
Improving Particle Filter Performance by Smoothing Observations

GREGOR ROBINSON, IAN GROOMS, AND WILLIAM KLEIBER

Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado

(Manuscript received 17 November 2017, in final form 12 May 2018)

ABSTRACT

This article shows that increasing the observation variance at small scales can reduce the ensemble size

required to avoid collapse in particle filtering of spatially extended dynamics and improve the resulting un-

certainty quantification at large scales. Particle filter weights depend on how well ensemble members agree

with observations, and collapse occurs when a few ensemble members receive most of the weight. Collapse

causes catastrophic variance underestimation. Increasing small-scale variance in the observation error model

reduces the incidence of collapse by de-emphasizing small-scale differences between the ensemble members

and the observations. Doing so smooths the posterior mean, though it does not smooth the individual en-

semble members. Two options for implementing the proposed observation error model are described. Taking

a discretized elliptic differential operator as an observation error covariance matrix provides the desired

property of a spectrum that grows in the approach to small scales. This choice also introduces structure

exploitable by scalable computation techniques, including multigrid solvers and multiresolution approxi-

mations to the corresponding integral operator. Alternatively the observations can be smoothed and then

assimilated under the assumption of independent errors, which is equivalent to assuming large errors at small

scales. The method is demonstrated on a linear stochastic partial differential equation, where it significantly

reduces the occurrence of particle filter collapse while maintaining accuracy. It also improves continuous

ranked probability scores by as much as 25%, indicating that the weighted ensemble more accurately rep-

resents the true distribution. The method is compatible with other techniques for improving the performance

of particle filters.

1. Introduction

Particle filters are a class of ensemble-basedmethods

for solving sequential Bayesian estimation problems.

They are uniquely celebrated because of their prov-

able convergence to the correct posterior distribution

in the limit of an infinite number of particles, with

minimal constraints on prior and likelihood structure

(Crisan and Doucet 2002). Processes that are nonlin-

ear and non-Gaussian can be filtered in this flexible

framework, with rigorous assurances of asymptotically

correct uncertainty quantification. These advantages

stand in contrast to ensemble Kalman filters that lack

convergence guarantees for nonlinear or non-Gaussian

problems, and to variational methods that provide a

point estimate but do not quantify uncertainty in the

common case where the Hessian of the objective is

unavailable.

The simplest form of a particle filter is descrip-

tively called sequential importance sampling (SIS).

We briefly describe the algorithm here to fix notation

and terminology, and recommend Doucet et al. (2001)

for a gentler introduction.

SIS begins by approximating the prior probability dis-

tribution with density p(xj21) at discrete time j2 1 as a

weighted ensemble of Ne members f[x(i)j21, w
(i)
j21]g, where

the weights w
(i)
j21 are related to the prior probabilities

of the corresponding states x
(i)
j21. The superscript (i) in-

dexes the collection of particles, and the sum of the

weights is one. This kind of approximation, an impor-

tance sample, is an ensemble drawn from one distribu-

tion that is easy to sample and then reweighted to

represent another distribution of interest.

The distribution of interest here is the Bayesian

posterior at discrete time j, which is proportional

to the product of the prior p(xj21) at time j2 1,

the transition kernel p(xjjxj21), and the likelihood

p(yjjxj). SIS evolves the samples from time j2 1 to

time j according to a proposal kernel that takes the

generic form p[x
(i)
j jx(i)0:j21, yj]. The weights are updated

to reflect the difference between the proposal kernel and

the Bayesian posterior at time j:Corresponding author: Ian Grooms, ian.grooms@colorado.edu
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The proposal kernel is often set to equal the transition

kernel, which simplifies the ratio in (1) so that the

weights are proportional to the likelihood: wi
j }wi

j21 � p5
[yjjx(i)j ]. The proportionality constant is chosen so that the

weights sum to one. [Some authors, e.g., van Leeuwen

(2010), integrate out dependence on xj21; we instead fol-

low the convention of Doucet et al. (2001).]

Despite its attractive qualities, particle filtering is

unpopular in meteorological applications because of an

especially vexing curse of dimensionality. The problem

is that the importance sampling weights associated with

system replicates (particles) have a tendency to develop

degeneracy as the system dimension grows. That is to

say, a single particle near the observation will have es-

sentially all the sampling weight while the rest of the

particles, bearing effectively zero weight, are ignored in

the computation of ensemble statistics.

One can quantify the degree of degeneracy with an

effective sample size (ESS), which is a heuristic mea-

surement of the importance sample quality defined as

ESS
j
5

1

�
Ne

i51

w
(i)
j

h i2 . (2)

The ESS ranges from one if a single weight is nonzero

(which is the worst case), toNe if all weights are equal. If

the effective sample size becomesmuch smaller than the

ensemble size, the filter is said to have collapsed. A

simple approach to combat collapse is to resample the

particles from time to time, eliminating particles with

low weight and replicating particles with high weights.

There are several common approaches to resampling

(e.g., Doucet and Johansen 2011), and by construction

of this resampling step, all weights become uniform:

w
(i)
j / 1/Ne [see also the more recent resampling al-

ternatives in Reich (2013) and Acevedo et al. (2017)].

