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ABSTRACT
We propose a new modeling framework for highly multivariate spatial processes that synthesizes ideas
from recent multiscale and spectral approaches with graphical models. The basis graphical lasso writes a
univariate Gaussian process as a linear combination of basis functions weighted with entries of a Gaussian
graphical vector whose graph is estimated from optimizing an �1 penalized likelihood. This article extends
the setting to a multivariate Gaussian process where the basis functions are weighted with Gaussian
graphical vectors. We motivate a model where the basis functions represent different levels of resolution and
the graphical vectors for each level are assumed to be independent. Using an orthogonal basis grants linear
complexity and memory usage in the number of spatial locations, the number of basis functions, and the
number of realizations. An additional fusion penalty encourages a parsimonious conditional independence
structure in the multilevel graphical model. We illustrate our method on a large climate ensemble from
the National Center for Atmospheric Research’s Community Atmosphere Model that involves 40 spatial
processes. Supplementary materials for this article are available online.
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1. Introduction

The past 20 years have seen a surge of interest in developing
models for multivariate spatial processes. The major obstacle
lies in defining valid cross-covariance functions that can charac-
terize complex interactions between multiple processes; the pri-
mary difficulty is that the cross-covariance and marginal covari-
ance functions must work together to provide a nonnegative
definite matrix function. Most research has focused on exploring
new models or new approaches for defining cross-covariances
that are valid for a handful of processes. Many applied prob-
lems, such as those in statistical climatology, involve highly-
multivariate datasets with dozens to hundreds of variables, and
existing approaches fail as strategies to model and understand
relevant dependencies between variables. With growing avail-
ability of ensemble-based geophysical model output (Eyring
et al. 2016), nonstationary spatial data with many realizations
(i.e., replicates) of a large spatial field are increasingly common.
We propose a method which is able to model multiple variables
of a large climate ensemble. Previous techniques are unable to
deal with a dataset of this magnitude and to capture nonstation-
arity in space and between variables.

To introduce the basic ideas, let us fix some notation. The p-
variate observational Gaussian process model under considera-
tion is ⎛

⎜⎝
Y1(s)

...
Yp(s)

⎞
⎟⎠ =

⎛
⎜⎝

μ1(s)
...

μp(s)

⎞
⎟⎠ +

⎛
⎜⎝

Z1(s)
...

Zp(s)

⎞
⎟⎠ +

⎛
⎜⎝

ε1(s)
...

εp(s)

⎞
⎟⎠ (1)
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or in vector form, Y(s) = μ(s) + Z(s) + ε(s). Here, Y(s) =
(Y1(s), . . . , Yp(s))T is the observed process at location s ∈ R

d

with mean μ(s) = (μ1(s), . . . , μp(s))T and spatially corre-
lated stochastic variation Z(s) = (Z1(s), . . . , Zp(s))T, which
we assume to be a multivariate Gaussian process. The observa-
tions are subject to noise ε(s) = (ε1(s), . . . , εp(s))T, a mean
zero multivariate white noise process with covariance matrix
cov(ε(s), ε(s)) = diag(τ 2

1 , . . . , τ 2
p ).

The paramount issue in working with multivariate pro-
cesses is specifying the matrix-valued covariance, C(s1, s2) =
(Cij(s1, s2))

p
i,j=1, where Cij(s1, s2) = cov(Zi(s1), Zj(s2)) are the

direct and cross-covariance functions. This matrix function
must be carefully constrained in order to be a nonnegative defi-
nite matrix function. In particular, for arbitrary locations {si}n

i=1,
the block matrix � with (i, j)th block C(si, sj) must be nonneg-
ative definite. Genton and Kleiber (2015) give an overview of
cross-covariance functions for multivariate geostatistics which
is still relatively up-to-date. Salvaña and Genton (2020) provide
a more recent overview with a focus on multivariate spatio-
temporal cross-covariance functions. The remainder of this arti-
cle considers Gaussian process models for continuous spatial
processes with no temporal component. Spatial data with loca-
tions grouped by region (e.g., by county or state) is known
as areal or lattice data. We refer readers interested in high-
dimensional multivariate spatio-temporal areal data to Bradley
et al. (2015, 2018).

The main extant approaches to generating valid multivari-
ate spatial models are reviewed by Genton and Kleiber (2015)
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and include covariance convolution and kernel convolution
(Ver Hoef and Barry 1998; Gaspari and Cohn 1999; Majumdar
and Gelfand 2007; Majumdar et al. 2010), the linear model of
coregionalization (LMC) (Goulard and Voltz 1992; Schmidt and
Gelfand 2003; Wackernagel 2003; Gelfand et al. 2004), latent
dimensions (Apanasovich and Genton 2010), dynamical models
(Shaddick and Wakefield 2002; Calder 2007; Ippoliti et al. 2012),
conditional Bayesian hierarchical structures (Le and Zidek 2006;
Pollice and Jona Lasinio 2010), and direct specification as in
the multivariate Matèrn (Gneiting et al. 2010; Apanasovich et al.
2012) and nonstationary extensions (Kleiber and Nychka 2012;
Kleiber and Porcu 2014). Cressie and Zammit-Mangion (2016)
develop a conditional model for multivariate spatial data. Qadir
and Sun (2020) and Qadir et al. (2021) work with the coherence
function (Kleiber 2017) to provide more flexible behavior than
the multivariate Matérn. Vu et al. (2020) construct nonstationary
and asymmetric covariances by embedding familiar covariances
(e.g., multivariate Matèrn) in a warped domain with warping
functions obtained from deep learning. All of these models
are designed to handle a few variables, typically fewer than
five, and none are designed for high-dimensional multivariate
spatial data.

To expand upon the previous statement, multivariate spatial
data can be high-dimensional in the sense of a large number
of observation locations (n � 0) and/or a large number
of output variables (p � 0). Computational difficulties in
the high-dimensional setting are unavoidable and particularly
troublesome when both n and p are large. Even with a valid
matrix-valued covariance function specified, that is already an
issue if there are more than a handful of variables, likelihood
computations and memory requirements for p-variate Gaussian
processes at n spatial locations scale as O(p3n3) and O(p2n2),
respectively. Salvaña et al. (2021) explore high-performance
computing techniques to alleviate these costs. Modeling high-
dimensional multivariate spatial processes requires specialized
methodology, and most current techniques struggle when both
n and p are large.

First, we describe some models for multivariate processes
that focus on dealing with a large number of spatial locations
(n � 0). Kleiber et al. (2019) generalize LatticeKrig (Nychka
et al. 2015) to the multivariate case, relying on compactly
supported basis functions and spatial autoregressive Gaussian
Markov random field models for stochastic coefficients to handle
massive spatial data. Guinness (2022) is able to avoid maximum
likelihood estimation and Bayesian inference by successively
imputing data to an expanded lattice domain under a periodic
model and efficiently estimating the cross-spectral density using
fast Fourier transform techniques. Zhang et al. (2021) perform
Bayesian inference on massive multivariate spatial datasets by
combining a matrix-normal distribution with Nearest Neighbor
Gaussian Processes (NNGP) (Datta et al. 2016). Their model
setup and choice of conjugate priors leads to closed form pos-
terior distributions, and scalability is demonstrated on a dataset
with over three million spatial locations. Guinness (2022) and
Zhang et al. (2021) consider a stationary bivariate setting in their
data analyses, although these methods seem in principle able to
scale to more than two variables.

