter the initial guess Q0, which
we #xed at Q0 = I".

We compare our BGL model against the analogous Lat-
ticeKrig model using the same nodal grid and same Wendland
basis functions but with the spatial autoregressive precision
matrix of LatticeKrig. We estimate LatticeKrig parameters by
maximum likelihood within the LatticeKrig package in R.
In particular, the central a.wght parameter is estimated at
4.495, and the nugget variance τ̂ 2 = 2.23 is close to our estimate.
The smoothness parameter ν in the LatticeKrig setup is set at
0.5, which is a typical assumption for observational tempera-
ture data. However, using this few basis functions downplays
the capabilities of LatticeKrig, so we include a multiresolution
LatticeKrig model created with 3 levels, the coarsest of which
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Figure 11. Displaying the neighborhood structure of Q, where the two center points are located in central Utah (a) and near Kansas City (b). Neighbors are colored according
to the corresponding nonzero elements in Q.

Figure 12. Estimated spatial correlation functions centered at the pink-colored locations in Utah (a) and Kansas (b).

matches the nodepoints from the smaller example. In total, there
are 15,394 basis functions over the 3 levels, and the estimated
a.wght and nugget variance parameters are 4.161 and 2.05,
respectively.

The three models are compared based on cross-validation
prediction accuracy and standard Akaike information criterion.
We randomly hold out 400 locations and calculate the kriging
predictive distribution at these locations for each day of data. We
compare point predictions using the average root mean squared
error (RMSE). To compare the predictive distributions, we use
two proper scoring rules: the continuous ranked probability
score (CRPS) and the (negative) log score (Gneiting and Ra%ery
2007). The former quanti#es the quality of the marginal predic-
tive distributions at each location separately, while the latter is
a measure of the quality of the joint predictive distribution over
all validation locations simultaneously. To calculate the AIC, we
note that the number of degrees of freedom of a spatial model
can be identi#ed with the trace of the spatial smoothing hat
matrix (Nychka 2000).

Table 5 contains the averaged scores over all days. It is per-
haps surprising that both LatticeKrig models give a marginally
better CRPS despite being designed for a single spatial #eld
m = 1, but these scores only measure the marginal behavior of
the predictive distributions. The AIC and log scores quantify the
quality of the joint distributions and suggest that the BGL more
accurately represents such joint distributions of the process than
the LatticeKrig models.

Table 5. Cross-validation results comparing the proposed basis graphical lasso
(BGL) to two versions of LatticeKrig on the TopoWX data.

RMSE CRPS Negative log score AIC

BGL 1.47 2.15 714.4 9018.5
Single-level LatticeKrig 1.48 2.13 1084.6 9063.2
Multi-level LatticeKrig 1.46 2.14 997.6 9341.6

5. Conclusion

In this work, we introduce a novel approach for estimating the
precision matrix of the random coe!cients of a basis represen-
tation model that is pervasive in the spatial statistical literature.
The only assumption we make about the precision matrix is that
it is sparse. In the case that the basis functions are registered
to a grid, the precision entries can be interpreted as a spatial
Gaussian Markov random #eld, while graphical model interpre-
tations are still viable with global bases.

The proposed BGL estimator minimizes an "1 penalized
negative log-likelihood equation. We show that the optimization
problem is equivalent to one involving a sum of a convex and
concave functions, suggesting a DC algorithm in which we
iteratively linearize the concave part at the previous guess and
solve the resulting convex problem. The linearization in our
case gives rise to a graphical lasso problem with its “sample
covariance” depending upon the previous guess. The graphical
lasso problem is well-studied and a number of user-friendly
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R packages exist, headed by the second-order method QUIC.
Our method has important practical applications in spatial data
analysis, since we obtain a nonparametric, penalized maximum
likelihood estimate of Q which can subsequently be used in
kriging or simulation with computational complexity O(n"2)
under the basis model.

