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Abstract Stochastic precipitation generators (SPGs) produce synthetic precipitation data and are
frequently used to generate inputs for physical models throughout many scientific disciplines. Especially for
large data sets, statistical parameter estimation is difficult due to the high dimensionality of the likelihood
function. We propose techniques to estimate SPG parameters for spatiotemporal precipitation occurrence
based on an emerging set of methods called Approximate Bayesian computation (ABC), which bypass the
evaluation of a likelihood function. Our statistical model employs a thresholded Gaussian process that
reduces to a probit regression at single sites. We identify appropriate ABC penalization metrics for our
model parameters to produce simulations whose statistical characteristics closely resemble those of the
observations. Spell length metrics are appropriate for single sites, while a variogram-based metric is
proposed for spatial simulations. We present numerical case studies at sites in Colorado and Iowa where the
estimated statistical model adequately reproduces local and domain statistics.

Plain Language Summary Statistical simulations of precipitation and other weather quantities are
commonly used in many sciences. Modern datasets are extremely high dimensional, which challenge
traditional model estimation paradigms. We propose a novel technique specially adapted for estimation
using approximate Bayesian computation (ABC), and show how important characteristics such as dry and
wet spells can be used to quantify uncertain model parameters. The proposed method offers promising
future directions for further research.

1. Introduction

Scientific fields such as hydrology, ecology, meteorology, agriculture, and climate impact assessment fre-
quently utilize physical models that require daily spatiotemporal weather as input conditions under differing
scientific scenarios [Kustas et al., 1994; Richardson, 1981; Wilks, 1988; Mearns et al., 1997; Friend et al., 1997;
Strandman et al., 1993; Semenov and Barrow, 1997]. ‘‘Weather’’ typically refers to daily minimum and maximum
temperature, and quantitative precipitation. However, in situ measurements are limited in their temporal and
spatial coverage, and are often contaminated with missing values. Thus, it is desirable to produce synthetic
weather scenarios that are statistically similar to direct measurements of weather quantities, either for histori-
cal network infilling, or to test future scientific scenarios. Stochastic weather generators (SWGs) are statistical
mechanisms to generate weather data that are statistically similar to observational records. SWGs for daily
weather sequences are the most common due to their widespread applicability and availability of observa-
tional records collected on a day-to-day basis [Wilks and Wilby, 1999]. SWGs can be loosely categorized into
two approaches: model-based and empirical. Model-based SWGs use formal statistical models, whereas empir-
ical approaches generally rely on resampling of historical patterns, requiring a large historical database [Racsko
et al., 1991; Richardson, 1981; Lall and Sharma, 1996; Rajagopalan and Lall, 1999].

Traditionally, SWGs were built to produce simulations colocated with observational data, but recent develop-
ments focus on generating consistent spatiotemporal simulations on space-time grids [Wilks, 1999; Kleiber et al.,
2012]. Precipitation is particularly at the forefront of the literature due to its challenging mixed discrete-
continuous nature, skewness and non-Gaussianity [Ailliot et al., 2009; Allcroft and Glasbey, 2003; Brown et al.,
2001; Durban and Glasbey, 2001; Hughes et al., 1999; Sans�o and Guenni, 2000]. These model-based approaches
sometimes split modeling of the intensity and occurrence fields, and often use Markov chains to implement
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temporal dependence [Katz, 1977]. For intensities, modelers customarily turn to an exponential distribution,
gamma distribution, or some mixture thereof [Richardson, 1981; Stern and Coe, 1984; Woolhiser and Pegram,
1979]. More recently, stochastic precipitation generators (SPGs) have played a key role in statistical downscal-
ing [Maraun et al., 2010; Wilks, 2010]. Moreover, current advances on conditional rainfall simulation incorpo-
rate atmospheric circulation variables as predictors for weather generation [Langousis and Kaleris, 2014;
Langousis et al., 2016]. The popularity, scope, and multifaceted nature of SWGs as has led to several review
studies [Hewitson and Crane, 1996; Zorita and von Storch, 1997; Wilby et al., 2004; Fowler et al., 2007].