Next, we turn attention to the “highly multivariate” problem,
where the number of variables p is large. In one of the ear-
liest efforts to tackle this problem, Furrer and Genton (2011)
introduce “aggregation cokriging” for the prediction (but not
the modeling) of highly multivariate spatial processes. Dey et al.
(2021) propose a “stitching” of univariate Gaussian processes
that preserves the marginal behavior of each univariate process
and also conditional independencies between variables implied
by a Gaussian graphical model. Stitching significantly reduces
computational costs associated with highly multivariate data,
especially when used in conjunction with a “decomposable”
sparse graphical model, and it is also amenable to parallel com-
puting.

Finally, we note that several adaptations of LMC are capable
of handling data where the number of variables and observa-
tion locations are both large. Taylor-Rodriguez et al. (2019)
use NNGP to model the latent process of LMC in a two-stage
Bayesian hierarchical model, which they use to connect LiDAR
maps with forest measurements. Bruinsma et al. (2020) combine
a sufficient statistic of the data and an orthogonal basis/loading
matrix for substantial computational gains. Zhang and Banerjee
(2021) also develop a Bayesian LMC factor model with NNGP
in the latent process, but they propose matrix-normal prior
distributions and are able to avoid some constraints on the
loading matrices used by Taylor-Rodriguez et al. (2019). Meng
et al. (2021a) build upon Meng et al. (2021b), where the loading
matrix is stochastic with a Gaussian process prior on its ele-
ments, and employ variational inference (Titsias and Lawrence
2010) for efficient computations. Liu et al. (2021) also use vari-
ational inference for scalable computations and introduce an
embedding of the latent Gaussian space in LMC into a higher-
dimensional space for more flexibility. We discuss LMC in more
detail in Section 2.1, as our formulation can be viewed as the
opposite of LMC.

Despite these advances, no one has truly addressed the prob-
lem of modeling complicated dependencies in space and across
variables when the number of variables and observed spatial
locations are both large. The approaches in the previous para-
graphs are all designed for modeling stationary processes, except
for Meng et al. (2021a, 2021b), who do not attempt to model
spatial data. Many datasets (e.g., our example from statistical
climatology) exhibit strong nonstationarity both within and
between processes, but models for nonstationary multivariate
processes are not typically built to handle high-dimensional
response vectors. Another issue is the ability to model multi-
variate processes on the globe, a task for which nonstationary
covariance and cross-covariance functions are necessary (Jun
2011). This article fills a major gap in the current literature
by introducing methodology for highly multivariate processes
observed at a large number of spatial locations with nonstation-
ary spatial and inter-variable dependencies.

We present a model for highly multivariate and nonstationary
spatial data that also accommodates estimation and simulation
strategies for large networks of observation locations. The essen-
tial ideas rely on representing the vector-valued process in a basis
expansion with sparsity-inducing Gaussian graphical modeling
of the stochastic coefficients. We propose a penalized likeli-
hood framework for estimation and associated optimization
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algorithms. In addition to nonstationarity granted by judicious
choice of basis functions and stochastic coefficient structure,
employing orthogonal basis functions allows for rapid compu-
tation with nongridded high-dimensional multivariate spatial
data on an arbitrary domain. The method is illustrated on a
challenging climate data science problem involving p = 40
spatial processes from an atmospheric model at thousands of
locations over the globe that exhibit strong nonstationarities
and cross-process dependencies. Our model provides straight-
forward interpretations of cross-process dependencies, which,
for the climate data example, identify scientifically meaningful
and justifiable relationships.

2. Methodology

Our approach relies on a basis expansion of the spatially-
correlated components of Z(s):

Zi(s) =
L∑

�=1
Wi�φ�(s) (i = 1, . . . , p) (2)

for some classes of basis functions {φ�} and stochastic coeffi-
cients {Wi�}. For fixed i, this representation subsumes many
popular approaches in the spatial statistical literature that have
been primarily explored in the univariate setting, including dis-
cretized spectral methods, low-rank approaches, and empirical
orthogonal functions, among others, despite potential limita-
tions depending upon the choice of basis function (Stein 2014).
Few extensions to the multivariate case (2) have been made,
with Kleiber et al. (2019) being a notable case for spatial data.
Some similar ideas were explored in the context of functional
data analysis (Qiao et al. 2019; Fontanella et al. 2020; Zapata
et al. 2021). Dey et al. (2022) study the connection between
stitching (Dey et al. 2021) and the functional Gaussian graphical
model presented in Zapata et al. (2021) and this manuscript.
In Section 2.1, we show how the univariate basis graphical
lasso directly extends to the multivariate setting (2), and in
Section 2.2, we discuss an alternative that is more appropriate
for massive multivariate spatial data.

2.1. Basis Graphical Lasso

Our modeling and optimization strategy follows from exten-
sions to our prior work, which we discuss and connect to the
multivariate problem in this section. In Krock et al. (2021), we
introduced the basis graphical lasso (BGL) to model (2) for the
univariate case p = 1. The goal of the BGL is to obtain a sparse
nonparametric estimate for the precision matrix Q of the mean
zero Gaussian graphical vector W = (W1, . . . , WL)T when
Z(s) = ∑L

�=1 W�φ�(s). In other words, we build a Gaussian
process by fitting a Gaussian graphical model to the random
coefficients of fixed basis functions. Recall that the sparsity pat-
tern of the precision matrix encodes conditional independencies
between random variables, with Qij = 0 if and only if Wi and Wj
are conditionally independent given all other entries of W. This
information is commonly visualized with an undirected graph
known as a Gaussian graphical model, where vertices symbolize
variables and the lack of an edge between two vertices indicates
such a conditional independence (Rue and Held 2005). Inspired

by the graphical lasso (Friedman et al. 2008), we use an �1
penalized likelihood to estimate the graphical model, but in the
standard graphical lasso setting W is observed directly, whereas
our model includes basis functions and noise. Our BGL method
is viable for a very large spatial sample size (n), and multiple
realizations (m) are preferred but not required. We claim that
the BGL generalizes to the multivariate setting and also that the
optimization routine enjoys a similar computational framework.

