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A B S T R A C T   

We present a semi-Bayesian hierarchical modeling framework for conducting space–time frequency analysis of 
precipitation extremes over a large domain. In this framework, the data layer, the precipitation extreme – i.e., 
seasonal maximum precipitation, at each station in each year is modeled using a generalized extreme value 
(GEV) distribution with temporally varying parameters, which are decomposed as linear functions of covariates. 
The coefficients of the covariates are estimated via maximum likelihood (ML). In the process layer, the estimated 
ML coefficients of each of the covariates across the stations are spatially modeled with a Gaussian multivariate 
process which enables capturing the spatial structure and correlation between the spatial model parameters. 
Suitable priors are used for the spatial model hyperparameters to complete the Bayesian formulation. Since the 
Bayesian formulation is only at the second level, our model is semi-Bayesian and thus, the posteriors are con-
ditional posterior distributions. With the conditional posterior distribution of spatial fields of the GEV parameters 
for each time, conditional posterior distribution of the nonstationary space–time return levels of the precipitation 
extremes are obtained. We demonstrate this framework by application to summer precipitation extreme at 73 
stations covering a large domain of Southwest US consisting of Arizona, New Mexico, Colorado, and Utah. The 
results from fitting and cross-validation indicate that our model captures the historical variability at the stations 
very well. Conditional posterior distributions of return levels are simulated on a grid over the domain, which will 
be of immense utility in management of natural resources and infrastructure.   

1. Introduction 

Extreme precipitation leads to extreme flow – i.e., flood events 
leading to loss of lives and severe damage to infrastructure. Thus, it is 
crucial for the engineering design of infrastructure, such as flood pro-
tection, dams, and management of water supply, and flood control to 
understand and model the variability of extreme precipitation in both 
space and time. A common practice is to perform frequency analysis on 
block (i.e. seasonal or annual) precipitation extreme using statistical 
distributions. A single set of distribution parameters are estimated 
assuming stationarity, in that the precipitation variability in the future 
will be similar to that of the past (Jakob, 2013). The fitted distributions 
are used to estimate occurrence probabilities (i.e., return period) of rare 
events of desired magnitudes and return levels of desired risks – all, 
useful in infrastructure design (Coles, 2001). 

Although for modeling extreme precipitation some studies have used 
log-normal and Gumbel distributions (Hershfield, 1961; Wilks, 1993), 
the Generalized Extreme Value (GEV) distribution, which is theoreti-
cally more appropriate, is widely used (e.g., Dupuis and Field, 1998; 
Gellens, 2002; Wilks, 1993) due to its ability to capture a wide range of 
tail behaviors, and also it is consistent with extreme value theory (EVT) 
(Coles, 2001). 

There are two main problems related to this single site stationary 
frequency analysis approach: the stationarity assumption may not be 
valid since diverse modeling and empirical studies have shown that the 
frequency and intensity of extreme climatic events are increasing and 
will continue to do in the foreseeable future due to climate variability 
and change (Barnett et al., 2006; Frich et al., 2002; IPCC, 2007; Milly 
et al., 2008; Schmidli and Frei, 2005); and the need for estimating 
extreme precipitation at several locations where data is not available for 
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designing of infrastructure or hazard mitigation. These motivate the 
need for modeling approaches that capture the variability of extremes in 
space and time. Temporal variability of extremes is modeled by varying 
the parameters of the statistical distribution as a function of covariates 
by a Generalized Linear Modeling (McCullagh and Nelder, 1989) 
approach. An early approach for modeling the temporal variability of 
parameters of GEV as functions of time, was proposed in Katz et al. 
(2002). 

This led to plethora of studies that applied this approach at indi-
vidual sites with time-varying covariates besides time trend, to modeling 
the temporal nonstationarity of precipitation extremes around the 
world. As mentioned, linear time trend to model the time-varying GEV 
parameters is the simplest nonstationary model (Fowler et al., 2010; van 
Haren et al., 2013; Katz et al., 2002). Other time-varying covariates have 
been used to model precipitation extremes in Asia (Agilan and Uma-
mahesh, 2017; Gao et al., 2016), North America (El Adlouni et al., 2007; 
Um et al., 2017), Europe (Vasiliades et al., 2015), Australia (Agilan and 
Umamahesh, 2016), and elsewhere. 

Extensions of this in a Bayesian approach have been developed 
(Cannon, 2010; Cheng and Aghakouchak, 2014; Ouarda and El-Adlouni, 
2011) which captures the uncertainties in the parameters and conse-
quently in the return levels, robustly, via their posterior distributions. 
However, most of these studies are single-site analyses or assume spatial 
independence, thus, cannot provide estimates at any arbitrary ungauged 
location. 

To address this, studies have extend extreme value analysis and other 
methods to model inter-site dependency. These include - regional fre-
quency analysis such as the index-flood method (Wazneh et al., 2013); 
max-stable processes (Coles, 1993; Coles and Tawn, 1996; Davison et al., 
2012; Stephenson et al., 2016); spatial modeling of marginal GEV pa-
rameters by univariate spatial Gaussian processes (Dyrrdal et al., 2015; 
Yan and Moradkhani, 2015; Yan and Moradkhani, 2016; Reza Najafi and 
Moradkhani, 2013); capturing the spatial dependency by both Gaussian 
copulas and spatial modeling of marginal GEV parameters, and quan-
tifying uncertainties of variables by hierarchical Bayesian processes of 
the latent parameters (Bracken et al., 2016; Renard, 2011). 