The term ‘‘particle filter’’ commonly implies an SIS

filter with a resampling step, also known as sequential

importance resampling (SIR).

SIR particle filters are guaranteed to converge to the

correct Bayesian posterior in the limit of an infinite num-

ber of particles, but the rate of convergence can be pro-

hibitively slow for high-dimensional problems. The

number of particles required to avoid collapse is typi-

cally exponential in a quantity related to the number of

observations, as described by Bengtsson et al. (2008) and

Snyder et al. (2008). For example, consider a system with

Gaussian prior on xj and with likelihood, conditional on xj:

y
j
jx

j
;N (Hx

j
,R) , (3)

where N (m, S) denotes a multivariate normal distribu-

tion with mean m and covariance S, H is a linear obser-

vation operator, and R is the covariance of the additive

observation error. For this example Snyder et al. (2008)

show that the number of particles Ne required to avoid

collapse is on the order of exp(t2/2), where

t2 5 �
Ny

k51

l2
k

�
3

2
l2
k 1 1

�
, (4)

in which Ny is the dimension of the observations and

l2
k are eigenvalues of

cov(R21/2Hx
j
) . (5)

Chorin and Morzfeld (2013) also discuss the notion of

‘‘effective dimension’’ and how it relates to particle filter

performance. Agapiou et al. (2017) give precise, non-

asymptotic results on the relationship between the ac-

curacy of the particle filter, the number of particles, and

the effective dimension of the filtering problem in both

finite- and infinite dimensional dynamical systems. For

simplicity of exposition we rely on the formulas quoted

here from Snyder et al. (2008) and Snyder et al. (2015).

A number of methods developed to minimize de-

generacy in high-dimensional problems utilize a pro-

posal kernel that is different from the transition prior,

using observations to guide proposals. Of all possible

proposals that depend only on the previous system state

and the present observations, there exists an optimal

proposal that minimizes both the variance of the weights

and the number of particles required to avoid de-

generacy (Doucet et al. 2000; Snyder et al. 2015). It is

typically impractical to sample from that optimal pro-

posal. The various methods proposed to minimize

weight degeneracy in practice include the implicit par-

ticle filter (Chorin and Tu 2009; Chorin et al. 2010;

Chorin and Tu 2012; Morzfeld et al. 2012), and the

equivalent weights particle filter (van Leeuwen 2010;

Ades and van Leeuwen 2013, 2015). Snyder et al. (2015)

have shown that improved proposals can reduce the

number of particles required to avoid collapse, but the

number is still prohibitive for meteorological applica-

tions. Another approach to improving the performance

of particle filters uses ‘‘localization.’’ Localization re-

duces the effective number of observations (and there-

fore the required number of particles) by breaking the

assimilation into a sequence of smaller subsets. Locali-

zation can also improve the performance of particle

filters (Penny and Miyoshi 2016; Rebeschini and Van

Handel 2015; Poterjoy 2016; Morzfeld et al. 2017), but
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breaks convergence guarantees. Other methods im-

prove the filter results by making the observation error

model state dependent (Okamoto et al. 2014; Zhu

et al. 2016).

This paper describes a different but compatible ap-

proach for improving the dimensional scaling of particle

filters by smoothing observations before proceeding

as though the observations are uncorrelated; equiva-

lently, we increase the small-scale variance in the error

model. The goal of doing so is to achievemore desirable

dimensional scaling. Whereas changing the proposal

kernel allows particle filtering to sample a given pos-

terior more efficiently, manipulating the observation

model changes the posterior itself. This may seem to

vitiate convergence guarantees at least as badly as lo-

calization does. After all, it is possible that localized

particle filters and EnKFs converge to some distribu-

tion in the large ensemble limit. However, convergence

results are still an open problem for EnKFs and local-

ized particle filters. In any case, the limiting distribution

of a localized filter is not the true Bayesian filter, and the

nature of the bias in the limiting distribution is un-

known. By contrast, we can guarantee convergence to a

surrogate distribution with bias that can be described

and controlled.

The key insight motivating our approach is evident in

(5): increasing the observation error variance for any

eigenvector of R correspondingly decreases the number

of particles required. The challenge is to make the

problem less expensive to sample with a particle filter,

while still accurately incorporating observations on the

most physically relevant large scales. This paper de-

scribes an analytically transparent and computationally

efficient method that reduces the number of particles

required to avoid collapse by increasing the observation

error variance at small scales.

2. Theory

In this section we develop intuition by considering the

observation error model in (3) in the special case where

R and cov(xj) are Fourier diagonalizable and H 5 I.

Writing eigenvalues of R as g2
k with k an integer wave-

number from 1 to Ny, and the eigenvalues of cov(xj) as

s2
k, the matrix in (5) has the following eigenvalues:

l2
k 5s2

k/g
2
k . (6)

The effects of aliasing complicate the Fourier-scale

analysis of filtering when observations are not avail-

able at every grid point, especially when the obser-

vation grid is irregular (Majda and Harlim 2012,

chapter 7).