With W� = (W1�, . . . , Wp�)
T ∼ N(0, Q−1

� ), the multivariate
basis model (2) alternatively can be written

Z(s) =
L∑

�=1
φ�(s)W� (3)

so that each basis function is weighted with a p-variate random
vector. Assuming the weight vectors are independent means
that this model amounts to characterizing the inverse covari-
ance matrices {Q1, . . . , QL}. In contrast, the standard LMC
considers (3) where {φ1(s), . . . , φL(s)} are independent Gaus-
sian processes with deterministic weights {W1, . . . , WL}. We
note that recent variants of LMC (Taylor-Rodriguez et al. 2019;
Bruinsma et al. 2020; Zhang and Banerjee 2021; Meng et al.
2021a; Liu et al. 2021) can handle a large number of variables,
and in fact orthogonal basis functions are also exploited for
computational gains in Bruinsma et al. (2020), but with a large
number of spatial locations, such techniques ultimately amount
to efficiently modeling spatially dense univariate Gaussian pro-
cesses (e.g., Titsias 2009; Datta et al. 2016). The semiparametric
latent factor model (Teh et al. 2005) shares a setup similar to
LMC where a multi-output Gaussian process is represented as
a linear mixture of independent univariate Gaussian processes.
With these models, covariance kernel parameters of the inde-
pendent latent Gaussian processes and the weight vectors (i.e.,
columns of the loading matrix) must be estimated. Typically,
the covariance kernels are stationary and the loading matrix is
deterministic. Some nonstationary versions of LMC (Gelfand
et al. 2004; Meng et al. 2021a) consider a stochastic loading
matrix that depends on the input domain, which entails a prior
distribution and a challenging Bayesian framework. To our
knowledge, such models have not yet been tested with high-
dimensional nonstationary spatial data. On the other hand,
our approach associates each basis function with a p-variate
Gaussian graphical model, which is much faster from a compu-
tational point of view and automatically produces nonstationary
covariance and cross-covariance functions with straightforward
interpretations.

Let us assume μ ≡ 0 in (1) for simplicity of exposition. In a
typical mean function regression context, we can use generalized
least squares and profiled likelihoods to estimate the regression
coefficients. Given data at locations s1, . . . , sn, form the obser-
vation vector Y = (Y(s1)

T, . . . , Y(sn)T)T. Suppose we have
multiple independent realizations Y1, . . . , Ym of Y. Note that all
methodology developed in this paper can work with m = 1
realization, but the task of learning the precision matrix of the
basis weight vector is better suited for a setting with multiple
realizations. Krock et al. (2021) investigated the sensitivity of
the basis graphical lasso to the number of realizations. Up to
multiplicative and additive constants not depending on the np×
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np variance-covariance matrix � = var(Y), the negative log-
likelihood is

log det � + 1
m

m∑
i=1

YT
i �−1Yi.

Define the sample covariance S = 1
m

∑m
i=1 YiYT

i . Using the
cyclic property of trace, we rewrite the negative log-likelihood
as

log det � + tr(S�−1)

to align with more prevalent notation in graphical lasso litera-
ture. Note that Y is simply a linear combination of the random
coefficient vector W = (WT

1 , . . . , WT
L )T and basis functions,

plus noise. That is, Y = �W + ε for a basis matrix � and
noise vector ε, so � = �Q−1�T + D, where var(W) =
Q−1 and var(ε) = D. The matrices Q, �, and D are defined
explicitly in Section 3, but it is important to realize here that the
matrix algebra produces the same optimization problem as in
the univariate case presented in Krock et al. (2021).

The original BGL solves the �1-penalized maximum likeli-
hood equation

Q̂ ∈ arg min
Q�0

(
log det(�Q−1�T + D)

+ tr(S(�Q−1�T + D)−1) + ‖� ◦ Q‖1
)

. (4)

Here, we retain the boldface matrix font to emphasize that
the multivariate case entails the same optimization problem,
even though the original BGL was proposed for the univariate
setting p = 1. The notation Q � 0 indicates that Q is
positive semidefinite, and ‖� ◦ Q‖1 = ∑

i,j �ij|Qij|, where
�ij are nonnegative penalty parameters that encourage sparsity
in the estimate. Evaluating (4) requires an expensive O(p3n3)
Cholesky decomposition. After applying the matrix determinant
lemma, the Sherman-Morrison-Woodbury formula, and the
cyclic property of trace, we can equivalently minimize

log det
(
Q + �TD−1�

) − log det Q (5)
− tr

(
�TD−1SD−1�(Q + �TD−1�)−1) + ‖� ◦ Q‖1.

Once the matrices �TD−1� and �TD−1SD−1� are com-
puted, evaluating (5) only requires Cholesky decompositions
in the dimension pL, so we can reduce likelihood evaluations
to O(p3L3). However, (5) is nonsmooth and nonconvex with
respect to Q, so the minimization problem is nontrivial.

Studying the convexity/concavity structure1 of (5) suggests a
difference-of-convex (DC) algorithm where the next guess for Q
is obtained by solving a convex optimization problem with the
concave part linearized at the previous guess. Such an algorithm
reads

Q(j+1) = arg min
Q�0

(
− log det Q + tr

(
�(j)Q

)
+ ‖� ◦ Q‖1

)
,

(6)

1See the appendix of Krock et al. (2021) for classification of convex-
ity/concavity for the terms in (5).

where the linearization matrix

�(j) = (Q(j) + �TD−1�)−1 (7)

+ (Q(j) + �TD−1�)−1�TD−1SD−1�(Q(j) + �TD−1�)−1

is a function of the previous guess Q(j) and the aforementioned
precomputed matrices. Since a DC algorithm such as (6) is a
majorization-minimization algorithm, we are guaranteed that
the guesses for Q create a nonincreasing sequence in the objec-
tive function (5). Moreover, (6) is a well-studied problem known
as the graphical lasso. Typically, the graphical lasso uses the sam-
ple covariance matrix of directly observed, nonnoisy variables
to produce a sparse inverse covariance matrix and accordingly
a graphical model for the variables. Here we iteratively call the
graphical lasso algorithm to estimate a graph for latent basis
weights (with additive noise in the observational model), and
the linearization matrix (7) acts as the sample covariance in the
algorithm. We solve the graphical lasso with the second-order
method QUIC (Hsieh et al. 2014b).

2.2. Multivariate Basis Graphical Lasso

Although the previous section shows that the BGL can be readily
extended to the multivariate setting, the generalization is not
well-motivated by a connection to standard multivariate spa-
tial models, and moreover it will require burdensome matrix
calculations in the dimension pL. In particular, the BGL must
compute the linearization matrix (7) and substitute it into the
graphical lasso at each step of the DC algorithm. With our
climate data example we use L = 2000 basis functions and
p = 40 variables; an 80,000 dimensional precision matrix is
too large for this procedure. Advances in graphical modeling
(Fattahi et al. 2019) may allow for estimation of graphs of this
magnitude, but storing the dense linearization matrix poses an
issue to further scalability. We conclude the article with more
commentary about this direct generalization (see Section 5), but
here we propose a similar DC algorithm that is more feasible in
a highly multivariate setting.