Despite these advances, limited studies have offered models for 
spatial and temporal nonstationarity of climate extremes, especially 
precipitation extremes. Hanel et al. (2009) modeled the nonstationarity 
in extreme precipitation over the Rhine basin using a spatial extreme 
value model based on the index-flow method that divided the domain 
into homogeneous regions where the GEV coefficients are assumed to be 
constant. Lima et al. (2016) used a hierarchical Bayesian GEV model for 
flood quantile estimates in which spatial dependency is captured by 
scaling the GEV parameters independently according to their drainage 
area, i.e., independent normal prior distributions are considered for the 
GEV parameters. Other authors have used the same approach to model 
extreme precipitation (Apputhurai and Stephenson, 2013; Steinsch-
neider and Lall, 2015). Ahn et al. (2017) introduced a hierarchical 
Bayesian model for regionalized seasonal forecasts where the spatial 
dependency is captured by modeling the probability distribution pa-
rameters with a multivariate Gaussian field. Bracken et al. (2018) and 
Sun et al. (2014) implemented a multivariate nonstationary Bayesian 
hierarchical model for hydrologic frequency analysis, in which the 
dependence between variables was captured by a Gaussian elliptical 
copula in the data layer. While these are very good approaches, some 
general issues remain - such as, limited ability to capture spatial de-
pendencies over the entire domain if GEV parameters are kept constant 
over homogeneous regions; estimation issues with Copulas as the 
domain size increases; inability to capture relationships between the 
parameters as each parameter is modeled separately in space; these 
work well for smaller spatial domains or fewer variables, but become 
computationally intensive and have convergence issues as the domain 
increases, to name a few. 

Our research in this paper is motivated by the need to address these 
issues and have the ability to obtain estimates of return levels and their 

uncertainties at ungauged locations. To this end, we propose a semi- 
Bayesian Hierarchical framework to model multi-site spatio-temporal 
variability of precipitation extremes. 

We demonstrate this framework by its application to extreme sum-
mer precipitation at 73 stations from the Southwest US- Arizona, New 
Mexico, Colorado, and Utah. The paper is organized as follows. In Sec-
tion 2, the framework, in general, is described. The application set up for 
the Southwest US extreme precipitation is then described, followed by 
the specific form of the model structure and fitting method in Section 3. 
The results are described in Section 4, and Section 5 presents a sumamry 
and discussion of the results. 

2. Proposed framework 

The proposed spatial–temporal multivariate semi-Bayesian hierar-
chical framework is comprised of three components: the model struc-
ture, the estimation strategy, and estimation of nonstationary return 
levels. 

2.1. General model structure 

In general, we wish to conduct a nonstationary frequency analysis of 
extreme precipitation at m locations over k years, and then use a spatial 
model that allows us to estimate return levels and their uncertainty over 
a grid or at stations with missing data. In this context, it is assumed that 
extreme precipitation series at each station follows a GEV distribution 
(Coles, 2001; Katz, 2013). The spatial dependence is captured through a 
spatial multivariate Gaussian process on the GEV parameters. The first 
layer of the hierarchical model structure, also known as the data layer, 
corresponds to the GEV distribution assumed at each location si and time 
point t which is 

Y(si, t) ∼ GEV(μ(si, t), σ(si, t), ξ(si, t) ), i = 1,…,m (1)  

where μ ∈ ( − ∞,∞) is the location parameter, σ > 0 is the scale 
parameter, and ξ ∈ ( − ∞,∞) is the shape parameter. Under the 
nonstationary assumption, distribution parameters can vary in space 
and time. Thus, the three GEV parameters could be modeled as functions 
of time-dependent large-scale climate variables, and regional mean 
covariates: 

μ(si, t) = αμ0(si) +
∑n

j=1
αμj(si)Zj(t), i = 1,…,m (2)  

log(σ(si, t) ) = ασ0(si) +
∑n

j=1
ασj(si)Zj(t), i = 1,…,m (3)  

ξ(si, t) = αξ0(si) +
∑n

j=1
αξj(si)Zj(t), i = 1,…,m (4)  

where αμ,ασ , and αξ are the regression coefficients, and Zj(t) is covariate j 
at the time t. log(σ) is modeled to ensure positive scale parameters. The 
regression coefficients are estimated using Maximum Likelihood (ML) 
approach (Katz et al., 2002). Specific choices for covariates in our data 
analysis will be discussed in Section 3.2. 

While in many studies, ξ is modeled as a single value per study area 
or per region within the study area (Apputhurai and Stephenson, 2013; 
Atyeo and Walshaw, 2012; Cooley et al., 2007; Renard, 2011), others 
consider that this parameter varies spatially along with the other GEV 
parameters, but considering a specific range of variation for it (Bracken 
et al., 2016; Cooley and Sain, 2010). Here, because we are interested in 
capturing the correlation between GEV parameters, no a priori restric-
tion on its domain is imposed. 