Interest has shifted from local precipitation, or precipitation at a single location, to spatiotemporally corre-
lated precipitation across a spatial domain. The nature of local precipitation, including its variability and
intermittency, compounds in the spatial case, making spatiotemporal precipitation simulation difficult.
There are a wide variety of approaches for spatiotemporal precipitation modeling and simulation. Hidden
Markov models have been used to model occurrence [Hughes et al., 1999] as well as intensity [Ailliot et al.,
2009; Charles et al., 1999]. Other methods include nearest-neighbors resampling [Apipattanavis et al., 2007;
Buishand and Brandsma, 2001; Rajagopalan and Lall, 1999], generalized chain-dependent processes [Zheng
and Katz, 2008; Zheng et al., 2010], power transformation to normality [Sans�o and Guenni, 2000; Yang et al.,
2005], artificial neural network methods [Cannon, 2008], copula-based approaches [B�ardossy and Pegram,
2009], and multifractal rainfall models [Gupta and Waymire, 1993; Lovejoy and Schertzer, 1995; Menabde
et al., 1997; Deidda, 2000; Veneziano and Langousis, 2005; Langousis and Veneziano, 2007; Veneziano et al.,
2006; Veneziano and Langousis, 2010]. Current approaches to this problem typically seek the assistance of
latent multivariate normals, sometimes including a transformation, to generate the occurrence/intensity val-
ues over a spatial domain. This approach was catalyzed by Wilks [1998], and advanced by Brissette et al.
[2007] and Thompson et al. [2007]. The modern popularity of Wilks’ approach can largely be attributed to a
comparative study of his approach with the resampling and hidden Markov model approaches, which
found the one of Wilks to best capture spatial dependence as well as local temporal dependence of precipi-
tation [Mehrotra and Sharma, 2010].

For space-time data sets, observational data are often very high-dimensional: with even a handful of spatial
locations and a few years of daily observations, the dimensionality can reach upward of tens of thousands
of data points. Estimation schemes for model-based SWGs typically follow either a likelihood-based
approach (whether frequentist or Bayesian), or a moment-matching approach. However, for modern data
sets, likelihood-based methods are infeasible due to the dimensionality of the process; falling back on
moment-based methods can be useful, but also implies a loss of statistical efficiency.

In this work, we explore a family of techniques known as Approximate Bayesian Computation (ABC) to approx-
imate posterior densities of statistical model parameters. These algorithms yield accurately approximated pos-
teriors while sidestepping the often problematic evaluation of analytic likelihood functions [Sunnåker et al.,
2013]. In particular, we examine a daily spatiotemporal precipitation occurrence problem, and utilize ABC to
estimate model parameters. Particular emphasis is put on the regularization function as it relates to scientifi-
cally meaningful statistics such as dry and wet spell lengths. We assess our approach on a large historical data-
base of observed precipitation occurrence over the state of Iowa, and a case-study location in Colorado.

Successful ABC techniques for estimating SWGs of daily local maximum temperature were presented by
Olson [2016], but presently, we are unaware of any other attempts to apply ABC for estimating SPGs. There
has been some interest in using ABC for hydrological purposes, in comparing generalized likelihood uncer-
tainty estimation (GLUE) with ABC in a case study of rainfall-runoff modeling [Nott et al., 2012]. Sadegh and
Vrugt follow suit with some further exploration of ABC, again with rainfall-runoff applications in mind
[Sadegh and Vrugt, 2013, 2014]. Otherwise, the utilization of ABC remains chiefly in the field of biology due
to its origins in population genetics research. We contend that ABC constitutes a promising estimation tool-
set for creating reliable SWGs.

2. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) refers to a family of techniques for approximating posterior den-
sities of statistical parameters by bypassing direct likelihood evaluations. The first traces of ABC can be
found in a 1984 essay by Donald Rubin, in which he puts forth a thought experiment to illustrate how
Bayesian ideas should be interpreted and put into effect [Rubin, 1984; Sunnåker et al., 2013]. The first
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algorithm to incorporate ideas that comprise present-day ABC was proposed by Tavar�e et al. [1997], con-
cerning the chronology of common ancestors of humans based on homologous DNA sequence samples,
and has since inspired much research in this discipline [Fu and Li, 1997; Weiss and von Haeseler, 1998; Pritch-
ard et al., 1999; Beaumont et al., 2002].

ABC algorithms are designed to approximate posterior distributions of the form f ðhjxÞ where h is a vector
of model parameters, and x a vector of observations. Bayes’ theorem yields the familiar relationship

f hjxð Þ / L xjhð ÞpðhÞ; (1)

where L xjhð Þ is the likelihood function of x and pðhÞ is the prior distribution for h. Key difficulties arise when
the likelihood L is either not available in closed form, or is computationally intractable to calculate numeri-
cally. In the following subsections, we describe two ABC algorithms that will be applicable to the ensuing
precipitation problem.

2.1. ABC Acceptance-Rejection Schemes
In what follows, suppose that we are given observed data D 2 Rn which were generated by a statistical
modelMðhÞ, parametrized by h5 h1; . . . ; hp

� �
. The key idea behind ABC is to generate a candidate parame-

ter h0 � p, unconditionally generate a new data set D0 according to Mðh0Þ, and if D0 and D are ‘‘close’’
enough, view h0 as a sample from the posterior distribution h0 � f ðhjDÞ.