Our basic model still follows a penalized likelihood-based
framework, minimizing

Q̂ ∈ arg min
Q�0

(
log det(�Q−1�T + D)

+ tr(S(�Q−1�T + D)−1) + P(Q)
)

for some convex penalty P. However, an �1 graphical lasso-type
penalty by itself does not impose any regularity on the structure
of coefficient graphs. To motivate our proposal, we recall some
recent insights into multivariate modeling that will suggest an
appropriate form for P.

The multivariate spectral representation theorem states

Z(s) =
∫

exp(iωTs)W(dω) (8)

for a mean zero stationary process Z(s), where W(·) is a
complex-valued mean zero random measure vector (Stein 1999).
Taking a discretization of the integral, we approximate∫

exp(iωTs)W(dω) ≈
∑

�

cos(ωT
� s + θ�)W� (9)
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to motivate writing (3) as a linear combination of independent
random vectors W�, where the coefficient of W� depends on the
phase shift θ�. As an aside, another justification for modeling the
coefficient vectors W� as independent across � is the Karhunen-
Loéve expansion, in which the basis functions φ� are eigen-
functions and the random coefficients are theoretically indepen-
dent. Indeed, in our climate modeling example below, we use a
discrete approximation to the Karhunen-Loéve expansion from
which independence of coefficient vectors is expected.

The spectral representation theorem (8) is intimately linked
to the spectral density matrix f(·) of Z(s) where we identify
var(W�) with f(ω�). One connection to our model is that Q−1

�

can be viewed as the spectral density matrix at frequency ω�,
but our approach estimates the inverse spectral density matrix
in a Gaussian graphical framework, and moreover, we con-
sider replacing the harmonic basis functions with other glob-
ally supported multiresolution basis functions. Indeed, Kleiber
(2017) provides interpretation and exploration of spectral coher-
ence that will additionally motivate our penalized likelihood
implementation. Before moving on, it is important to note that
although we use the spectral representation theorem (8) to moti-
vate the ensuing approach, our method is general and extends
beyond harmonic basis expansions but with similar coherence-
like interpretations of coefficient dependence. Guinness (2022)
proposes a multivariate space-time model with flexible coher-
ence structures that uses LMC in the spectral domain, but the
covariance structure is stationary and the method is viable only
for gridded data. We remind the reader that LMC also relies on
an independence assumption where Z(s) is a linear combination
of independent univariate Gaussian processes.

The multivariate basis graphical lasso model can be moti-
vated with the same penalized likelihood context as in Sec-
tion 2.1. Recall the model setup: we work under the additive
model (1) with Z(s) specified as in the basis representation (3),
and Wi and Wj are independent Gaussian graphical vectors for
i 
= j. In particular, we assume that Q� = var(W�)

−1 is a sparse
matrix defining a graphical structure at level �. If we consider
each Q� to correspond to an arbitrary sparse graphical model,
then we propose P as a graphical lasso regularization for each
level:

P(Q1, . . . , QL) = λ

L∑
�=1

∑
i 
=j

∣∣(Q�)ij
∣∣ . (10)

This penalty enforces sparsity for each precision matrix but not
necessarily any similarity between levels of resolution. Recent
development in spectral coherence (Kleiber 2017) suggests that
we should expect the coherence of processes arising in practice
to vary smoothly across levels. In addition to the �1 sparsity
penalty, we include an �1 sequentially fused penalty to encour-
age similarity of the conditional independence structure across
adjacent levels of resolution:

P(Q1, . . . , QL) = λ

L∑
�=1

∑
i
=j

∣∣(Q�)ij
∣∣+ρ

L−1∑
�=1

∑
i
=j

∣∣(Q�)ij − (Q�+1)ij
∣∣ . (11)

The new fusion penalty with tuning parameter ρ penalizes
precision matrices at adjacent levels if their off-diagonals do
not have the same value. This formulation suggests a smoothly-
varying graph structure and produces a parsimonious condi-
tional independence structure of the random weights over all
levels of resolution. As ρ → ∞, the second penalty effectively
shrinks toward a stationary process. Although the final model
will be nonstationary, we believe shrinking toward a stationary
process is a natural approach to regularization. This type of
penalty is most appropriate when basis functions can be ordered
meaningfully to represent different levels of resolution, as is the
case with an EOF basis.

Assuming that Q = diag(Q1, . . . , QL) does not change any
reasoning leading to the BGL formulation from Section 2.1 but
allows us to reduce computations on a matrix of size pL × pL
to computations on L p × p matrices. At each step of the DC
algorithm (6), we simplify the minimization problem to

arg min
Q��0, �=1,...,L

(( L∑
�=1

− log det Q� + tr (��Q�)

)
+ P(Q1, . . . , QL)

)
,

(12)
where �� is the �th block diagonal of the linearization matrix � ,
which depends upon the previous graph guesses. We emphasize
that in (6), all matrices are of dimension pL × pL, which can be
challenging in three ways: the O((pL)2) memory cost to store
matrices of this size, the O((pL)3) time cost to compute matrix
solves for the linearization (7), and finally solving the convex
matrix optimization problem. Moreover, the latter two steps
are performed at each iteration of the DC algorithm. On the
other hand, (12) involves L matrices of dimension p × p, which
provides a major improvement over (6) in both memory and
computational costs, assuming that calculation of �1, . . . , �L
is not prohibitive. An efficient way to compute �1, . . . , �L for
orthogonal bases is presented in Section 3.

Using only the sparsity penalty (10) means (12) separates into
L independent graphical lasso problems with “sample covari-
ance” matrices �1, . . . , �L.2 Using the fusion penalty (11) gives
no such separation of (12) into L independent optimization
problems at each DC iteration. Instead, we treat �1, . . . , �L as
an array of sample covariance matrices and substitute them into
the fused multiple graphical lasso (FMGL) (Yang et al. 2015)
for modeling multiple similar graphical models across multiple
datasets. A related idea is the joint graphical lasso (Danaher
et al. 2014), but their similarity-inducing regularization term
penalizes all pairs of graphs rather than just adjacent graphs as
in (11), suggesting behavior similar to white noise processes—an
unreasonable assumption for most real spatial data applications.
The associated algorithm uses a slower optimization approach
that calculates eigendecompositions in R. The FMGL algorithm,
written in MATLAB, uses the same second-order approximation
as QUIC (Hsieh et al. 2014b) and also exhibits local quadratic
convergence. A general framework for second-order optimiza-
tion in high-dimensional statistical modeling with regulariza-
tion is developed in Hsieh et al. (2014a).