The Bayesian formulation starts in the process layer, which is the 
second layer of the hierarchy, assumes a multivariate spatial Gaussian 
process for the GEV regression coefficients obtained via ML as 
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mentioned above. Compared to a univariate spatial Gaussian process (e. 
g., Yan and Moradkhani, 2015; Sun et al., 2014), this process can ac-
count for cross-correlation in the regression coefficients. The covariates 
selected for modeling the GEV parameters in the first level exhibit 
spatial correlation, thus, the GEV regression coefficients are likely to be 
correlated. Therefore, the multivariate spatial Gaussian Process formu-
lation is appropriate and general, regardless of the strength of the spatial 
correlation. Thus, the GEV regression coefficients at the location si are 
modeled as 

α
(
si
)
= βT X

(
si
)
+w

(
si
)
+∊

(
si
)

(5)  

where α(si) = [αμ(si),ασ(si),αξ(si)] is a vector of 3(n+1) × 1 GEV 
regression coefficients at the location si; ​ β = [βμ, βσ , βξ] is a matrix of 
4 × 3(n+1) spatial regression coefficients which are constant in space 
and time; X(si) is a 4 × 1 vector of regressors with the elements corre-
sponding to the unity, coordinates, and elevation at the location si; and 
w(si) and ∊(si) are vectors of 3(n+1) × 1 spatial and uncorrelated re-
siduals at location si, respectively. We assume the parameters can be 
defined through a latent multivariate process comprised of two com-
ponents: a spatial term, w, that follows a mean 0, stationary, anisotropic 
Gaussian process specification with a covariance function C, and inde-
pendent white-noise process, ∊. 

Considering m locations, we have that spatial and uncorrelated re-
siduals are 

w = [w(s1),w(s2),…,w(sm)]
T (6)  

∊ = [∊(s1), ∊(s2),…, ∊(sm)]
T (7) 

The spatial residuals vector, w, follows a MVN(0,Σs), where Σs is the 
mp × mp covariance matrix and p = 3(n + 1). The covariance matrix is 
defined as 

Σs =

⎡

⎣
C11 ⋯ C1p
⋮ ⋱ ⋮
Cp1 ⋯ Cpp

⎤

⎦ (8)  

where Ckl is a (m× m) cross-covariance matrix. When k = l, it corre-
sponds to a covariance matrix. We consider an exponential covariance 
function with parameters δ2

kl (the partial sill or marginal variance), ϕkl 
(the spatial decay parameter). The parametric form of the covariance 
and cross-covariance functions is 

Ckl
(
si, sj

)
= δ2

klexp
(
− ϕkl

⃦
⃦si − sj

⃦
⃦
)

(9) 

This specification is a particular type of multivariate Matérn 
(Gneiting et al., 2010); there are some restrictions on parameters that 
result in a valid, i.e., nonnegative definite covariance matrix, see 
Gneiting et al. (2010) or Apanasovich et al. (2012) for details. 

For the uncorrelated residuals, we have ∊ ∼ MVN(0,Σns), where Σns 
is mp × mp diagonal covariance matrix 

Σns =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

τ2
1I 0 ⋯ 0

0 τ2
2I ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ τ2

pI

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10)  

where τ2
k is the nugget effect related to the kth GEV regression coeffi-

cient, and I is a (m× m) identity matrix. 
A conceptual sketch of the spatial–temporal multivariate semi- 

Bayesian hierarchical framework is shown in Fig. 1 which shows the 
data layer (maximum likelihood estimation of the GEV regression co-
efficients) and the process layer (multivariate spatial Gaussian process 
for the GEV regression coefficients obtained in the data layer). 

Fig. 1. Conceptual sketch of the spatial–temporal multivariate semi-Bayesian hierarchical framework. θ
(
si, tj

)
=

[
μ
(
si, tj

)
, logσ

(
si, tj

)
, ξ
(
si, tj

) ]
.  
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2.2. Estimation strategy 

First, GEV regression coefficients of the data layer are estimated from 
Eqs. (1)–(4) using maximum likelihood. Then, the conditional posterior 
distribution of the spatial regression coefficients, β, and residuals pa-
rameters, δ2,ϕ, τ2, given maximum likelihood estimates (MLEs) of the 
GEV regression coefficients, α̂, which are assumed as the true values of 
the GEV regression coefficients, and spatial regressors X, are obtained 
using the multivariate Bayesian model. By Bayes’ rule, the posterior 
distribution is  

here term p
(
w
⃒
⃒δ2,ϕ

)
= fMVN(w|0,Σs); ​ fMVN(w|0,Σs) represents the 

probability density of a multivariate normal distribution with mean 0 
and covariance Σs (see Eq. 8); p(β) = fMVN(β|μβ,Σβ); ​ μβ and Σβ are the 
spatial regression coefficient estimates and their covariance matrix ob-
tained from a linear model fitting (Eq. 5) using maximum likelihood; 
p
(
δ2), p(ϕ), and p

(
τ2) are the priors of the other parameters, which 

based on Finley et al. (2015) are assumed to be independent and follow 
the following distributions 

δ2 ∼ invWishart(ν,S), ϕ ∼ Unif (ll,ul), τ2 ∼ InvGamma(κ, γ) (12)  

where ν and S are the degrees of freedom and scale matrix of the inverse- 
Wishart distribution; ll and ul are the lower and upper limits vectors of 
the uniform distribution; κ and γ are the shape and scale hyper- 
parameters vectors of the inverse-Gamma distribution. The term 
p
(

α̂
⃒
⃒β,w, τ2,X

)
is the likelihood of MLEs of the GEV regression co-

efficients, α̂, conditional on the dependence of the uncorrelated re-
siduals, the regression coefficients β = [βμ, βσ , βξ], and spatial residuals. 
The likelihood of α̂ is defined as a multivariate normal 

p
(

α̂
⃒
⃒β,w, τ2,X

)
= fMVN

(
α̂
⃒
⃒XT β + w,Σns

)
(13)  

where X is a known m × p matrix of spatial regressors. 