To formalize the notion of ‘‘closeness,’’ we introduce a similarity metric . : Rn3Rn ! R1 that is negatively
oriented, and such that .ðD;DÞ50. The ABC algorithm then follows by accepting h0 if . D;D0ð Þ < � for
some user-defined tolerance � > 0. Clearly the key scientific difficulty is to determine an appropriate .ð�; �Þ
and �, both highly dependent on the scientific context and data. An important side note is that �5 0 yields
samples from the true posterior, whereas allowing �!1 yields samples from the prior. From a computa-
tional perspective, a higher � will yield more accepted samples, but lose accuracy of posterior approxima-
tion, while a low � will increase accuracy, but lose tractability. Empirical case studies demonstrate the effect
of � on the resultant posterior [Sisson et al., 2007], and theoretical bounds for parameter and posterior error
estimates have been derived [Dean et al., 2011; Fearnhead and Prangle, 2011].

Typically, the dimensionality of D obfuscates the modeler’s ability to choose a relevant ., and so in practice
we instead consider summary statistics S5s Dð Þ and S05s D0ð Þ. If S is a sufficient statistic for h, then we have
f ðhjDÞ5f ðhjSÞ for all h. Thus, in practice the metric .ð�; �Þ is a function of these summary statistics. Even if
the statistics are not sufficient, if they describe an important aspect of the data in the context of the prob-
lem, they should still act as acceptable summaries of the data. This gives rise to ABC Algorithm 1.

Algorithm 1: Generating samples distributed from f hj. sðDÞ; sðD0Þð Þ < �ð Þ
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Algorithm 1 has its shortcomings, however. For example, if the prior distribution contains large intervals of
values from which to sample parameters, the chances of accepting can be extremely low. This effect is com-
pounded heavily as the number of statistical parameters increases. Additionally, the acceptance-rejection
algorithm generates independent samples with each step, so each iteration relies on identifying a desirable
h from pð�Þ without any other information.

2.2. ABC Using Markov Chain Monte Carlo
The operational issues of Algorithm 1 can be rectified by introduction of the Metropolis-Hastings (M-H)
algorithm. M-H is a standard Markov chain Monte Carlo method used for distribution sampling [Metropolis
et al., 1953; Hastings, 1970]. In particular, M-H is a guided search through parameter space that uses a cur-
rent value h to generate a candidate value h0 according to a candidate-generating density qðh; h0Þ [Chib and
Greenberg, 1995]. In this way, h0 typically has a higher chance of acceptance than an unconditionally gener-
ated proposal. The ABC-MCMC algorithm is laid out in Algorithm 2. This will be our default variant of ABC,
excepting the case of determining an initial guess where the rejection version is better suited.

As in standard M-H applications, Algorithm 2 shows that if qð�; �Þ is symmetric, it drops out of the algorithm.
In addition, if we sample from a uniform density for each parameter, hi � U ai; bið Þ for i51; . . . ; p, then the
condition u < min pðh0Þ=pðhÞ; 1f g reduces to simply checking that each parameter lies in the prior. That is,
accept h05ðh01; . . . ; h

0

nÞ only if h
0

i 2 ½ai; bi� for all i. In this case, the main filter of parameter acceptances is the
ABC criterion, .ðD;D0Þ < �.

It is important to note that Algorithm 2 is extremely sensitive to the initial guess h0 due to the relatively
small jumping window in comparison to the prior. There are a couple of ways to sidestep this issue. For
example, one can perform a grid search over h to approximate a minimizing value h0 � arg minh.ðD;D0ðhÞÞ
for our initial guess. Caution must be taken, however, since . is a function of stochastic input, and therefore a
suitable minimizing value may be difficult to ascertain. Another remedy is to start with Algorithm 1 until an
accepted parameter has been found, and then proceed with Algorithm 2.

Algorithm 2: Generating samples distributed from f hj. D;D0ð Þ < �ð Þ via ABC-MCMC
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3. Statistical Spatiotemporal Precipitation Occurrence Model

We turn now to the spatiotemporal precipitation generator. We adapt the statistical model of Kleiber et al.
[2012] to simulate spatially and temporally correlated binary values, relying on a latent Gaussian process.
Let Yðs; dÞ denote the precipitation occurrence at site s 2 R2 on day d 2 Z1, so that Yðs; dÞ51 for positive
precipitation and 0 otherwise. Precipitation is driven by a latent Gaussian process Wðs; dÞ with mean func-
tion lðs; d; bÞ and covariance function Cðh; d; aÞ1s21½h50�ðhÞ, where 1 is the indicator function, b and a are
model parameter vectors and h 2 R2 is a spatial lag vector. In the covariance function, C represents contin-
uous spatial variation while the nugget effect s2 accounts for microscale variation. The distribution of Y is
specified through

Yðs; dÞ51½Wðs;dÞ�0�; (2)

which implies that Yðs; dÞ is locally a probit regression.