2See Section 3.1 for a description of this estimation procedure.
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3. Implementation Strategy

We highlight some important aspects of implementing the mul-
tivariate BGL model. In practice, we independently estimate an
error variance for each variable and define the diagonal matrix
D = In ⊗diag(τ 2

1 , . . . , τ 2
p ) accordingly.3 Matrices �TD−1� and

�TD−1SD−1� must be computed effectively—ignoring D−1,
the naive matrix multiplications cost O(p3nL2) and O(p3n2L),
respectively. Moreover, the block diagonals of the linearization
(7) must be retrieved without expending O(p3L3) flops for the
matrix inverse (Q + �TD−1�)−1. In Krock et al. (2021) with
p = 1 this linearization step was not an issue—the computa-
tional bottleneck was iteratively solving the graphical lasso in
the dimension of the basis functions L. Here we are modeling
L graphs of dimension p, so the graphical modeling step may
no longer be the bottleneck but rather the linearization (7).
However, assuming that Q is block diagonal and basis functions
are orthogonal makes this linearization step trivial.

Let 
 be the n×L basis matrix with (i, j) entry φj(si). Observe
that

Z(si) =
L∑

�=1
φ�(si)W� = M
T

i (i = 1, . . . , n),

where M has columns W1, . . . , WL and 
T
i is the ith column of


T. Introducing the vec(·) operator, which stacks the columns
of a matrix one-by-one into a vector, we write the process
observation vector as

Z =
⎛
⎜⎝

Z(s1)
...

Z(sn)

⎞
⎟⎠ =

⎛
⎜⎝

M
T
1

...
M
T

n

⎞
⎟⎠ = vec(M
T)

where the last equation follows from (16.2.7) of Harville (1997).
The vec operator cooperates with the Kronecker product ⊗ in
the following way: vec(ABC) = (CT ⊗ A)vec(B) whenever ABC
is well-defined. For us, this implies

Z = (
 ⊗ Ip)W

since W = vec(M) by construction. Thus, we identify � = 
⊗
Ip. Also note that D−1 = In ⊗diag(τ−2

1 , . . . , τ−2
p ) is a Kronecker

product. Since (A⊗C)(B⊗D) = AB⊗CD whenever AB and CD
are well-defined, we have the Kronecker product representation
�TD−1� = 
T
 ⊗ diag(τ−2

1 , . . . , τ−2
p ), which will be sparse

for any choice of basis functions. In general, solving systems with
Q + �TD−1� does not have an exploitable structure since Q is
block diagonal yet �TD−1� is a Kronecker product. However,
using orthogonal basis functions (i.e., 
T
 = IL) means that
�TD−1� is diagonal, so the first term in (7) is block diagonal
and can be easily inverted in O(Lp3).

The linearization also involves �TD−1SD−1� =
(�TD−1Ydata)(YT

dataD−1�)/m, where Ydata is the np × m
data matrix with columns of realizations Y1, . . . , Ym. Using
vec(ABC) = (CT ⊗ A)vec(B) again,

�TD−1Yi = vec(diag(τ−2
1 , . . . , τ−2

p )mat(Yi)
)

where mat(Yi) is the p × n matrix with vec(mat(Yi)) = Yi. So
�TD−1Ydata can be calculated in O(mnpL) and has low storage

3See Section 3.3 for a description of this estimation procedure.

costO(mpL). Once �TD−1Ydata and the block diagonals of (Q+
�TD−1�)−1 are computed, the block diagonals of the second
term in (7) can be computed in O(Lp2m).

To summarize, for an orthogonal basis, only {Q1, . . . , QL},
{τ−2

1 , . . . , τ−2
p }, and �TD−1Ydata must be stored in memory,

and we can compute the block diagonals of (7) in O(Lp3 +
Lp2m). These L p×p block matrices are then sent into the FMGL
as an array of L “sample covariance” matrices, and the solution
to the FMGL problem is the next guess for {Q1, . . . , QL}, and the
entire procedure is repeated until ‖Q(j+1)−Q(j)‖F/‖Q(j)‖F < ε,
which we set as ε = 0.05.

3.1. Initial Guess (Unfused Estimate)

When considering the fusion penalty, a natural initial guess is
the corresponding unfused estimate. With ρ = 0, the main
optimization (12) amounts to solving the graphical lasso inde-
pendently by level:

arg min
Q��0, �=1,...,L

⎛
⎝ L∑

�=1
− log det Q� + tr (��Q�) + λ

∑
i 
=j

∣∣(Q�)ij
∣∣
⎞
⎠ .

The entire algorithm has linear complexity and storage in L in
this case.

3.2. Maximum Likelihood Estimate

It is also easy to obtain the unpenalized maximum
likelihood estimates for Q1, . . . , QL. Recall that S−1 =
arg minQ�0 − log det Q + tr(SQ), assuming S is nonsingular.
That is, the maximum likelihood estimate of the precision
matrix of a multivariate Gaussian random variable is the inverse
of the sample covariance matrix, assuming it is nonsingular.
This means that our DC algorithm would simply invert the
linearization matrix (or each block diagonal of the linearization
matrix in the multivariate case) rather than substitute it into
the graphical lasso. Again, Q1, . . . , QL are independent, which
implies the same storage and complexity as the unfused estimate
in Section 3.1. This algorithm takes many more DC iterations
to converge than either of the regularized estimates.

3.3. Estimating the Error Variances

Given a single variable with sample covariance S, we minimize
the following function jointly over τ 2 and a few parameters
describing a diagonal matrix Q:

log det
(
Q + τ−2
T


) − log det Q

− tr
(
τ−4
TS


(
Q + τ−2
T


)−1) + n log τ 2 + τ−2tr(S).

Non-boldface font is used here since the estimation is performed
separately for each variable. Note that this expression can be
simplified with orthogonal bases, and the trace terms can be
quickly computed as squared Frobenius norms. The diagonal
parameterization of Q and parameter estimation is further dis-
cussed in the supplementary material. We record values for
τ 2

1 , . . . , τ 2
p in Table 1 in the supplementary material that are used

throughout the rest of the article. A similar approach used in
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Krock et al. (2021) was found to be successful in recovering error
variances even with a misspecified spatial covariance structure.

3.4. Cross-Validation

First we describe the cross-validation procedure for a pair of
penalty parameters (λ, ρ). Suppose we use k folds and consider
t arbitrary pairs of penalties represented by {�1, . . . , �t}. Let
Q̂�j(S) be the estimate we get from applying our algorithm with
empirical covariance S = 1

m
∑m

i=1 YiYT
i and penalty pair �j. For

A ⊆ {1, . . . , m}, let SA = |A|−1 ∑
i∈A YiYT

i . We seek � so that
α(�) = �(Q̂�(S), S) is small, where

�(Q, S) = log det
(
Q + �TD−1�

) − log det Q
− tr

(
�TD−1SD−1�(Q + �TD−1�)−1)

is the unpenalized likelihood function in (5). The cross-
validation approach is to partition {1, . . . , m} into disjoint sets
{A1, . . . , Ak} and select �̂ = arg min�∈{�1,...,�t} α̂(�), where
α̂(�) = k−1 ∑k

i=1 �(Q̂�(SAc
i
), SAi).

Jointly searching over λ and ρ can quickly become unwieldy
even when considering a small combination of sparsity and
fusion penalties, as noted by Danaher et al. (2014), who instead
suggest a dense search for λ with ρ = 0 fixed and then a
search for ρ with that sparsity value fixed. The individual cross-
validation for either λ or ρ follows the same idea: whichever
penalty parameter has the lowest negative log-likelihood average
across folds is selected.