2.3. Nonstationary return levels 

According to Read and Vogel (2015), it is important to be clear when 
discussing nonstationary return levels and return periods since there are 
several definitions (Cheng et al., 2014; Salas and Obeysekera, 2014; 
Katz, 2013). For a stationary GEV distribution the return level, T, is 
defined as the p = (1 − 1/T)th quantile 

qp = μ+
σ
ξ
[( − logp)− ξ

− 1] (14) 

Here, we use the definition for nonstationary return levels provided 
by Cheng et al. (2014), which states that in a nonstationary setting when 
the GEV parameters may be time-varying, the return level can be 
computed at each year, which is known as the effective return level 

qp

(
t
)
= μ

(
t
)
+

σ(t)
ξ(t)

[( − logp)− ξ(t)
− 1] (15)  

3. Application 

The Southwest US region comprising of the four states -Arizona, New 
Mexico, Colorado, and Utah- is the hottest and driest region of the 
United States. Most of the precipitation arrives during the winter season, 
but the summer precipitation makes a significant contribution to the 

reliability of water resources and the health of ecology. However, 
summer precipitation and its extremes, over this region exhibit a high 
degree of spatial and temporal variability (Sheppard et al., 2002). We 
demonstrate the utility of our proposed framework presented in the 
previous section by its application to summer precipitation extremes at 
73 stations from this region. 

3.1. Precipitation data 

Daily summer, June through September, precipitation data were 
obtained from the Global Historical Climatology Network (GHCN) 

(Menne et al., 2012). We selected stations with a full record of data for 
the period 1964 to 2018 or those with no more than 10% of data missing 
or no more than three years of missing data in a row. This resulted in 73 
stations for which climatology of the extreme seasonal precipitation is 
shown in Fig. 2 along with an elevation grid. Summer season 3-day 
maximum precipitation was computed for each year at each station. 
For a station with missing year values, these values were substituted 
with the median value of the station. 

3.2. Covariates 

Some studies (Higgins et al., 1999; Mamalakis et al., 2018; McCabe 
et al., 2004) have shown that there is a weak statistical relationship 
between Southwest US summer precipitation and large-scale climate 
indices capturing drivers in tropical Pacific - El Nino Southern Oscilla-
tion (ENSO), Northern Pacific – Pacific Decadal Oscillation (PDO), and 
Atlantic – Atlantic Multidecadal Oscillation (AMO). Since our objective 
is to demonstrate our framework, we rely on these prior researches, and 
considered these large-scale climate indices as potential covariates, 
albeit with a somewhat weaker association, for the nonstationary GEV 
distribution in the framework. However, users can develop tailored 
covariates for their specific data to enhance model performance. 

For modeling the temporal nonstationarity of the GEV parameters 
(see Eqs. (2)–(4)), first, we considered summer season average ENSO 
and PDO indices, and the standardized spatial average of summer sea-
sonal precipitation (SASP) over the entire region as potential covariates. 
We obtained values of the multivariate ENSO index (MEI) (Wolter and 
Timlin, 1993; Wolter and Timlin, 1998; Wolter and Timlin, 2011) from  
http://www.esrl.noaa.gov/psd/enso/mei/. The PDO values (Zhang 
et al., 1997) were obtained from http://research.jisao.washington. 
edu/pdo/. The average summer season precipitation, SASP, was 
computed from the GHCN (Menne et al., 2012). 

We assess the strength of the relationship between the covariates and 
the summer precipitation extreme by computing the Spearman’s rank 
correlations, shown in Fig. 3. It can be seen that SASP exhibits significant 
correlation with summer precipitation extreme across at almost all the 
locations over the domain. However, ENSO and PDO indices present a 
weaker correlation with precipitation extremes and significant at only 
few locations. Previous studies mentioned earlier in this section inves-
tigated relationship between these indices and seasonal total precipita-
tion in this region and found them to stronger. But, from our analysis, 
the indices ride a weaker signature on the precipitation extremes. We 
selected the best nonstationary GEV model using total Akaike informa-
tion criteria (AIC) (Akaike, 1974) and total Bayesian information crite-
rion (BIC) (Schwarz, 1978). In this, the nonstationary model is fitted to 
the precipitation extreme at each location and the AIC and BIC values of 
all the individual location models are added to obtain the total AIC and 

p
(
β,w,δ2,ϕ,τ2

⃒
⃒α̂,X

)
∝p

(
α̂
⃒
⃒β,w,δ2,ϕ,τ2,X

)
⋅p
(
β,w,δ2,ϕ,τ2

⃒
⃒X

)
= p

(
α̂
⃒
⃒β,w,τ2,X

)
⋅p
(
w,δ2,ϕ

)
⋅p
(
τ2)⋅p(β)= p

(
α̂
⃒
⃒β,w,τ2,X

)
⋅p
(
w
⃒
⃒δ2,ϕ

)
⋅p
(
δ2)⋅p(ϕ)⋅p

(
τ2)⋅p(β)

(11)   
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BIC values. These are computed for a suite of candidate models with 
various combinations of the covariates and the model with the minimum 
total AIC or BIC is selected. 

For modeling the GEV regression coefficients spatially, we included 
covariates of latitude, longitude, and elevation. Covariates were ob-
tained at station locations and a 0.5-degree grid throughout the study 
area. We obtained the elevation data from the NASA Land Data Assim-
ilation Systems (NLDAS) (Xia et al., 2012) (https://ldas.gsfc.nasa.gov/ 
nldas/elevation). 

3.3. Model structure for the Southwest US 

For the structure of the model for the Southwest US, we incorporated 
the above covariates for spatial and temporal modeling. We model the 
location and scale parameters of the GEV at each location, nonsta-
tionary. Shape parameters are generally more variable, leading to 
convergence issues in ML estimation, thus, most studies in literature 

generally keep this stationary. Following this, the shape parameter was 
keep stationary at each location. Based on both, the total AIC and BIC 
values, shown in Table 1, the best model selected uses only SASP as 

Fig. 2. Climatology of the extreme seasonal precipitation for 73 precipitation stations and 0.5-degree elevation grid in (m) of the study area. The red square cor-
responds to the site of interest, considered in Section 4. 