Our choice for the mean function includes autoregressive and harmonic terms to capture temporal persis-
tence and seasonal variations. In particular, we set

l s; d; bð Þ5b01b1Yðs; d21Þ1b2cos
2pd
365

� �
1b3sin

2pd
365

� �
1b4cos

4pd
365

� �
1b5sin

4pd
365

� � ; (3)

where b5ðb0;b1; . . . ;b5Þ> . For the covariance structure, we assume an isotropic exponential covariance
with a time-dependent range,

Cðh; d; aÞ5exp 2
khk
AðdÞ

� �
;

where jj � jj is the Euclidean norm. We elect

AðdÞ5exp a01a1cos
2pd
365

� �
1a2sin

2pd
365

� �� �
; (4)

where a5 a0; a1; a2ð Þ>. The harmonics allow for seasonally dependent range (e.g., in the midwest US precip-
itation tends to have shorter length-scales during summer, being driven by locally convective storms,
whereas length-scales are longer during winter due to frontal passages).

Thus our general spatiotemporal model is parameterized by h5 b>; a>; s2
� �>

. To illustrate the roles of the
ABC metrics, we will explore two case studies of our model to which our metrics will be tailored. We begin
with precipitation occurrence at a single site, and then generalize our methodology to a general spatial
domain.

4. Single-Site Occurrence

An attractive feature of model (2) is that it reduces to a probit regression in the case of a single location s. In
particular, the only statistical parameters for the single-site generator are b. While ABC bypasses the need
to evaluate a likelihood function, for this single-site setup we can actually deduce a closed-form expression
of the likelihood for our model, allowing us to check our posterior approximations from the ABC algorithm.
We will assume uniform, independent marginal priors for bi, i.e., bi � Uðai; biÞ; i50; . . . ; 5. Then the log-
posterior is

log f bjoð Þ5
XT

d52

1 od51½ �log U b>X
� �� �

11 od50½ �log 12U b>X
� �� �� 	

1
X5

i50

log 1½ai�bi�bi �2log ðbi2aiÞ
� 	

1c

; (5)

where c is a normalizing constant, o5ðo1; o2; . . . ; oT Þ> is the vector of observed occurrences oi5Yðs; iÞ, and
X is the design matrix for covariates (3). The derivation of log f is provided in Appendix A.
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4.1. ABC Metrics for Single-Site Occurrence
For single-site precipitation occurrence, a natural similarity metric will be tailored to precipitation’s temporal
persistence. Heuristically, any simulated sequence of occurrences generated by the probit model should
have similar short and long scales of temporal persistence as exhibited in the observational record. Thus,
our metric is tailored to capture wet and dry spells of varying lengths.

Let f be a set of numbers that correspond to spell count lengths. Define uðx; fÞ to be the function that com-
putes the number of wet spells of length in f present in the time series x5ðx1; . . . ; xT Þ, and define wðx; fÞ to
be the function that computes the number of dry spells of length in f present in x. Our estimator bb should
adhere to the following criterion:

bb5arg minb

�
1
jT j
X
t2T

�
cw

jZ1j
X

f12Z1

juðsb½t�; f1Þ2uðo½t�; f1Þj
max fuðo½t�; f1Þ; 1g

1
ch

jZ2j
X

f22Z2

jwðsb½t�; f2Þ2wðo½t�; f2Þj
max fwðo½t�; f2Þ; 1g

�� : (6)

Here T is a partition of the months of the year, Z1 is a set of sets of wet spell lengths (e.g.,
1; 2; 3f g; 4; 5; 6f g; 7; 8; 9f gf g), Z2 is a set of sets of dry spell lengths, o is the observed occurrence time

series, sb is a simulation of our model parameterized by b, and the notation x½t� represents the time series x
subsetted by the set of time points t. We would like to scale by the number of dry/wet spells in the observa-
tions, but it is possible that the particular isolated sequence o½t� does not have any of the given amount fi,
so we divide by max uðo½t�; fiÞ; 1f g to ensure there is no division by zero. Furthermore, we allow Z1 and Z2

to be sets of sets to retain generality as well as allow for a faster algorithmic runtime in practice.

With this formulation of our estimator bb, we are in position to formalize our metric to estimate local precipi-
tation occurrence for a site s:

.LocalðD;D0Þ : 5
1
jT j
X
t2T

�
1
jZ1j

X
f12Z1

juðD½t�; f1Þ2uðD0½t�; f1Þj
max fuðD½t�; f1Þ; 1g

1
1
jZ2j

X
f22Z2

jwðD½t�; f2Þ2wðD0½t�; f2Þj
max fwðD½t�; f2Þ; 1g

� : (7)

While our methods are defined using specific functions, it should be noted that this procedure can be
abstracted. For example, if the modeler were more interested in the total number of rainy days per month,
one could replace our functions u and w with a function that counts the number of days where precipita-
tion occurred, and then use the relative error per month as the metric for the ABC criterion.