Recall from the introduction that Snyder et al.’s es-

timate in (4) of the ensemble size required depends on

the system covariance, the observing system, and the

observation error covariance. Let us ground the theo-

retical discussion with general comments about the

nature of these quantities in operational numerical

weather prediction. Typically the model physics are

reasonably well known and held fixed, so we take cov(xj)

to be given.1 The observing system, like the dynamical

model, is typically given and fixed. The observation er-

ror covariance, contrasting both the dynamical model

and the observing system, is often a crude heuristic ap-

proximation that is easier to modify. Observation error

is frequently taken to have no spatial correlation, for

example R } I in the case of distant identical ther-

mometers, in which case {gk} are constant. Otherwise,

the observation error may have strong spatial correla-

tions, as may be expected of satellite observations

biased by a spatially smooth distribution of unobserved

atmospheric particulates, in which case gk / 0 rapidly

for large k.

a. Impact of observation error model on number of
particles required

The following hypothetical examples demonstrate

how the observation error model can affect the number

of particles required for particle filtering. We first use

Snyder’s asymptotic arguments to estimate the particle

filter ensemble size required to reconstruct a Bayesian

posterior with a correlated observation error model,

whose realizations are continuous with probability one,

and contrast this with the ensemble size required under

the approximation that observation errors are spatially

uncorrelated. Making this approximation decreases the

particle filter ensemble size required to reconstruct the

Bayesian posterior. This progression is designed to set

the stage for our method; we show that using a peculiar

choice of R, possessing a growing spectrum, naturally

extends the approximation of correlated errors with

uncorrelated errors. Our method decreases the number

of particles required to approximate the posterior re-

gardless of whether the true errors are correlated or

uncorrelated.

1 One can in principle design physical models to make an as-

similation problem more tractable to a particle filter, homologous

to the approach we describe that alters the observation model. We

do not consider that in this article because the theory scantly differs

and the praxis is much more problem dependent. The related

representation errors, arising from a mismatch between the length

scales resolvable by the numerical model and the length scales

present in the observations, are difficult to quantify but are pre-

sumably spatially correlated.

AUGUST 2018 ROB IN SON ET AL . 2435



Fields whose correlations gradually decrease with dis-

tance have decaying spectra (i.e., g2
k / 0 at small scales).

This has a detrimental effect on the effective dimen-

sionality of the problem. Suppose, for example, that ob-

servation error variances g2
k 5 k24 and system covariances

s2
k 5 k22. Then eigenvalues of (5) are l2

k 5 k2 and

t2 ’

ðNy

1

k2

�
3

2
k2 1 1

�
dk;

3

10
N5

y , (7)

where the sum in (4) has been approximated by an

integral. In this example the effective dimensionality

of the problem increases extremely rapidly as the

number of observations grows. A similar argument

can be used to show that if s2
k decays sufficiently faster

than gk at small scales (large k), then the effective

dimensionality of the system remains bounded in the

continuum limit.

When the spatial correlation of the observation error

is unknown, it is not uncommon to use a spatially un-

correlated (i.e., diagonal) observation error model. This

approximation is also popular because it is computa-

tionally convenient in ensemble Kalman filters, where it

enables serial assimilation (Houtekamer and Mitchell

2001; Bishop et al. 2001; Whitaker and Hamill 2002).

For observations with correlated errors, such as swaths

of remotely sensed data, approximating the errors as

spatially uncorrelated changes the posterior relative

to a more accurate observation error model with cor-

relations; the approximation seems to work well enough

in practice. The spatially uncorrelated approximation,

compared to error models with continuous realizations,

also makes particle filtering easier. When the error is

spatially uncorrelated, g2
k does not decay to zero at

small scales. Repeating the asymptotic argument in

the preceding paragraph with constant g2
k 5 1 implies

l2
k 5k22, so

t2 ’

ðNy

1

k22

�
3

2
k22 1 1

�
dk;

3

2
(8)

in the continuum limit. This illustrates that the number

of particles required to avoid collapse can be signifi-

cantly reduced by changing the spatial correlations in

the observation error model, and in practice the filter

results are still acceptably accurate.

Our proposal is take this approximation a step further:

we let observation error covariance grow without bound

in the progression to small scales. This model of the

observation error, possessing a spectrum bounded away

from zero, is called a generalized random field (GRF)

and has peculiar properties described in the appendix.

Despite those peculiarities of GRFs that complicate

analysis of the continuum limit, the finite-dimensional

vector of observational errors can be treated as a mul-

tivariate Gaussian random vector.