Fig. 3. Spearman’s rank correlation coefficient between summer 3-day maximum precipitation and covariates: (left column) ENSO; (middle column) PDO; (right 
column) the standardized spatial average of seasonal total precipitation. Big circles indicate that the Spearman’s rank correlation is significant (P-value<0.1). 

Table 1 
Total AIC and BIC values for different sets of covariates. for each case the same 
covariates are considered for location and scale parameters, and the shape 
parameter is considered stationary.  

Covariates AIC BIC 

ENSO 33856.7 34589.4 
PDO 33858.9 34591.5 
SASP 33529.0 34261.7 
ENSO, PDO 33977.4 35003.2 
ENSO, SASP 33657.7 34683.5 
PDO, SASP 33672.4 34698.2 
ENSO, PDO, SASP 33672.4 34698.2  
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covariate to model the location and scale parameters. The next best 
model, though, includes ENSO. The priors on the spatial regression co-
efficients and residuals parameters used are: 

β ∼ MVN(μβ,Σβ) δ2 ∼ invWishart(ν, S)
ϕ ∼ Unif (ll,ul) τ2 ∼ InvGamma(κ, γ)

(16)  

where β(si) = [βμ, βσ , βξ], μβ and Σβ are the spatial regression coefficient 
estimates and their covariance matrix obtained from a linear model 
fitting (Eq. 5) on the maximum likelihood estimates of α, for each GEV 
regression coefficient separately. Based on the recommendations from 
Banerjee et al. (2004) and Cooley et al. (2007), informative priors were 
considered for the spatial residuals parameters, ϕ, δ2 , and non-
informative priors were considered for the uncorrelated residuals pa-
rameters, τ2. We set hyperparameter values of ϕ as ll = [0.2]6×1, ul =

[14]6×1, which corresponds to the range of distances for the domain 
considered here. 

For δ2, we set the priors based on sample variograms from the pre-
dicted residuals obtained from the linear model fitting on the maximum 
likelihood estimates of α̂, along with a exponential model which is 
consistent with the covariance and cross-covariance functions consid-
ered here (for more details see Cressie, 1993). Sample variograms are 
shown in Fig. 4. Thus, based on the exponential models fitted to the 
variograms, we considered the diagonal of the matrix S, which is (5× 5) 
matrix, equal to [36, 5,0.06,0.05,0.3] and ν = 6 (number of rows of S 
plus 1). Finally, we set the hyperpameter values of τ2 as κ = [1]6×1 and 
γ = [0.01]6×1. 

Note that the priors of both spatial regression coefficients and spatial 
residuals are assumed to be independent. We expect the model capture 
the correlation in these parameters if it exists in the posterior. This 
would not be possible with univariate spatial Gaussian process. Since the 
Bayesian formulation is only at the second level with the spatial model 
of the ML estimates, our model is semi-Bayesian and thus, the posteriors 
are conditional posterior distributions. With the conditional posterior 
distribution of spatial fields of the GEV parameters for each time, con-
ditional posterior distribution of the nonstationary space–time return 

levels of the precipitation extremes are obtained. 

3.4. Implementation and model fitting 

The model was implemented in R using the extRemes package (Gil-
leland and Katz, 2016) for the data layer and the spBayes package 
(Finley et al., 2015) for the process layer. The parameters of the 
nonstationary GEV parameters at each location were estimated via 
maximum likelihood. The spatial Bayesian multivariate model was fit 
using a Markov Chain Monte Carlo (MCMC) method, specifically, Gibbs 
sampling and random walk Metropolis steps (Robert and Casella, 2004). 
One chain of length 120,000 was run, with the first 60,000 iterations 
discarded as warmup, and a sample thinning factor of 12, resulting in 
5000 samples for each parameter. To assess convergence, trace plots 
were visually inspected, and also a Metropolis sampling acceptance 
percent above 80% was checked. 

3.5. Computation of return levels 

With the model fitted from the steps above, posterior distributions of 
each GEV parameter for each year are obtained at station locations or on 
the 0.5-degree grid by evaluating Eqs. (2)–(5). Thus, generated param-
eter values are used to compute nonstationary return levels at each 
station or grid point using Eq. (15). The steps for this procedure are as 
follows:  

1. Select a single conditional posterior sample of all model parameters 
(β,δ2,ϕ, τ2).  

2. Simulate spatial and nonspatial residuals, w and ∊.  
3. Compute regression coefficients for GEV parameters, Eq. (5).  
4. Compute GEV parameters at each location i and year t, Eqs. (2)–(4).  
5. Compute nonstationary return levels at each location i and year t, Eq. 

(15).  
6. Repeat steps 1–5 for each posterior sample. 

Fig. 4. Sample variograms from the predicted residuals obtained from the linear model fitting on the maximum likelihood estimates of the GEV regression co-
efficients, α. Solid lines represent the least squares estimation of the exponential model of the variogram. 
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3.6. Model comparison 

To highlight the advantages of our framework, we compare it with 
another model. The models are as follows: 

1. Semi-Bayesian univariate: A univariate nonstationary GEV distribu-
tion is fit to each location using MLE, where the location parameter is 
allowed to vary over time according to covariates specified in Section 
3.2. Then, the spatial dependence is captured through a spatial 
univariate Gaussian process on each GEV parameter.  

2. Semi-Bayesian multivariate: The spatial–temporal semi-Bayesian 
multivariate hierarchical framework described in this study. 