3.5. Overview of Simulation Study

We conducted an extensive simulation study that examined the
proposed estimator of the precision matrices Q1, . . . , QL. Here,
we provide a high-level overview of the simulation study; full
details are available in the supplementary material. Both the
basis functions φ1, . . . , φL and the error variances τ 2

1 , . . . , τ 2
p are

the same as in Section 4.1. We considered two different param-
eterizations for the precision matrices, and in both cases the
graphical structure is identical over all levels. In the simpler case
where Q1 = Q2 = · · · = QL, the exact graphical structure was
recovered by the MLE with parameters λ, ρ selected from cross-
validation. In a second more complicated case, where the values
of the precision matrices grow exponentially over level, selecting
parameters with cross-validation was not as helpful. Ignoring
the difficulties with cross-validation, the estimator is still able
to discern meaningful connections between variables. In both
cases, the method correctly identifies patterns in the marginal
precision values (Q�)ii for i = 1, . . . , p and � = 1, . . . , L.
Specifically, the estimator accurately recovered the behavior of
marginal precision values for different variables that were either
constant or exponentially growing over level �.

4. Data Analysis

This section is broken into two main, but related, application
and validation efforts. Both are done with the lens of the cli-
mate data problem: we begin with some exploratory analyses
of the climate dataset, deriving reasonable basis functions and

providing discussion to guide intuition for the ensuing model
application. In the supplementary material, we detail a simu-
lation study that tests our ability, under a setup similar to the
climate example, to recover meaningful and relevant graphs for
coefficients at different levels of basis functions under realistic
assumptions on possible graph structures. Results from this
simulation study are promising and lead us to expect reasonable
results with the real climate data as well. The final section in
the body of this article provides the full analysis of our model
on the Community Atmosphere Model (CAM) data along with
scientific interpretations of recovered graphical structures and
some implied covariance and cross-covariance patterns. Code
that outlines the data analysis procedure is available at github.
com/mlkrock/MultivariateBasisGraphicalLasso.

4.1. Data Description and Exploratory Analyses

We apply our method to a large climatological dataset from
an ensemble study conducted at the National Center for
Atmospheric Research (NCAR). Climate variability is typically
assessed by examining a collection of numerical climate model
simulations, that are computationally and economically expen-
sive to produce. Relationships between variables at different
spatial scales are crucial for scientific investigations; hence, a
scalable statistical model which can simulate multivariate pro-
cesses could be a powerful tool for climatologists. Our method
allows for efficient emulation and straightforward interpretation
of complex geophysical model variable relationships, potentially
filling this niche.

A climate model ensemble is typically a collection of cli-
mate simulations from the same numerical model using various
initial conditions; ours is an extended version of the ensemble
described by Baker et al. (2015) with m = 343 members. Data
are recorded at n = 48,602 spatial locations over the globe.
There are a total of 164 variables available, the majority of which
are three-dimensional, meaning they have a third dimension
corresponding to 30 vertical atmospheric levels. For our study
we only consider the two-dimensional surface variables and a
subset thereof. First, the variables are on different scales, so
they are standardized with a pixelwise empirical mean and
pixelwise empirical standard deviation. Histograms and Q-Q
plots were consulted to remove strongly nonnormal variables.
Note that our data are yearly averaged quantities, so a Gaus-
sian assumption is generally reasonable. Potential variables were
also removed if they were very strongly correlated, suggesting
redundant information (e.g., when vectorized across space and
realizations, the absolute correlation between two processes was
above 0.9). We settled upon the p = 40 variables listed in
Table 1, which are grouped into five categories: aerosol vari-
ables, cloud variables, flux variables, precipitation variables, and
transport/state variables. Throughout the rest of the document,
aerosol variables are colored red, cloud variables are colored
blue, flux variables are colored green, precipitation variables
are colored purple, and transport/state variables are colored
gray.

With the p = 40 variables in hand, our approach relies on
first specifying a set of spatial basis functions. We construct
such functions as empirical orthogonal functions (EOFs) (Wikle

github.com/mlkrock/MultivariateBasisGraphicalLasso
github.com/mlkrock/MultivariateBasisGraphicalLasso
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Table 1. Variable descriptions.

Variable Description Units Category

AODVIS Aerosol optical depth 550 nm Aerosol
BURDEN1 Aerosol burden mode 1 kg/m2 Aerosol
BURDEN2 Aerosol burden mode 2 kg/m2 Aerosol
BURDEN3 Aerosol burden mode 3 kg/m2 Aerosol

BURDENBC Black carbon aerosol burden kg/m2 Aerosol
BURDENPOM POM aerosol burden kg/m2 Aerosol

BURDENSEASALT Seasalt aerosol burden kg/m2 Aerosol
BURDENSO4 Sulfate aerosol burden kg/m2 Aerosol
BURDENSOA SOA aerosol burden kg/m2 Aerosol

CDNUMC Vertically-integrated droplet concentration 1/m2 Cloud
CLDHGH Vertically-integrated high cloud fraction Cloud
CLDMED Vertically-integrated mid-level cloud fraction Cloud
CLDTOT Vertically-integrated total cloud fraction Cloud

FLDS Downwelling longwave flux at surface W/m2 Flux
FLNS Net longwave flux at surface W/m2 Flux

FLNSC Clearsky net longwave flux at surface W/m2 Flux
FLNT Net longwave flux at top of model W/m2 Flux

FLNTC Clearsky net longwave flux at top of model W/m2 Flux
FSDS Downwelling solar flux at surface W/m2 Flux

FSDSC Clearsky downwelling solar flux at surface W/m2 Flux
FSNS Net solar flux at surface W/m2 Flux

FSNSC Clearsky net solar flux at surface W/m2 Flux
FSNTC Clearsky net solar flux at top of model W/m2 Flux

FSNTOA Net solar flux at top of atmosphere W/m2 Flux
LHFLX Surface latent heat flux W/m2 Flux
LWCF Longwave cloud forcing W/m2 Cloud
PBLH PBL height W/m2 Transport/State

PS Surface pressure Pa Transport/State
QREFHT Reference height humidity kg/kg Precipitation
SHFLX Surface sensible heat flux W/m2 Flux
SWCF Shortwave cloud forcing W/m2 Cloud
TAUX Zonal surface stress N/m2 Transport/State
TAUY Meridional surface stress N/m2 Transport/State

TGCLDCWP Total grid-box cloud water path (liquid and ice) kg/m2 Cloud
TGCLDIWP Total grid-box cloud ice water path kg/m2 Cloud
TGCLDLWP Total grid-box cloud liquid water path kg/m2 Cloud

TMQ Total vertically integrated precipitable water kg/m2 Precipitation
TREFHT Surface air temperature at reference height K Transport/State

U10 10m wind speed m/s Transport/State
PRECT PRECL Large-scale (stable) precipitation rate (liq + ice) m/s Precipitation

plus PRECC Convective precipitation rate (liq + ice)

Note that analysis happens on standardized, unitless data.