In sections 2b and 2c, we discuss the impact of this

observation error model on the posterior, and various

numerical methods for constructing and implementing

the associated particle filter. We find the theory to be

more intuitive in terms of this covariance framework

than working with smoothing operators, but section 2c

will make the equivalence precise.

b. Effect of a generalized random field likelihood
on posterior

The performance advantage, described above, does

not come for free. Changing the observation error

model changes the posterior. To demonstrate how our

choice of error model affects the posterior, consider

again a fully Gaussian system for which the system

covariance cov(xj) has the same eigenvectors as the

presumed observation error covariance R, and where

the observation operator is the identity. Let s2
k be ei-

genvalues of cov(xj) and g2
k be eigenvalues of R, in-

dexed by k in the diagonalizing basis with index k

increasing toward small scales. Let x̂k and ŷk denote the

projection of the prior mean and observations onto the

kth eigenvector, respectively. Then the posterior mean

of p(x̂kjŷk) is

x̂
k
1

s2
k

s2
k 1 g2

k

(ŷ
k
2 x̂

k
) . (9)

In order for the posterior mean to be accurate at large

scales, it will be necessary to design an observation error

model with realistic variance at large scales; we return to

this point in section 2c. Clearly, if g2
k /‘ at small scales

then the posterior mean will equal the prior mean at

small scales. If the filter tends to ignore small-scale in-

formation, then the small-scale part of the prior mean

will eventually tend toward the climatological small-

scale mean, which is often zero since climatological

means are often large scale. This observation error

model can, therefore, be expected to have a smoothing

effect on the posterior mean.

This is the price to be paid for reducing the effective

dimensionality of the system, but the price is not too

high. Small scales are inherently less predictable than

large scales, so loss of small-scale observational in-

formation may not significantly damage the accuracy of

forecasts. Practical implementations will need to bal-

ance between ignoring enough observational informa-

tion to avoid particle collapse and keeping enough to

avoid filter divergence (i.e., the filter wandering away

from the true state of the system).
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In the same example as above, the eigenvalues of the

posterior covariance are

j2k 5
s2
kg

2
k

s2
k 1 g2

k

.

As noted above, in order for the posterior variance to

be accurate at large scales, it will be necessary to de-

sign an observation error model with realistic vari-

ance at large scales. At small scales we argue that j2k is

small (using the notation � 1) regardless of the be-

havior of g2
k. This is because the state x is associated

with a viscous fluid model whose solutions should be

continuous. A GRF error model with 1 � g2
k will lead

to a posterior variance close to the prior variance at

small scales: j2k ’s2
k � 1. A more realistic error model

with g2
k � 1 will lead to a much smaller posterior

variance, but in either case j2k � 1 This argument

suggests that the GRF approach should not have a

detrimental effect on the posterior variance when

applied to atmospheric or oceanic dynamics, provided

that the observation error variance at large scales is

realistic.

c. Constructing GRF covariances

In the context of an SIR particle filter using the

standard proposal with a nonlinear observation error

model of the following form:

y
j
5H(x

j
)1h

j
,

where hj ;N (0, R) is the observation error, the in-

cremental weights are computed using

w
(i)
j }w

(i)
j21 exp

�
2
1

2
y
j
2H(x

(i)
j )

h iT
R21 y

j
2H(x

(i)
j )

h i�
.

The goal of this section is to describe two methods for

defining an observation error covarianceR that have the

increasing variance prescribed above, and that allow for

rapid computation of the weights. First, we will suppose

that the true observation error variance is known, and

we will scale it out so that we are dealing only with the

error correlation matrix. If R0 is a diagonal matrix with

elements that are the observational error variances, then

we will let

R5R1/2
0 CR1/2

0 ,

and we will model the matrix C.

There is a well-known connection between station-

ary Gaussian random fields and elliptic stochastic

partial differential equations (Rue and Held 2005;

Lindgren et al. 2011) that allows fast approximation of

likelihoods. Specifically, the inverse of the covariance

matrix of a discretized random field can in some cases

be identified with the discretization of a self-adjoint

elliptic partial differential equation (PDE). The con-

nection extends in a natural way to generalized Gaussian

random fields, with the caveat that the covariance

matrix rather than its inverse is identified with the

discretization of an elliptic PDE. For example, the

matrix C can be constructed as a discretization of

the operator

(12 ‘2D)k , (10)

in which D is the Laplacian operator, ‘. 0 is a tuning

parameter with dimensions of length, and k. 0 controls

the rate of growth of eigenvalues. Both the continuous

differential operator and its discretization have positive

spectra with eigenvalues growing in wavenumber. The

parameter ‘. 0 controls the range of scales with ei-

genvalues close to 1. For length scales longer than ‘ the

eigenvalues are close to 1 and the observation error

model is similar to the commonly used diagonal, un-

correlated observation error model. The large-scale

observation error is correct, meaning that the posterior

will also be correct at large scales. For length scales

smaller than ‘ the observation error variance grows at a

rate determined by k, rapidly rolling off the influence of

small scales.

Taking thematrixC to be a discretization of an elliptic

PDE permits efficient application of the inverse, as re-

quired in computing the weights, by means of sparse

solvers. It is also possible to constructC21 directly as the

discretization of the integral operator that corresponds

to the inverse of this PDE, also enabling fast algorithms

that have no limitation to regular observation grids.

These kinds of methods will be explored more fully

elsewhere.