4.2. Numerical Results for Bonny Dam, Colorado
To validate the proposed approach, we examine Bonny Dam, Colorado, for which precipitation data are
available in the Global Historical Climatology Network Database (GHCND) [Peterson and Vose, 1997]. Specifi-
cally, we use records for Bonny Dam from 1 June 1949 to 11 September 2011, yielding 21,911 days of actual
precipitation recordings and 822 days of missing data values. Our uniform priors range between 21.5 and
1.5 for the intercept b0, between 0 and 1 for the AR term b1, and the remaining priors range from 20.5 to
0.5. We iterate through three choices of �: �151:09; �251:18, and �351:27, which yield acceptance rates of
23.1%, 37.7%, and 58.9%. Note that �1 was chosen to induce an acceptance rate close to the theoretical
optimum of 23% [Gelman et al., 1996]. In each case, we obtain b0 from a grid search based on our . criteri-
on. Moreover, we define our sets of spell lengths for our . function as

Z15 f1g; f2; 3g; f4; 5g; f6; 7g; f8; 9g; f10; 11g; f12; 13; . . .gf g; (8)

for our wet spells and

Z25ff1; 2; 3; 4g; f5; 6; 7; 8g; f9; 10; 11; 12g; f13; 14; 15; 16g; f17; 18; 19; 20g;

f21; 22; 23; 24g; f25; 26; 27; 28; 29g; f30; 31; . . .gg
; (9)

for our dry spells. These sets were constructed so that they span the range of realistic values well, highlight
important lengths to be matched, and decrease algorithmic runtime. For example, when examining the
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observed spell counts, we see that the number of wet spells of length one is much larger in comparison to
those of higher lengths, whereas the number of spells of length greater than 11 is relatively small. So, we
keep {1} separate, bin spells of lengths of 12 and higher all in the same set, and group the rest in pairs for
computational benefits. We encourage the modeler to adjust these sets to the problem at hand and rumi-
nate on whether granularity or tractability is a higher priority. With these settings, we collect 10,000 ABC
samples, after omitting a standard burn-in based on examining convergence of the trace plot of the sam-
pling chain.

We compare priors, true posteriors, and ABC-approximated posteriors for each �i in Figure 1. Here we
see, qualitatively, how closely the ABC posteriors align with the truth when � yields a small enough
acceptance rate, and how increasing our tuning parameter can lead to wider posteriors and straying
MCMC chains. Nonetheless, all of the ABC posteriors are still significantly narrowed with respect to the
priors. Figure 2 displays a table of the first three-empirical moments for the true and ABC posteriors, as
well as the theoretical moments for the priors, for each choice of �. We additionally compute and plot
the mean functions lðs; d; bbÞ using the empirical mean of each marginal posterior density bbi , and com-
pare to the empirical probability of rain based on the observed data, seen in Figure 3. Indeed, both the
true posterior and ABC mean functions present a credible description of the data’s trend. Note that the
probability of precipitation is not a feature of our metric ., yet empirically we match the general
observed pattern.

Moreover, we can examine statistics of sample trajectories from our ABC posteriors (with tuning parame-
ter �151:09) and true posteriors given by (5). First, we look at empirical standard deviation of our observa-
tions, 100 sample trajectories from our ABC posterior, and 100 sample trajectories from true posterior, for
each of the 365 days. Box plots of these daily empirical standard deviations, binned by month, are shown
in Figure 4. For example, for January, the box plot shown for the observations represents the distribution
of cSD(1 January), . . ., cSD(31 January). For the ABC and true posterior box plots, each daily cSDð�Þ is taken
across all 100 trajectories, so that cSD(1 January) is computed over all of the 100 empirical 1 January val-
ues. These statistics match well despite the absence of standard deviation comparisons in our penaliza-
tion criterion .. Of course, we are also interested in the correspondence of wet and dry spell counts, the
crux of our ABC metric, for the observations and ABC simulations. Using the marginal ABC posterior
means to estimate the parameters b and simulate a sample trajectory, we compute these spell counts for
both time series and display them in Figures 5 and 6, respectively. Both wet and dry counts are well
reproduced by our parameter estimates, at both short and long durations. Overall, the simulations pro-
duced by our ABC procedure are highly similar to the observations as seen by each summary statistic we
tested.

5. Multisite Occurrence

We generalize our estimation approach for spatial occurrence data. Generally, estimation of mean function
parameters b will proceed as in the previous section, but we will need a tool to estimate the spatial depen-
dence between sites as controlled by the parameters a. For this, we propose a clustered variant of the classi-
cal empirical variogram, which allows for an effective ABC metric to estimate a.

5.1. Assessing Spatial Dependence: Variograms
A variogram c is a function that quantifies the degree of spatial dependence of a stochastic process [Cressie,
1993; Diggle et al., 1998]. A nonparametric empirical variogram is given by

dcðuÞ5 1
2jNðuÞj

Xn

i51

X
j 6¼i

y xið Þ2y xj
� �
 �2

; (10)

for spatial data yðxÞ at locations x1; . . . ; xn, where NðuÞ is a user-defined neighborhood of location pairs
jjxi2xjjj � jjujj about u, and j � j denotes the number of pairs in the neighborhood. Raw variograms (with-
out averaging) tend to be extremely noisy; the binning is just a smoothing operation. We follow the stan-
dard rule of thumb by including at least 30 pairs of observations per bin. Moreover, for juj 	 0, so few pairs
are used in bcðuÞ that we restrict distances so that u � 1

2 max kxi2xjk. Our interest in the variogram stems
from a wealth of experience in the geostatistical community regarding using variogram-based metrics as
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Figure 1. The marginal prior, true posterior (via MCMC sampling), and approximate posterior densities (for several values of �) for b.
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robust estimators of space-time dependence [Cressie and Zimmerman, 1992]. Indeed, variogram-based esti-
mators of spatial dependence have been shown to perform nearly as well as likelihood-based procedures
[Zimmerman and Zimmerman, 1991].