In our data examples, we see that the proposed method
performs competitively with existing alternatives such as Lat-
ticeKrig on marginal predictions but substantially improves the
quality of joint predictive distributions. Moreover, our model
results in interpretable #elds, allowing for checking of graphical
neighborhood structures or implied nonstationary covariance
functions. Future work may be directed toward other penalties,
increasing the number of basis functions to better accommodate
multiple levels of resolution, or pushing these notions to space-
time modeling.

Appendix A

We start the appendix with the proof of Proposition 1.

Proof of Proposition 1. For matrices A, U, C, and V of appropriate size,
the Sherman–Morrison–Woodbury formula is

(A + UCV)−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1

and the matrix determinant lemma is

det(A + UCV) = det(C−1 + VA−1U) det(C) det(A).

In our case, these two equations read
(
$Q−1$T + τ2In

)−1
= τ−2In − τ−4$

(
Q + τ−2$T$

)−1
$T

(A.1)

and

det($Q−1$T + τ2In) = det
(

Q + τ−2$T$
)

det(Q−1) det(τ2In).
(A.2)

Combining (A.1) with linearity and the cyclic property of trace gives

tr(S($Q−1$T + τ2In)−1) = τ−2tr(S)

− tr
(

τ−4$TS$
(

Q + τ−2$T$
)−1)

,

and taking the logarithm of (A.2) immediately yields

log det($Q−1$T + τ2In)

= log det
(

Q + τ−2$T$
)

− log det Q + n log τ2.

A.1. Convexity, Gradients, and Hessians

The penalized negative log-likelihood in Proposition 1 reads

log det
(

Q + τ−2$T$
)

− log det(Q)

− tr
(

τ−4$TS$
(

Q + τ−2$T$
)−1)

+ ‖& ◦ Q‖1.

Let us explain the classi#cations of convexity and concavity stated in the
opening paragraph of Section 2.2. The penalty function Q 2→ ‖&◦Q‖1
is trivially convex on Q % 0. A proof of concavity for Q 2→ log det Q on
Q % 0 is given in Boyd and Vandenberghe (2004, p. 74). The convexity

of tr(AQ−1) on Q % 0 for an arbitrary positive semide#nite matrix
A can be shown in a similar fashion, as the authors suggest in their
Exercise 3.18(a). Composition with an a!ne mapping preserves both
convexity and concavity, so Q 2→ log det

(
Q + τ−2$T$

)
is concave

on Q % 0 and Q 2→ tr
(

A
(

Q + τ−2$T$
)−1)

is convex on Q % 0.

Below we report the gradient and Hessian matrices of the #rst three
terms in the negative log-likelihood, with ⊗ indicating the Kronecker
product of two matrices. Let W = Q−1 and M =

(
Q + τ−2$T$

)−1

for shorthand.

Gradient Hessian
log det

(
Q + τ−2$T$

)
M −(M ⊗ M)

− log det(Q) −W W ⊗ W

−tr
(
τ−4$TS$M

)
τ−4M$TS$M −τ−4

(
M$TS$M ⊗ M

)

−τ−4
(

M ⊗ M$TS$M
)

Our claims of convexity and concavity in the above paragraphs can
be further veri#ed with the following fact: if {λi} and {µi} are the
eigenvalues of A and B, then A ⊗ B has eigenvalues {λiµj} (Seber 2007,
11.5).

A.2. Additional Tables

Table A.1. Simulation study results for the random graphical model.

n " Frob KL %MZ %MNZ τ̂2 − τ2 f (Q̂, τ̂2)/f (Q, τ2)

100 0.19 1.7 9.6 0 0.00066 0.999961
10,000 225 0.2 4.8 5.2 0 −0.00042 0.999931

400 0.22 9.8 2.6 0.0002 0.0019 0.99995

100 0.19 1.8 9.7 0.0007 0.00033 0.999983
22,500 225 0.2 4.8 5.2 0 −0.00048 0.999968

400 0.22 9.7 2.6 0.0003 0.001 0.999976

100 0.19 1.7 9.7 0 0.00018 0.99999
40,000 225 0.2 4.7 5.2 0 −0.00063 0.999981

400 0.22 9.7 2.6 0.0003 0.00019 0.999986

NOTE: Scores are averaged over 30 independent trials. Each column represents
the number of observation samples, number of basis functions, Frobenius norm,
KL divergence, percent of true zeros missed, percent of true nonzeros missed,
estimated nugget minus true nugget, and the estimated negative log-likelihood
divided by the true negative log-likelihood.