An alternative to the PDE-based approach for mod-

eling C is to simply smooth the observations. Let the

smoothing operator be a matrix S, and the smoothed

observations be denoted ys. Then the observation

model,

y
s
5SR21/2

0 y
j
5SR21/2

0 H(x
j
)1h

s
,

where the smoothed observation errors are assumed to

have independent, unit-variance errors, implies incre-

mental importance weights of the following form:

w
(i)
j }w

(i)
j213 exp

�
2

1

2
y
j
2H(x

(i)
j )

h iT
R21/2

0 STSR21/2
0

3 y
j
2H(x

(i)
j )

h i�
.
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If a smoothing operator S is available, our proposed

method is therefore equivalent to settingC215 STS. As

long as the smoothing operator leaves large scales nearly

unchanged while attenuating small scales, the impact on

the effective sample size and on the posterior will be as

described in the foregoing subsections. If it is possible to

construct S to project onto a large-scale subspace, it

would be equivalent to setting certain eigenvalues of the

observation error covariance to infinity.

3. Experimental configuration

To illustrate the effects of a GRF likelihood in a

simple example, we apply an SIR particle filter to a

one-dimensional linear stochastic partial differential

equation:

du

dt
5

�
2b2 c

d

dx
1 y

d2

dx2

�
u1F

t
, (11)

where b, c, y 2 R1 are constant scalars and F is a time-

dependent stochastic forcing that is white in time and

correlated in space with a form described below. The

domain is periodic, with length 2p. Such models have

been used to test filtering algorithms by Majda and

Harlim (2012). In Fourier space, this model can be

represented as the Itô equation:

dû52(b1 ikc1 yk2)û dt1 z dW , (12)

where û is the Fourier coefficient at wavenumber k, z

is the noise amplitude, and dW is a standard circularly

symmetric complex white noise. The coefficients are

b 5 1, c 5 2p, and y 5 1/9. To mimic turbulence in

many physical models, we choose a stochastic forcing

Ft that decays linearly for large wavenumbers. Spe-

cifically, let

z2 5 1/(11 jkj) , (13)

such that the variance of the noise is one-half of its

maximum at wavenumber 1. This configuration in

(11)–(13) is chosen to possess a fairly limited range of

active wavenumbers so that the particle filtering prob-

lem is tractable.

The model admits an analytical solution to which we

can compare experimental results. Since the dynamic is

linear and Fourier coefficients are independent, it fol-

lows that each Fourier mode evolves as an Ornstein–

Uhlenbeck process independent of all other modes.

This means we can efficiently propagate the system

by sampling directly from the Gaussian distribution

available in closed form for each Fourier coefficient

(Øksendal 2003):

û
t1Dt

5 û
t
e2ukDt 1 z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 e22ur,kDt

2u
r,k

s
x
t
, (14)

where uk5 d1 ikc1 yk2, ur,k is the real part of uk, and xt
is a standard circularly symmetric complex normal ran-

dom variable. The initial condition for the experiment is

drawn from the stationary distribution, obtained as the

limit Dt / ‘ in (14), which for each wavenumber is a

circularly symmetric complex normal random number

of mean zero and standard deviation 1/[2(11 jkj)ur,k]1/2.
A particular solution, hereafter called the ‘‘true

system state’’ solution is computed at 2048 equally

spaced points in the 2p-periodic spatial domain, and at

101 equally spaced points in the time interval [0, 4] (the

initial condition being at t 5 0). From this solution,

synthetic observations are generated at every 32nd

spatial location (except as otherwise noted) by adding

samples from a stationary zero-mean multivariate

normal distribution with variance 0.36 and correlations

of the form exp(2jd/0.06j), where d is the distance be-

tween observations. There are thus 64 3 100 total ob-

servations (there are no observations of the initial

condition).

The standard deviation of the observational error is

0.6, while the pointwise climatological standard devia-

tion of the system is about 0.8. This is a very high ob-

servational noise level; we set the observational noise

this high because the theoretical estimates of the re-

quired ensemble size are extremely large for smaller

observational noise. Observational noise levels in me-

teorological applications are not usually this high rela-

tive to the climatological variability of the system.

Despite this high level of noise, the observing system is

dense enough in space and time that the filter is able to

recover an accurate estimate of the system.

The GRF observation error covariance, used only for

assimilation, is constructed as the periodic tridiagonal

matrix formed by the second-order-centered finite-dif-

ference approximation to the operator 0:36(12 ‘2›2x).

The diagonal elements (the observation error variance)

are all 0:36[11 2(‘/d)2], where d is the distance between

observations; the elements corresponding to nearest-

neighbor covariances are all 0:36[12 (‘/d)2]. When

‘5 0, the observation error covariance is diagonal. The

local observation error variances increase when ‘ in-

creases, and the nearest-neighbor covariances decrease

and can even become negative. The eigenvectors of

this matrix are discrete Fourier modes. When ‘ in-

creases, the variance increases for all Fourier modes

except the constant mode, which remains at this baseline

variance of 0.36. Experiments are run with 101 values

of ‘2 equally spaced in the interval [0, 1]. The GRF
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observation error covariance is not used to generate the

synthetic observations.