Figure 2. First three raw moments of the marginal priors, true posteriors, and three ABC posteriors with their corresponding � values.
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Figure 3. The mean function of precipitation occurrence for the ABC and true posterior estimates as well as the observed empirical proba-
bility of precipitation for Bonny Dam, Colorado.

Water Resources Research 10.1002/2016WR019741

OLSON AND KLEIBER ABC FOR PRECIP OCCURRENCE SIMULATION 9



As our latent Gaussian spatial process is assumed to have seasonally dependent correlation lengths,
we require empirical variograms that evolve throughout the year, e.g., dcðuÞ5 dcðu; dÞ. We seek
to choose enough days in the year to get a stable estimator, while still maintaining tractability for
ABC. Thus, we construct a monthly aggregate variogram bC as a function of month m as well as u,
defined as

bCðm; uÞ5 1
jYj
X
y2Y

1
2x

Xdm;y 1x

d5dm;y 2x

bcðu; dÞ; (11)

where Y is the set of sample years, dm;y is the sample center day of the month m in year y, and x is the for-
ward and backward offset for binning. For each month m, we loop through all sample years and select a
sample center day for that month, dm;�, which is arbitrarily chosen, but consistent. Next, we compute a clus-
tered variogram for dm in that we use only a few days before and after dm;� to smooth the variogram data
from an otherwise noisy set of points. This manifests as dm;y6x, where we set x 5 5 which yields a group
of 11 consecutive days for each month. Finally, we divide by the total number of aggregated variograms,
2xjYj, to ensure that the values of bC are on the same scale as bc.

5.2. ABC Metrics for Multisite Occurrence
For our full spatiotemporal precipitation occurrence generator, we have h5 b>; a>; s2

� �>
, totalling 10

statistical parameters. Rather than simultaneously estimating all parameters, we separate out estimation
of mean function parameters from spatial-dependence parameters, as is common in geostatistical
modeling.

To estimate b, we require a statistic that measures accuracy of the mean function over the entire domain.
Assuming the terrain does not vary greatly and that precipitation behaves locally similarly at each
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Figure 4. Daily empirical standard deviations of precipitation (in mm) for ABC simulations, true posterior simulations, and observations for
Bonny Dam, Colorado, binned by month.
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observation location si , we consider an aggregation of our .Local metric as defined in (7). That is, we com-
pute a standardized sum of the wet and dry spell count errors over all of our locations s1; . . . ; sn,

.bðD;D0Þ 5
1
n

Xn

i50

.LocalðD½si�;D0½si �Þ

5
1
n

Xn

i51

1
jT j
X
t2T

 
1
jZ1j

X
f12Z1

juðD½si ; t�; f1Þ2uðD0½si; t�; f1Þj
max fuðD½si ½t�; f1Þ; 1g

1
1
jZ2j

X
f22Z2

jwðD½si ; t�; f2Þ2wðD0½si; t�; f2Þj
max fwðD½si; t�; f2Þ; 1g

!
; (12)

where u counts wet spells as in (6), w counts dry spells as in (6), T is a partition of the months of the year,
Z1 is a set of sets of wet spell lengths, Z2 is a set of sets of dry spell lengths, D½si� corresponds to the subset
of the data at location si , and D½si; t� corresponds to the subset of the data at location si and time points t.

In a Gibbs sampling framework, we condition on an ABC estimate of b, and estimate remaining spatial
parameters c5 a>; s2ð Þ> in an ABC-MCMC algorithm. To this end, we use our aggregate monthly variogram
of (11) within our covariance similarity metric,

.cðD;D0Þ5
1

12

X12

m51

jbCðm;DÞ2bCðm;D0ÞjbCðm;DÞ ; (13)

where the sum is over the 12 months of the year. The combination of these metrics will constitute our ABC-
MCMC algorithm for spatial precipitation occurrence, shown in Algorithm 3.
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Figure 5. Wet spell counts and the logarithm of wet spell counts by spell length for the observations and ABC simulation for Bonny Dam,
Colorado.
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5.3. Simulation Study
To verify that our metric (13) can adequately capture spatial dependence of precipitation occurrence
in a domain, we can conduct a simulation study to demonstrate that ABC recovers the true
model parameters. We simulate a mean-zero GP with fixed covariance parameters with b50 and a; s
fixed and known, and apply (2) to get the ‘‘observed’’ field. In particular, we choose
ðaT; sÞT5ð6:2; 0:6;21:5; 0:3ÞT, with priors Uð4; 7:3Þ; Uð22; 2Þ; Uð22; 2Þ, and Uð0:2; 0:6Þ for a1; a2; a3, and
s, respectively. For simplicity, we start our MCMC chain at the marginal midpoints of the prior. We
select �51:0, and collect 10,000 samples after discarding a burn-in of 2000. The priors and resultant
ABC posteriors are shown in Figure 7, along with lines indicating the true parameter values, ABC poste-
rior means, and ABC posterior medians.