4. Results 

4.1. Model fits 

Fig. 5 shows the Q-Q plot, the empirical Probability Density Function 
(PDF) and the PDF of the nonstationary GEV distribution fitted, and time 
series of nonstationary of the MLE return levels for different return pe-
riods for the extreme summer precipitation at Pasamonte station in New 
Mexico (see Fig. 2). The empirical PDF in Fig. 5b is obtained by a kernel 
density estimator which smooths the histogram (e.g., Bowman and 
Azzalini, 1997). It can be seen that in general, model and sample 
quantiles fall close to the 1:1 line (Fig. 5a), and the fitted GEV distri-
bution captures the shape of the empirical PDF very well (Fig. 5b). 
However, there is an overestimation of the upper tail, i.e., high values. In 
Fig. 5c it can be seen that the nonstationary return levels capture the 

inter-annual variability of the observed precipitation extremes very 
well, in that, the return levels shift up and down in concert with the 
historical values. A similar or even better performance showed in Fig. 5 
was seen at all the other stations. 

Fig. 6 shows the conditional posterior median of the regression co-
efficients corresponding to the covariates for the location, shape, and 
scale parameters of GEV over the 0.5-degree grid from the 5000 simu-
lations. The median of the intercept of the location parameter (Fig. 6a) 
shows higher values in the eastern part of the region and lower in the 
western. This is consistent with the climatology of the seasonal extreme 
precipitation (see Fig. 2) – in that the western parts are arid and semi- 
arid and hence lower precipitation. The conditional posterior median 
of SASP coefficients of the location (Fig. 6b) is higher in the east, and it is 
positive over most of the region with small negative regions in the 
middle of the domain. This can be explained by the orographic effect due 
to the presence of the mountain ranges. The conditional posterior me-
dian for the intercept of log of the scale parameter (Fig. 6c) also shows 
similar spatial variability as the intercept of the location, indicating that 
regions with higher extreme rainfall have higher variability. The con-
ditional posterior median of SASP coefficients of log of the scale 
parameter (Fig. 6d) shows similar spatial variability as the SASP co-
efficients of the location, i.e., higher values in the east and regions with 
negative values in the middle of the domain. The conditional posterior 
median of the shape parameter (Fig. 6e) indicates heavy tail distribution 
(i.e. positive shape parameter) in the arid and semi-arid regions in the 
west part. However, its range of variation is small. 

Fig. 7 shows the scatter plots of the conditional posterior spatial 
regression coefficients β0,α1 

(intercept of α1) vs. β0,α0 
(longitude slope of 

Fig. 5. (a) Q-Q plot , (b) PDF of the GEV distribution fitting, and (c) time series of nonstationary of the MLE return levels for different return periods for extreme 
summer precipitation at Pasamonte station, NM. In panel (b), the data are first transformed to an appropriate standardized GEV scale. The empirical PDF is obtained 
by a kernel density estimator. In panel (c), the black line corresponds to the observed. 
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α1) for the semi-Bayesian univariate model (Fig. 7a) and semi-Bayesian 
multivariate model (Fig. 7b). It is seen that contrary to semi-Bayesian 
univariate model, semi-Bayesian multivariate model can capture the 
cross-correlation between spatial regression coefficients for different 
GEV regression coefficients even when we set up uncorrelated priors for 
them. The same feature was observed for other spatial regression 
coefficients. 

The same feature is observed for the residuals. This is shown in Fig. 8 
that displays Sample cross-variograms (for more details see Ver Hoef and 
Cressie, 1993) of αμ0 -αμ1 from the predicted residuals obtained from the 
linear model fitting on the maximum likelihood estimates (MLE) of the 
GEV regression coefficients (Fig. 8a), the conditional posterior residuals 
obtained from the semi-Bayesian univariate model (Fig. 8b), and the 
conditional posterior residuals obtained from the semi-Bayesian multi-
variate model (Fig. 8c). Solid lines represent the least squares estimation 
of the exponential model of cross-variogram. It is seen that for semi- 

Bayesian multivariate case, posterior residuals can capture the spatial 
cross-correlation between the residuals observed for the MLE case, the 
observed residuals in our case. This feature is not captured by the semi- 
Bayesian univariate model again. The same was observed for αμ0 –ασ0 

and αμ1 –ασ0 . 
Thus, by capturing cross-correlation between spatial coefficients and 

residuals with our framework is possible to obtain more consistent 
simulations of the GEV regression coefficients, and consequently, reduce 
the uncertainty of the extreme precipitation return levels estimates. 

4.2. Spatial variability of return levels 

To assess the ability of the model to capture the spatial patterns of the 
summer precipitation extremes, we present results of 2-year return 
levels along with the associated observations. Fig. 9 shows the spatial 
map of the conditional posterior median of the 2-year return level of 