Assimilation experiments are run with an SIR particle

filter to test how the GRF observation error model im-

pacts its performance. An ensemble size of Ne 5 400 is

used, except as noted otherwise. The SIR particle filter is

configured to resample using the standard multinomial

resampling algorithm in Doucet et al. (2001). The ESS is

tracked before resampling. Resampling reduces the in-

formation content of the ensemble by eliminating some

particles and replicating others; to avoid unnecessary

loss of information, resampling is only performed when-

ever the ESS falls below Ne/2.

Two quantities are used to evaluate the effect of the

GRF error model on the particle filter’s performance.

The first is the root-mean-square error (RMSE) be-

tween the particle filter’s posterior mean and the true

system state, where the mean is taken over the spatial

domain. The second is the continuous ranked proba-

bility score (CRPS; Hersbach 2000; Gneiting and

Raftery 2007). This measures the accuracy of the pos-

terior distribution associated with the particle filter’s

weighted ensemble. The score is nonnegative; a score

of zero is perfect, and smaller scores are better. It is

more common to compare the RMSE to the ensemble

spread, a function of the ensemble covariance trace

(Fortin et al. 2014), but the CRPS is a more precise way

to describe the quality of a probabilistic estimate. The

CRPS is computed at every point of the spatial and

temporal grid of 2048 3 100 points. We compute the

CRPS for a range of different Ny 2 (16, 32, 64, 128) in

order to probe the effects of changing the number of

observations. All assimilation runs with the sameNy use

the same observations.

We will gauge particle filter performance with the

GRF likelihood by comparing it to the reference case

of a particle filter computed using a spatially uncorre-

lated likelihood. In some cases we will also want

to compare the particle filter estimate to the true

Bayesian posterior. Though one of the main reasons

for using a particle filter is that it works in nonlinear,

non-Gaussian problems, a benefit of experimenting

with a linear Gaussian problem is that the exact solu-

tion to the optimal filtering problem can be computed

for this comparison using the Kalman filter. In particu-

lar, the Kalman filter provides the exact posterior

covariance Pk:

K
k
5P

kjk21
HT(R1HP

kjk21
HT)21

P
k
5 (I2K

k
H)P

kjk21
,

which allows us to estimate the number of particles

required to avoid filter degeneracy a priori (without

running the particle filter) using (4) and (5). The prior

covariance at time k is denoted Pkjk21 in the above

formulas.

4. Results

We compute t2 from the Kalman filter results at

t 5 4, the end of the assimilation window. This gives

an approximation to the steady-state filtering problem

because the posterior covariance converges exponen-

tially to a limiting covariance (Chui and Chen 2009).

This process is repeated for each of 11 ‘2 values line-

arly distributed between 0 and 1 and the results are

plotted in the first panel of Fig. 1. Note that the ‘2 5 0

case is a spatially uncorrelated observation error

model. We observe a dramatic reduction in the theo-

retical number of particles required to avoid filter

collapse. The theory of Bengtsson et al. (2008)

and Snyder et al. (2008) predicts that the spa-

tially uncorrelated noise model requires on the order of

1026 particles to avoid collapse in this simple one-

dimensional PDE with 2048 Fourier modes. As ‘2 in-

creases from 0 to 1, the number of required particles

drops rapidly to about 8000. In fact, as shown below, the

SIR particle filter performs well with ‘2 5 1 for an en-

semble size of 400.

Reducing t2 by increasing ‘2 is a result of increasing

the observation variance, and the chosen form of the

surrogate observation error model is designed to in-

crease the variance primarily for small scales while

leaving large scales intact. The impact on the posterior is

visualized in the second panel of Fig. 1. This panel shows

the time-averaged RMSE of the particle filter mean of

the first 50 Fourier modes, normalized by the climato-

logical standard deviation of each Fourier coefficient,

for ‘2 2 (0, 0:04, 0:4). Here we observe that increasing

‘2 primarily increases the posterior variance at small

scales, as designed.

The distribution of ESS throughout the 100 assimila-

tion cycles is plotted in Fig. 2 for various values of ‘2. The

boxplots are constructed from the time series of ESS

over all 100 assimilation cycles. In this proxy for the

quality of uncertainty quantification achieved by the

particle filter, we observe approximately a tenfold in-

crease in median ESS with ‘2 5 0:3 and a thirtyfold in-

crease in median ESS with ‘2 5 1 compared to ‘2 5 0.

The ESS averages only 10%–20% of Ne when ‘2 5 1,

with occasional collapses. This is not inconsistent with

the theory, which requires Ne of about 8000 to avoid

collapse, yet still shows the significant improvements

from using a GRF likelihood with relatively small en-

sembles. The results below suggest that the particle filter

can give an accurate probabilistic estimate of the system
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state even when the ESS is a small percentage of the

ensemble size.

Next we consider how the RMSE of the particle filter

posterior mean from the true system state depends on ‘.

Figure 3 shows boxplots of the RMSE as a function of ‘2.

The boxplots are constructed from the RMSE time

series for the final 90 assimilation time steps in each

experiment. The RMSE appears fairly insensitive to ‘2.