The true values are captured well within central 95% credible intervals for each posterior density. Moreover,
the means and medians align closely with the truth, especially considering the width of the priors. This sug-
gests that the ABC metric (13) robustly captures spatial dependence in a thresholded mean-zero Gaussian
process.

5.4. Numerical Results for the State of Iowa
We illustrate our approach on an observational data set from the GHCND over the state of Iowa, USA.
The data set contains precipitation occurrence values for 22 different spatial locations from 1 January
1893 to 31 December 2009. In this range, there are 883,736 available (location, day) recordings and
55,774 (location, day) pairs with missing values. Nominally, estimation of our model parameters would
then require evaluating a likelihood function over these 883,736 data points, which is essentially compu-
tationally impossible. For example, Kleiber et al. [2012] examined the same data set, but were forced to
estimate parameters using moment-based estimators, which do not as readily quantify uncertainty as in
a Bayesian framework.

Algorithm 3: ABC-MCMC for daily spatiotemporal precipitation occurrence parameter estimation
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For the ABC-estimation of the mean function parameters b, we choose a 20 year sequence of days for
tractability, ranging from 1 January 1975 to 31 December 1995, which produces 156,135 actual record-
ings and only 4465 missing values. We reuse our wet and dry spell sets Z1 and Z2 from the previous
section. For our tolerance �1, we first consider the level used for a single location, �51:09, increase it
slightly due to the variability throughout the domain, and then multiply it by the number of locations
n 5 22, so that �151:15322525:3; this yields an acceptance rate of about 25.6%. Moreover, we conduct
a grid search through the prior space to get an approximate minimizing value of ., which we assign to
be our initial guess b0. We elect for independent normal priors, centered around the initial guess b0

with variances of 0.1.

Figure 8 shows ABC posteriors after 4000 samples after discarding a burn-in of length 1000. We see con-
siderable sharpness in the posteriors, confirmed by a plot of the expected probability of precipitation
against the 22 empirical probabilities, as seen in Figure 9. As the means of the priors and ABC posteriors
align incredibly well, we assessed the robustness of the posteriors against choice of prior by performing
a mean shift of the priors. Indeed, similar ABC posteriors to the first case were recovered. Since Iowa
was chosen due to its relatively homogeneous terrain, the behavior of the domain as a whole is replicat-
ed quite well. To estimate c, we the same 20 year subset of the data, and perform a grid search for an
initial guess c0. We select �251:0 which induces an acceptance rate of 25.2%, and employ the following
uniform priors: Uð4; 7:3Þ for a0, Uð22; 2Þ for a1, Uð22; 2Þ for a2, and Uð0:1; 0:6Þ for s. These were chosen
according to a blend of the grid search minimizers a0 and s0 and postulation of reasonable values for a
range of an exponential covariance. After discarding a burn-in of 2000 values, we verify convergence
via standard checks and obtain 10,000 samples, whose densities are displayed in Figure 10. The uncer-
tainty is reduced compared to the priors, but is still substantial considering the large prior widths. To
investigate this, we can look at the aggregate variograms bCðmÞ for each month, for simulations using
both the means of the ABC posteriors for b; a, and s2, as well as 100 random samples from each of these
posteriors, shown in Figure 11. We see that while bC is estimated closely for many months, we see
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Figure 6. Dry spell counts and the logarithm of dry spell counts by spell length for the observations and ABC simulation for Bonny Dam,
Colorado.
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consistent overestimation and underestimation for several months. One benefit of the variability
allowed by the posteriors is that the sampled versions are doing a better job of containing the truth (in
January, for instance), whereas the fixed parameter version misses the truth more often. As mentioned
in the simulation study, the ability for .c to recover the true parameters might suggest that much of the
error seen here is the product of our model limitations. Still, the levels of bias are nontrivial and should
be taken into high consideration by those who wish to implement such a procedure in a geophysical
application. Nonetheless, the covariance structure is well identified and replicated.