2010), which are widely used in the atmospheric and climate
sciences. Typically, EOFs are used in a temporal context with
a single variable. Let’s consider a single spatiotemporal variable
and suppose we have a matrix B of data with rows indexing n
spatial locations and columns indexing t time points. If B =
UDVT is the (economy) SVD of the data matrix, the columns
of the orthogonal matrix U, referred to as EOFs, represent the
normalized eigenvectors of the process empirical covariance
matrix BBT.

We compute the (economy) SVD of the n × pm = 48,602 ×
13,720 data matrix where a row corresponds to a spatial location
and contains the p standardized variables ordered sequentially
by realization. Such an approach can be thought of as generating
pooled EOFs that describe common structure seen among all
variables. Using the same notation UDVT for the SVD, we follow
common practice and take the first L columns of U to form our
n × L basis matrix 
. Exploratory analysis suggests truncating
after L = 2000 EOFs is a reasonable trade-off between using
a relatively small number of basis functions and explaining

sufficient variance (97.2%). The first two pooled EOFs are dis-
played in Figure 1. We emphasize that pooling variables together
to create EOFs is nontraditional and explains why the first two
EOFs account for such little variability. Other orthogonal bases
besides EOFs are viable choices but may require model selection
criterion like AIC or BIC to select the number of basis functions.

With this formulation, it is important to clarify the role of
the additive error term. Here, an interpretation as a traditional
spatial statistical nugget effect is not well-motivated; instead, we
think of ε as a fine-scale process that is at smaller scale than
the EOFs and absorbs the remaining variability unexplained by
the pooling of variables. As noted by Wikle (2010), if enough
eigenvectors are used to explain sufficient variation, then it
is reasonable to assume that the EOF residuals are uncorre-
lated in space. This motivates the white noise assumption on
ε, which in turn suggests independently estimating τ 2

1 , . . . , τ 2
p

using the procedure described in Section 3.3. Estimated values
for τ 2

1 , . . . , τ 2
p and additional interpretations are shown in the

supplementary material.
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Figure 1. First two pooled EOFs of the standardized CAM data. The two EOFs account for 1.83% and 1.59% of the total variability of all 40 variables, respectively. Rightmost
plot shows the cumulative percentage of variability explained by the EOFs, with L = 2000 EOFs capturing 97.2% of the total variance.

Figure 2. Marginal precision estimates (i.e., diagonals of Q̂1, . . . , Q̂2000) shown by level for various penalty choices. Same log scale on y-axis. Bottom row shows a subset of
six variables from the top row. The grey pressure variable is noticeably smoother than the rest after regularization is added.

4.2. CAM Data Analysis

We proceed to the data analysis using our estimates for
τ 2

1 , . . . , τ 2
p and the basis setup from Section 4.1. The remain-

ing question is what penalty parameters to use. With a cross-
validation attempt (see supplementary material) and similar dif-
ficulties with penalties encountered by Danaher et al. (2014) in
mind, we proceed by fixing several penalty pairs and examining
the resulting modeling implications. Ideally, we would select a
model with a sensible, interpretable graphical neighbor struc-
ture over levels. Differences between models with different graph
structures may be minor as different graphs can give approx-
imately the same correlation structure. In the supplementary
material and remainder of this document, we display several
results for λ = 20 since this looked like an inflection point in
a plot of λ versus the total graph sparsity percentage (see Figure

6(a) in supplementary material). We also will occasionally com-
pare λ = 20 results with those from λ = 1 to give an idea of how
the implied graph structure changes with different penalties.

For the first set of model diagnostics, we examine the esti-
mated precision matrices. Plots of estimated marginal precisions
by level are shown in Figure 2. Clearly, the two parameterizations
considered in the simulation study (see Section 3.5) are not well-
suited to our data, as the estimated marginal precisions are nei-
ther constant nor exponentially growing over level. Just as in the
simulation study, adding a sparsity penalty causes the pressure
variable (colored gray) to have the highest marginal precisions at
high levels of resolution, as we would expect from the smoothest
variable. Overall, adding a sparsity penalty brings all marginal
precisions down by an order of magnitude, with particularly
strong shrinkage at lower levels of resolution. Given the focus
on regularization, these results may not seem surprising, but



10 M. L. KROCK ET AL.

Figure 3. Illustration of how graphical model neighborhoods behave for various penalty choices. Left column counts the nonzeros of Q̂1, . . . , Q̂2000 by level. Center and
right columns show how the neighbors of BURDENSEASALT and PS change over level. Variable names along the axes follow the same order as Table 1.

the diagonals of the precision matrix are not penalized in any
formulation we have considered. This shrinkage of marginal
precisions can be attributed to the larger number of neighbors
in the low-penalized graph structures, which means that the
(conditional) precision will be higher than in estimates from
higher penalties.

Our penalized maximum likelihood procedure produces
interpretable graphical models that imply conditional indepen-
dencies among the variables at varying levels of resolution. Here
we study some properties of the estimated graphical models.
Figure 3 gives an idea of how the conditional independence
structure changes with respect to level for different penalties.
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Figure 4. Example estimated graphical models for λ = 20. Graphs at lower levels (i.e., graph structure of Q� at smaller values of �) are noisy, with the Level 1 graph
containing 38.2% of all possible connections. Higher-level graphs show reasonable variable clusters until eventually no graph edges exist.

The left column counts the nonzeros of the estimated precision
matrices Q̂1, . . . , Q̂2000 over level. With λ = 20 we see several
conditional independencies between variables that persist over
all levels. The middle and right columns show how the con-
ditional dependence neighborhood structure of two variables

(BURDENSEASALT and PS) changes over level, and the impact
of the fusion penalty is most apparent in these columns. Broadly
speaking, the fusion penalty smooths out the neighbor pattern
across levels. Note that the fusion penalty can fuse adjacent
nonzeros rather than adjacent zeros and can cause a neighbor
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Figure 5. The first level at which a variable becomes (and remains) independent. Here, independence refers to a graphical model where a variable (node) has no edges
connecting it to any of the other nodes. Variables are ordered in increasing fashion according to the implied independence level for λ = 1. Results for λ = 20 accompany
the taller bars and show a similar story for variable groups but with earlier levels of independence.