Table A.2. Simulation study results for the cluster graphical model.

n " Frob KL %MZ %MNZ τ̂2 − τ2 f (Q̂, τ̂2)/f (Q, τ2)

100 0.26 3.1 16 0.026 0.0008 0.999948
10,000 225 0.3 8.9 8.9 0.036 −0.00086 0.999913

400 0.32 18 5 0.049 0.0026 0.999922

100 0.26 3.1 17 0.021 0.00035 0.999973
22,500 225 0.29 8.9 9 0.042 −0.00047 0.999957

400 0.31 18 5 0.05 0.0007 0.999961

100 0.26 3.1 18 0.02 0.0002 0.999984
40,000 225 0.29 8.7 9.1 0.041 −0.00053 0.999976

400 0.31 18 5.1 0.05 0.00041 0.999977

NOTE: Scores are averaged over 30 independent trials. Each column represents
the number of observation samples, number of basis functions, Frobenius norm,
KL divergence, percent of true zeros missed, percent of true nonzeros missed,
estimated nugget minus true nugget, and the estimated negative log-likelihood
divided by the true negative log-likelihood.
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Table A.3. Simulation study results for the scale-free graphical model.

n " Frob KL %MZ %MNZ τ̂2 − τ2 f (Q̂, τ̂2)/f (Q, τ2)

100 0.21 1.4 6.1 0.01 0.00061 0.999978
10,000 225 0.21 3.5 2.8 0.05 −0.00081 0.999972

400 0.21 6.3 2.6 0.06 0.0032 0.999883

100 0.2 1.4 5.9 0.009 0.00029 0.999991
22,500 225 0.21 3.5 2.8 0.04 −0.00054 0.999988

400 0.21 6.3 2.7 0.06 0.00071 0.999946

100 0.2 1.3 6.1 0.01 0.0002 0.999994
40,000 225 0.21 3.5 2.8 0.05 −0.00061 0.999993

400 0.21 6.2 2.7 0.06 0.00029 0.999969

NOTE: Scores are averaged over 30 independent trials. Each column represents
the number of observation samples, number of basis functions, Frobenius norm,
KL divergence, percent of true zeros missed, percent of true nonzeros missed,
estimated nugget minus true nugget, and the estimated negative log-likelihood
divided by the true negative log-likelihood.

Table A.4. Simulation study results for the band graphical model.

n " Frob KL %MZ %MNZ τ̂2 − τ2 f (Q̂, τ̂2)/f (Q, τ2)

100 0.17 1.5 8.5 0 0.0008 0.999967
10,000 225 0.19 4.2 4.6 0 0.0015 0.999944

400 0.21 8.7 2.3 0 0.0017 0.999963

100 0.17 1.5 8.5 0 0.00031 0.999985
22,500 225 0.19 4.2 4.6 0 0.00053 0.999973

400 0.2 8.6 2.4 0 0.00058 0.999982

100 0.17 1.5 8.6 0 0.00017 0.999992
40,000 225 0.19 4.2 4.7 0 0.00034 0.999985

400 0.2 8.6 2.4 0 0.00011 0.99999

NOTE: Scores are averaged over 30 independent trials. Each column represents
the number of observation samples, number of basis functions, Frobenius norm,
KL divergence, percent of true zeros missed, percent of true nonzeros missed,
estimated nugget minus true nugget, and the estimated negative log-likelihood
divided by the true negative log-likelihood.

Acknowledgments

The authors thank the reviewers and associate editor for constructive
comments that greatly improved the article.

Funding

This research was supported by NSF DMS-1811294 and DMS-1923062.

References

Bandyopadhyay, S., and Lahiri, S. N. (2009), “Asymptotic Properties of
Discrete Fourier Transforms for Spatial Data,” Sankhyā, 71, 221–259.
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