One approach for spatial model validation is to examine the distribution of sequences of days where at least
one location in the domain experienced precipitation. We generate 500 simulated trajectories of spatiotem-
poral precipitation occurrence over Iowa for the same time period as the data, each using different posterior
samples based on our ABC-MCMC approach. We additionally introduce a zero-covariance process (i.e., forc-
ing W to be spatial white noise), so that each locations’ occurrence sequence is independent of the others.
Figure shows the results of this experiment, comparing domain wet spell count lengths. Unsurprisingly, the
white noise case produces too few long spell lengths, and too many short spell lengths. Both cases which
utilize positive covariance have strong alignment with the observations, with the ABC-MCMC-sampled
parameter case exhibiting considerably higher variability. This is encouraging, as uncertainty inherent in
parameters is seen to propagate through the simulations, allowing for the uncertainty in domain statistics
to capture the truth.

6. Discussion

Using a latent Gaussian process allows for correlated binary-valued simulations of precipitation occur-
rence, and variations of ABC algorithms allow us to adequately estimate the underlying statistical
parameters while bypassing likelihood evaluations. In particular, ABC methods seem to be particularly
suited to the stochastic weather generation problem, where there are often clear scientifically mean-
ingful statistics that the generator attempts to reproduce. Our case studies in Colorado and Iowa sug-
gest rigorously chosen ABC similarity metrics can yield meaningful and accurate samples from
posterior distributions.
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This opens up many avenues of future research, including exploration of other similarity metrics, applica-
tions to other weather variables, and applications to other statistical approaches to precipitation problems
(especially in domains with complex terrain). A natural expansion upon our methodology would be the inte-
gration of precipitation intensity, although useful and reliable similarity metrics are unclear.
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Figure 11. The aggregate variogram bCðmÞ of our simulated thresholded Gaussian process for each month for the state of Iowa (represented by the box plots), as well as the observed
aggregate variogram for the state of Iowa (represented by the solid blue lines).
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Appendix A: Analytic Solution of True Posterior for the Single-Site Instance of
Model (2) With Uniform Priors

In what follows, let o5 o1; . . . ; oTð Þ be a vector of observed precipitation events, so that Pr ½oi�5 the proba-
bility that it rained on day i, and let b5 b0; . . . ;bkð Þ> be our parameter vector. Also, let p05Pr ½o1jb�, the con-
stant that corresponds to the probability of rain on the very first day.

First, we seek the aid of the multiplicative rule of probability, which states that, for some events
A1; . . . ; Anf g,

Pr \
n

i51
Ai

� 

5Pr ½A1�Pr ½A2jA1�Pr ½A3jA1 \ A2�3 � � �3Pr An

���� \n21

i51
Ai

� 

(A1)

5Pr ½A1�
Yn

i52

Pr Ai

���� \i21

j51
Aj

� 

: (A2)

In terms of our likelihood function Pr ½ojb�5L bjoð Þ, we see that

Pr ojb½ �5Pr o1jb½ �
YT

d52

Pr oi

���� \d21

j51
oj; b

� 

: (A3)

However, by the Markov property of our precipitation chain, each occurrence of precipitation only depends
on the precipitation of the previous day. Thus, this leaves

Pr ½ojb�5Pr ½o1jb�
YT

d52

Pr odjod21; b½ �: (A4)

Next we note that by (1),
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Figure 12. Domain spell count lengths for the observed occurrence values, as well as the three simulation examples which utilize the pos-
terior distributions.
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log f bjoð Þ / log LðbjoÞpðbÞð Þ ) log f bjoð Þ5log LðbjoÞ1log pðbÞ1c1; (A5)

for some constant c1 2 R. Isolating the log-likelihood we find that

log LðbjoÞ5log Pr ½ojb�ð Þ; (A6)

5log Pr ½o1jb�
YT

d52

Pr odjod21; b½ �
 !

; (A7)

5log Pr ½o1jb�ð Þ1
XT

d52

log Pr ½odjod21; b�ð Þ; (A8)

5log p01
XT

d52

log U b>X
� �od 12U b>X

� �
 �12od
� �

; (A9)

5
XT

d52

od log U b>X
� �� �

1ð12odÞlog 12U b>X
� �� �� 	

1log p0; (A10)

5
XT

d52

1 od51½ �log U b>X
� �� �

11 od50½ �log 12U b>X
� �� �� 	

1log p0: (A11)

Plugging this into (A5) yields

log f ðbjoÞ /
XT

d52

1 od 51½ �log U b>X
� �� �

11 od 50½ �log 12U b>X
� �� �� 	

1log pðbÞ1c

; (A12)

where c5c11log p0. Moreover, since we are using uniform, independent priors, we can simplify the expres-
sion for log pðbÞ:

log pðbÞ5log
Yk

i50

piðbiÞ; (A13)

5
Xk

i50

log
1

bi2ai
31½ai�bi�bi �

� �
; (A14)

5
Xk

i50

log 1½ai�bi�bi �2log ðbi2aiÞ
� 	

: (A15)

Therefore, we arrive at

log f ðbjoÞ 5
XT

d52

1 od51½ �log U b>X
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11 od50½ �log 12U b>X
� �� �� 	

1
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log 1½ai�bi�bi �2log ðbi2aiÞ
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1c;

(A16)

which was to be shown.
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