The median RMSE for all cases remains below the ob-

servation error standard deviation of 0.6. These results

demonstrate that the particle filter remains a fairly

accurate point estimator—both when the filter is col-

lapsed while ‘ is small, and when the posterior is over-

dispersed as a result of large ‘. The Kalman filter using

FIG. 1. (a) The t2 in (4) is shown for different values of GRF length scale ‘. Because the number of particles required to avoid

degeneracy increases exponentially in t2/2, the observed decrease in t2 as we roll off scales greater than ‘ indicates a reduced compu-

tational burden in using particle filtering for uncertainty quantification. Similarly, the decrease suggests that for fixed computation cost one

may be able to mitigate the variance underestimation that tends to plague particle filters in high dimensions. Although the ordinate in this

figure is ‘ tomake direct contact with the length scale, all other figures are given in terms of ‘2 to relatemore directly to the spectrum of the

GRF likelihood. (b) The RMSE in the Kalman filter’s posterior mean, in Fourier space, normalized by the climatological standard

deviation of each Fourier coefficient for different values of ‘2: 0.00 (blue), 0.04 (yellow), and 0.40 (red). Here we see how the error in the

posterior mean, considered as a function of wavenumber, approaches the climatological standard deviationmore rapidly when ‘2 is larger.

It is exactly this posterior variance increase at small scales that underpins our approach: a posterior with larger total variance is easier for

a particle filter to sample, while keeping the posterior accurate at large scales is key in making a forecast.

FIG. 2. Effective sample size distributions for different values of ‘2 from 0 to 1. Each box represents the

middle 50% quantile, a central line represents the median, and the whiskers span the data not considered

outliers by the 1.5 3 IQR rule.
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the true observation model, which is the optimal filter in

the best-case scenario for this problem, achieves a me-

dian RMSE of 0.32.

The use of a GRF likelihood clearly reduces the in-

cidence of collapse in the particle filter, with mild detri-

ment to the RMSE. The RMSE measures a spatially

integrated squared error, which can mask errors at small

scales. The arguments of section 2b suggest that the GRF

posterior mean will be inaccurate primarily at small scales.

[We visualize the severity of this effect in Fig. 4, which

compares the true state (red) to the posterior mean (blue)

and to ensemble members (gray) for four different values

of ‘2: 0 (diagonal error model), 0.2, 0.4, and 0.6.] The en-

semble members are shaded according to their weight:

weights near 1 yield black lines while weights near 0 yield

faint gray lines. At ‘2 5 0 there are few ensemblemembers

visible, reflecting the fact that the ESS is small. Never-

theless, the posterior mean is reasonably close to the true

state. As ‘2 increases, the number of visible ensemble

members increases (reflecting increasing ESS), and the

posterior mean becomes smoother. Although the poste-

rior mean at ‘2 5 0:6 is smoother than the true system

state, the individual ensemble members are not overly

smooth; they are instantiations of the dynamical model

and are, as such, qualitatively similar to the true state.

The foregoing results have shown that the GRF

observation error model improves the ESS without

substantially damaging the RMSE, and that the posterior

mean is smoother than the true state, but also that the

individual ensemble members (particles) are not too

smooth. We finally test whether the uncertainty quan-

tification afforded by the particle filter is improved by

using a GRF observation error model. To this end we

compute the CRPS at each point of the spatiotemporal

grid of 2048 3 100 points. The median CRPS is com-

puted using all 204 800 spatiotemporal grid points for

101 values of ‘2 equally spaced between 0 and 1. The

result is shown in Fig. 5. Median CRPS with Ny 5 64

improves from about 0.27 at ‘2 5 0 to 0.22 at ‘2 5 0:3, and

then remains steady or slightly increases at larger ‘2.2

Some sampling variability is still evident in the me-

dian CRPS, with occasional values as low as 0.21.

Varying the number of observations, also shown in

Fig. 5, displays additional interesting behavior about

the distributional estimate the particle filter pro-

vides. In each Ny case we explored, there is a choice

of ‘2 that improves the particle filter CRPS. The dif-

ferences in optimal ‘2 emphasizes that the optimal

parameter depends not only on the active scales in

the underlying physics, but also on the resolution of

the data.

FIG. 3. RMSE between the truth and the posterior mean, using 11 different values of ‘2 from 0 to 1. The

first category, with ‘2 5 0, corresponds to the uncorrelated observation error model. The RMSE using

GRF likelihoods (i.e., ‘2 . 0) does not dramatically suffer in comparison to that of the white likelihood

that is more common in operational practice. In exchange for this small cost in RMSE, using the GRF

likelihood comes with notable gain in the accuracy of uncertainty quantification. Each box represents the

middle 50% quantile, a central line representing the median, and the whiskers span the data not con-

sidered outliers by the 1.5 3 IQR rule. The horizontal line at 0.5 serves only to guide the eye.

2 For comparison, the ensemble spread simultaneously improves

by a factor of about 2, going from a time-averaged 36% of RMSE

when ‘2 5 0 to 71% RMSE when ‘2 5 1.
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There is less information to spare about physically

important scales when observations are sparse (cf.

Ny 5 16), in which case there is only a narrow window

of suitable choices for ‘2 ’ 0:12 before the smooth-

ing effect deteriorates the predictive quality of the

particle filter by oversuppressing active scales in the

observations.