Fig. 6. The conditional posterior median of the regression coefficients of GEV parameters over a 0.5-degree grid: (a) intercept of the location parameter, αμ0 ; (b) 
SASP coefficient of the location parameter, αμ1 ; (c) intercept of the log of the scale parameter, ασ0 ; (d) SASP coefficient of the log of the scale parameter, ασ1 ; and (f) 
shape parameter, αξ0 . 
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summer precipitation extremes along with the median of the observed 
extremes at the station locations and also for representative wet and dry 
years. Fig. 9a shows the conditional posterior median of the 2-year re-
turn level over all the years and the corresponding 95% credible interval 
width in Fig. 9b. The median of historical precipitation extremes at the 
stations – comparable to the posterior median of the 2-year return level - 
are shown in Fig. 9a as colored circles. It can be seen that the median 
values are lower in the arid and semi-arid western regions of the domain 
and higher in the eastern parts, which are consistent with the historical 
median values at the stations (the colors in the circles are consistent with 
that of the background from the simulations). The credible intervals 
widths do not show any spatial pattern. We selected a wet year (1997) in 
the record and show the conditional posterior median of the 2-year re-
turn level in Fig. 9c and the historical observed values at the stations are 
consistent with the simulations, more so in the western part of the 
domain. However, in the eastern part of the domain, with high precip-
itation, the simulations are slightly lower than the observations. The 
spatial pattern of the credible interval width (Fig. 9d) is similar to that in 
Fig. 9b. For a representative dry year (2001), the conditional posterior 
median of the 2-year return level and observed correspond very well 
(Fig. 9e) with a similar spatial pattern of credible interval width (Fig. 9f) 
to that of the simulations over the entire time domain (Fig. 9b). 

Fig. 10 shows the conditional posterior median of the 100-year re-
turn level of summer precipitation extreme and its 95% confidence in-
terval width. In Fig. 10a can be seen that this, too, shows a similar spatial 
pattern to that of the 2-year return level, i.e., higher precipitation in the 
east and lower in the west. This is consistent with the spatial pattern of 

the intercepts of the location and log of the scale parameters (see Fig. 6). 
As in the case of 2-year return levels, the credible intervals widths do not 
show any spatial pattern (Fig. 10b). 

4.3. Temporal variability of return levels 

To assess the performance of the temporal variability of the 
nonstationary framework, we compared them (semi-Bayesian multi-
variate model) to the return levels from the MLE estimates of the GEV 
coefficientes, which are consider as the true values in this case, and to 
those return levels from the semi-Bayesian univariate model. In Fig. 11 
we show the boxplots of the nonstationary 100-year return level for each 
year at Pasamonte station, NM from the semi-Bayesian univariate model 
(Fig. 11a) and the framework proposed here (semi-Bayesian multivar-
iate, Fig. 11b) along with those from the MLE estimates of the GEV co-
efficients (red line). The whiskers show the 95% credible intervals, the 
boxes the interquartile range, and the horizontal lines inside the boxes, 
the median. The nonstationary framework proposed here shows a sig-
nificant reduction in the uncertainty compared to the semi-Bayesian 
univariate model. This can be explained by the ability of the frame-
work proposed here to capture the cross-correlation between the spatial 
regression coefficients and between the spatial residuals (see Figs. 7 and 
8). So, this allow to preserve the cross-correlation at site of MLE esti-
mates of the GEV regression coefficients for each simulation of the 
coefficients. 

Fig. 7. Scatter plots of the conditional posterior spatial regression coefficients intercept of μ1 vs. intercept of μ0 for: (a) semi-Bayesian univariate model; (b) semi- 
Bayesian multivariate model. Correlation coefficient for the semi-Bayesian multivariate model is significant at a significance level of 0.01. 

Fig. 8. Sample cross-variograms of αμ0 –αμ1 from: (a) the predicted residuals obtained from the linear model fitting on the maximum likelihood estimates of the GEV 
regression coefficients; (b) the conditional posterior residuals obtained from the semi-Bayesian univariate model; (c) the posterior residuals obtained from the semi- 
Bayesian multivariate model. Solid lines represent the least squares estimation of the exponential model of the cross-variogram. 
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4.4. Cross-validation 

To test the out-of-sample predictability of the model, cross- 
validation was carried out by dropping 10% of the total stations (i.e., 
7 out of 73 stations), and the model was fit on the remaining 66 stations. 
Stations dropped are shown in Fig. 12 (red circles), and were chosen to 
represent distinct climatological behaviors, as well as geographical 
sampling. To quantify the skill in a prediction mode, we made two 
different predictions: at the dropped stations and spatial validations. 
First, we predict the distributions at the dropped stations, and randomly 
generated 5000 samples of extreme precipitation values at the dropped 
locations for each year. In this case, we created boxplots for the 7 sta-
tions dropped for the validation model dropping 10% of the data (subset 
data model) and observed data. Next, we generated predictive posterior 
distributions over the 0.5-degreed grid using this model based on subset 
data (66 stations), and subsequently, generated 5000 samples of 100- 
year returns level over the same grid according to the Section 3.5. We 

computed the difference between the median return level from the full 
data model (Fig. 10) and this subset data model. . 

Fig. 13 shows predicted summer precipitation extremes for the 
period (1964–2018) at stations dropped for the validation model drop-
ping 10% of the data for the semi-Bayesian univariate model (light gray 
boxes), semi-Bayesian multivariate model (gray boxes) and the observed 
data (yellow boxes). The distribution from the semi-Bayesian multi-
variate model captures the historical distribution quite well as the box 
and whiskers are comparable between the two, indicating acceptable 
predictability, offering prospects for this approach to be used in a pre-
dictive mode. Also, it shows a better performance in capturing the his-
torical distribution than the semi-Bayesian univariate model and a lower 
uncertainty. Overall, the same feature is seen for dry (2001) and wet 
(1997) year cases (Fig. 14). Station 5 shows the worst performance, but 
in general, the performance is acceptable for almost all the station 
(yellow circles fall into the boxes). 