Figure 6. Estimated local standard deviations for six variables. Standardization of the variables is reflected in the color scale, where unit values are colored white. Values
above one suggest the empirical standardization does not explain enough variability.

to fuse across all levels if ρ is large enough. Figure 4 displays
estimated graphical models for different levels of resolution. At
early levels corresponding to large-scale spatial patterns, the
graphs are quite dense. Higher-frequency EOFs display inter-
esting and reasonable patterns. For example, near the top of
the � = 150 graph we see groupings among many cloud and
precipitation variables, and these connections are more evident
at higher levels and even with different penalty parameters (not
shown). For higher-level EOFs, past around � = 500 with
λ = 20, the graphs suggest variable independence. This idea
of complete independence is explored in Figure 5 where we
display the first level at which each variable is independent and
remains independent of all other variables. Note again a natural
grouping of variable types, with transport and pressure variables
achieving independence much earlier than finer-scale precipi-
tation and cloud variables. Further, as could also be observed

in the visualization of the conditional dependence structure
for the two selected variables in Figure 3, the level at which
independence occurs varies quite dramatically with the sparsity
penalty, leading to roughly a four-fold increase in the number of
connected levels going from λ = 20 to λ = 1.

Now, we examine some spatial properties of our estimates.
Figure 6 shows the estimated local standard deviations for a sub-
set of six variables. Recall that the variables were standardized to
have an empirical unit standard deviation, so these plots should
be interpreted as potential bias corrections where the standard-
ization fails to accurately describe the variability. Most striking
is the El Niño effect apparent in the plot for the pressure variable
PS. The pattern’s presence is unsurprising since El Niño/La Niña
are strongly tied to changes in pressure over the Pacific Ocean,
and their relative infrequency likely requires more modeling
care than just an empirical standardization. Finer-scale variables
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Figure 7. Estimated spatial correlation functions for BURDENSEASALT (top row), PS (middle row), and PRECT (bottom row). Correlation function is centered over Tajikistan
in the left column, U.S. in the middle column, and the Pacific Ocean in the right column.

Figure 8. Estimated local cross-correlations for several pairs of variables. Color scale changes between rows to permit easier comparisons between positively correlated
variables (top row) and between negatively correlated variables (bottom row).

CDNUMC and PRECT are able to capture distinct behavior in
mountainous regions (e.g., Rocky Mountains and Himalayas).

In our last collection of figures, we examine correlation
over space as well as across variables. Figure 7 shows variable
correlations as a function of space. To be precise, each image
shows the correlation between the location marked in green
and all other locations. Nonstationarity is evident from the
difference in behaviors between land and ocean, and long-range
negative correlation is seen to be a possible byproduct of this
modeling scheme. In Figure 8, we display estimated local cross-
correlations between a few of our selected variables. Expected
negative and positive correlations between pairs of variables are

correctly captured (e.g., between pressure and precipitation and
between cloud droplet concentration and precipitation). Finally,
in Figure 9, we show variable cross-correlations as a function
of space. To be precise, each image shows the cross-correlation
between the first variable at the location marked in green and the
second variable at all other locations. The flexibility of the model
is again apparent in its nonstationary behavior and various pos-
itive and negative cross-correlations. Such behavior is difficult
to accommodate using extant models but readily available in
our approach without any additional effort (Kleiber and Gen-
ton 2013). Both the correlation and cross-correlation functions
centered where El Niño/La Niña occur (see right column in
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Figure 9. Estimated spatial cross-correlation functions, again centered over Tajikistan in the left column, U.S. in the middle column, and the Pacific Ocean in the right
column. Top row shows PRECT and PS, which exhibit negative local cross-correlations, while bottom row shows BURDENBC and BURDENPOM, which exhibit positive local
cross-correlations.

Figures 7 and 9) exhibit long-range dependence through the
equator across the Pacific Ocean.

We conclude the data analysis with a brief commentary about
the timing results, assuming the orthogonal basis has been
constructed and τ 2

1 , . . . , τ 2
p are estimated. Note that the latter

step is fairly quick using the technique in Section 3.3 with an
orthogonal basis. The choice of penalty dictates the runtime of
the DC algorithm. For the maximum likelihood estimate with no
penalty, the tolerance ε = 0.05 is reached in 15 DC iterations in 5
seconds. With sparsity penalty λ = 20, the algorithm converges
in two DC iterations in 45 seconds. With sparsity penalty λ = 1,
the algorithm again requires two DC iterations but takes 13 min.
With fusion penalty ρ = 10, both estimates converged in one
DC iteration using the ρ = 0 solution as the initial guess,
but (λ, ρ) = (20, 10) took 7 minutes while (λ, ρ) = (1, 10)

took 1 min. All experiments were performed in MATLAB on
a MacBook Pro with a 6 core 2.6 GHz Intel Core i7 processor
and 32 GB of RAM.

5. Discussion and Conclusions

Models for multivariate spatial processes struggle to accom-
modate nonstationary data with a large number of variables
and observation locations. We have presented a multivariate
Gaussian process model that will be applicable in a variety of
future endeavors. There are many benefits under this frame-
work, including nonstationary covariance and cross-covariance
functions, exact likelihood calculations, and cheap computa-
tions and storage when W1, . . . , WL are independent and basis
functions are orthogonal.

Future experiments could relax the assumption of indepen-
dent weights and estimate the entire sparse pL × pL preci-
sion matrix Q as in Section 2.1 with the DC algorithm (6).
Even if the basis functions are not orthogonal, �TD−1� =

T
 ⊗ diag(τ−2

1 , . . . , τ−2
p ) is sparse due to the Kronecker

product with a diagonal matrix. In this formulation, it is crucial
to rewrite (7) and calculate this linearization term by solv-

ing linear systems with the sparse matrix Q + �TD−1� or
its sparse Cholesky decomposition. Note that the dense pL ×
pL linearization matrix must then be stored in memory, and
advanced graphical lasso algorithms (Fattahi et al. 2019) must be
explored for the subsequent graph estimation. Modeling depen-
dence across basis functions would allow for more flexibility
in the cross-covariances since, with the independence assump-
tion, cov(Zi(s), Zj(s′)) = ∑L

�=1 φ�(s)((Q�)
−1)ijφ�(s′) =

cov(Zi(s′), Zj(s)) is symmetric.
We demonstrated that our model can easily fit a large climate

ensemble and produce reasonable and interpretable results. It
has already been successfully applied in the context of statistical
downscaling (Ekanayaka et al. 2022). Our method also easily
scales to computer experiments with high-dimensional inputs
(e.g., s ∈ R

d with d � 0). Extending the basis graphical
lasso to handle space-time data remains an important task that
could be particularly impactful in the highly multivariate setting.
Constructing multivariate space-time covariance functions is an
active area of research (Alegria et al. 2019; Salvaña and Genton
2020; Porcu et al. 2020; Chen et al. 2021). Indeed, the issues of
scalability and flexibility mentioned in the opening sentence of
this conclusion are further exacerbated when modeling tempo-
ral dependence. A multivariate space-time basis graphical lasso
could prove to be a valuable tool that addresses these challenges.

Supplementary Materials

Supplementary material contains: (1) a simulation study (2) additional
details regarding CAM data analysis, including estimation of the additive
error variance, selection of penalty parameters, and simulations from our
multivariate spatial model. Further supplementary materials are available
at https://gdex.ucar.edu/dataset/371_abaker.html.
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