Fig. 15 shows the difference between the conditional posterior 

Fig. 9. Conditional posterior median 2-year return level of extreme summer precipitation and the corresponding 95% confidence interval width for the whole record 
(a and b), a wet year (1997, c and d), a dry year (2001, e and f). Points in panels (a), (b), and (c) correspond to the median of the observed for the whole record, and 
the observed for wet and dry years, respectively. 
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median 100-year return levels from the full data model and the subset 
data model over the 0.5-degree grid. In general, the difference map does 
not show spatial patterns except for a bias in the south of Arizona. This 
bias can be caused by poor data in this region and that two of the stations 
dropped (stations 3 and 6) are located in this region. However, the 
differences are not high compared to the magnitude of 100-year return 
levels (Fig. 10), so the performance of the model could be considered 
well. 

5. Summary and discussion 

In this study, we presented a spatial–temporal multivariate semi- 
Bayesian hierarchical framework for conducting nonstationary fre-
quency analysis of precipitation extremes at ungauged locations. The 
framework assumes the marginal distribution of each location is a 
generalized extreme value (GEV) distribution, where the distribution 
parameters can vary in time as a function of covariates, whose co-
efficients are estimated via maximum likelihood. To get estimates at 
ungauged locations or over a grid, the spatial dependence is captured by 
modeling spatially the coefficients of the covariates at each station using 
spatial Gaussian multivariate processes. 

We applied this framework to conduct nonstationary frequency 
analysis of extreme summer precipitation at 73 stations from the 
Southwest US. This application incorporated large-scale climate indexes 
such as ENSO and PDO and the standardized spatial average of summer 
seasonal precipitation (SASP) over the region as potential covariates. 
Based on the lowest total AIC and BIC, we selected the best model which 

only considers SASP as covariate for the location and scale paremeters, 
and stationary shape parameter. We found that the multivariate semi- 
Bayesian approach can capture the cross-correlation between the 
spatial regression coefficients and the residuals, provided a robust esti-
mation of uncertainties of the return levels due to the spatial interpo-
lation compared to univariate semi-Bayesian model, and capture the 
spatial patterns of the observed data. 

In the application presented here, we only considered three potential 
covariates, and the shape parameter was assumed to be stationary for 
simplicity. However, Additional Skillful covariates can further improve 
the estimates of space–time variability. In the case of that, the frame-
work can be applied to a local scale, and local covariates can be included 
to capture well local patterns. 

The spatial modeling of the process level parameters by incorpo-
rating correlation among the parameters makes a new contribution. 
Besides, this correlation enables to reduce the parameter uncertainty 
related to the spatial interpolation. We recognize that the uncertainty 
captured by our model does not represent the total uncertainty, as we 
are employing the Bayesian framework on the ML estimates of the GEV 
coefficients. The uncertainty in the ML estimates is not captured 
explicitly. Of course, one could include this estimation in the first layer, 
inside of the Bayesian framework, to capture this additional uncertainty. 
However, over a large spatial domain such as the Southwest U.S., this 
makes the model computationally intensive and with no guarantees of 
convergence. The semi-Bayesian model presented here, makes this 
tradeoff to enable an efficient model capture most of the uncertainties. A 
fully Bayesian framework with efficient computational methods will be 

Fig. 10. Conditional posterior median 100-year return level of extreme summer precipitation along with the median of the observed (left) and median 100-year 
return level of 95% confidence interval width of extreme summer precipitation (right). 

Fig. 11. Nonstationary 100-year return levels from (a) the semi-Bayesian univariate model (b) the semi-Bayesian multivariate model of extreme summer precipi-
tation at Pasamonte station, NM. Red line corresponds to the nonstationary 100-year return levels from the MLE estimates of the GEV regression coefficients. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a natural extension. 
The model performance skill will be dependent on the strength of the 

temporal covariates in their association with the variability of the ex-
tremes field. In the application here, we were motivated by our ongoing 
research on the summer precipitation over southwest US. It is generally 
known that the summer precipitation and the extremes in this region 
exhibits high degree of variability and weaker connection with large 

scale forcings compared to their winter counterpart. However, the user 
can develop tailored covariates to their application. If the covariates are 
lagged in time (say a season head), this modeling framework can be used 
to provide projections of seasonal extremes that will be of help in 
operational planning and management of natural resources ahead of the 
active season of extremes. Furthermore, with multi-decadal projections 
of the covariates, say under a global warming scenarios, projections of 

Fig. 12. stations dropped (7) for the cross-validation (red circles) and the subset data (66 stations) using to fit the model (gray circles). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Predicted extreme summer precipitation 
(1964–2018) at 10% random leave-out stations for 
the validation model dropping 10% of the data for 
the semi-Bayesian univariate model (light gray 
boxes), semi-Bayesian multivariate model (gray 
boxes), and observed data (yellow boxes). The 
whiskers show the 95% credible intervals, the boxes 
the interquartile range, and the horizontal lines in-
side the boxes, the median. (For interpretation of the 
references to colour in this figure legend, the reader 
is referred to the web version of this article.)   
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climate extremes for these scenarios can be made, for use by policy 
makers. Extensions of this framework to other fields of extremes such as 
streamflow, temperature, pollution concentrations in space etc., and to 
threshold exceedances, can be easily enabled. 
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Appendix A. Abbreviations and acronyms  

PDF Probability Density Function 
GEV Generalized extreme value 
ML Maximum likelihood 
MLE Maximum likelihood estimates 
AIC Akaike information criteria 
BIC Bayesian information criterion 
MCMC Markov Chain Monte Carlo 
GHCN Global Historical Climatology Network 
ENSO El Nino Southern Oscillation 
PDO Pacific Decadal Oscillation 
AMO Atlantic Multidecadal Oscillation 
SASP Standardized spatial average of summer seasonal precipitation 
MEI Multivariate ENSO Index 
NLDAS NASA Land Data Assimilation Systems  
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