On the other hand, dense observations provide more

abundant small-scale information that makes the parti-

cle filtration more susceptible to collapse. This necessi-

tates a larger choice of ‘2 to achieve optimal particle

filter performance. In this case, the more abundant in-

formation in denser observations can compensate for

the injury we do to the surrogate posterior by more ag-

gressively smoothing away small scales. Indeed the most

dramatic improvement in the particle filter’s uncertainty

quantification occurs forNy5 12. Here the particle filter

greatly struggles for small ‘2, where we observe a CRPS

over 0.29; however, when ‘2 ’ 0:7 the CRPS dips under

0.22, competitive with that of all other observation

models considered here. This suggests that smoothing

is particularly helpful in improving the particle filter’s

overall probabilistic estimate when observations

are dense.

The CRPS results show that the particle filter’s un-

certainty quantification is improved by the GRF likeli-

hood: a 25% decrease (improvement) in CRPS is

comparable to the improvement achieved by various

statistical postprocessing techniques for ensemble fore-

casts (Kleiber et al. 2011a,b; Scheuerer and Büermann

2014; Feldmann et al. 2015). Somewhat surprisingly, the

CRPS significantly improves moving from ‘2 5 0 to

FIG. 4. (left to right and top to bottom) The true state (red trace), PF mean (blue trace), observations (black circles), and samples from

the posterior visually weighted with darkness proportional to sample weight (gray traces) for different values of ‘2 2 (0.0, 0.2 0.4, 0.6). This

figure demonstrates again how a small change to the likelihood can substantially improve the problem of underestimating variance, and

that this effect comes with diminishing marginal returns as the surrogate model yields progressively smoother estimates of the posterior

mean. Observe also that the samples are all realistic instantiations of the physical process, rather than overly smooth estimates. The

assimilation time shown here was chosen to exhibit monotonic improvement in ‘2, which is the time-averaged behavior; due to the

probabilistic nature of particle filtering, there is an abundance of times when there is not such monotonic improvement.

2442 MONTHLY WEATHER REV IEW VOLUME 146



‘2 5 0:1 despite the fact that the ESS remains quite

small. Overall, these CRPS results suggest that even

small improvements in ESS can substantially improve

the quality of the probabilistic state estimate. They

also confirm that improving the ESS as a result of in-

creasing ‘2 must be considered in balance against

the consequent departure from the true posterior; the

CRPS does not improve at large ‘2, even though

the ESS improves, because the surrogate posterior

becomes less realistic.

Figure 6 demonstrates how SIR uncertainty quanti-

fication depends on ensemble size. The figure shows a

kernel density estimate of CRPS over all 2048 grid

points and all 100 time steps, for varying number of

particles Np 2 (9100, 200, 400, 800, 1600). The CRPS

mode remains unchanged, but the mean decreases as

the distribution concentrates around the mode pri-

marily at the expense of mass in the tail. The weak de-

pendence of CRPS on ensemble size underscores the

appeal of improving uncertainty quantification (UQ) by

other means.

5. Conclusions

We have demonstrated theoretically [in the frame-

work of Bengtsson et al. (2008) and Snyder et al. (2008)]

and in a simple experiment that the number of particles

required to avoid collapse in a particle filter can be sig-

nificantly reduced through a judicious construction of

the observation error model. This observation error

model has large observation error variance at small

scales, which reduces the effective dimensionality and

focuses attention on the more dynamically relevant

large scales. This observation error model is equivalent

to smoothing observations before proceeding as though

the observations are uncorrelated. The cost of this

approach is that it alters the posterior, leading to a

smoother posterior mean. In practice, a balance will

need to be found between avoiding collapse and re-

taining as much observational information as possible.

An observation error model whose variance increases

at small scales is associated with a so-called generalized

random field (GRF). This connection allows for rapidly

FIG. 5. CRPSmedian over all time steps and grid locations, shown as a function of ‘2. Each point plotted

represents a particle filter assimilation run, with the same true and observed data, for different values of

squared GRF length scale ‘2. Each marker style represents different numbers of observations, demon-

strating how the particle filter is sensitive to the number of observations: 16 (blue diamonds), 32 (red

circles), 64 (yellow asterisks), and 128 (clear squares). The traces are spline approximations of the data

that serve to guide the eye. In eachNy case we explored, there is a choice of ‘
2 that improves the particle

filter CRPS. This plot emphasizes that the optimal choice of ‘2 depends not only on the active scales in the

underlying physics, but also on the resolution of the data. There is less information to spare about

physically important scales when observations are sparse (cf. Ny 5 16), in which case there is only

a narrow window of suitable choices for ‘2 ’ 0.12 before the smoothing effect deteriorates the predictive

quality of the particle filter. On the other hand, dense observations provide more abundant small-scale

information that necessitates a larger choice of ‘2 to achieve optimal particle filter performance. For-

tunately, the more abundant information in denser observations can compensate for the injury we do to

the surrogate posterior by more aggressively smoothing away small scales.
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applying the covariance matrix’s inverse (which is re-

quired to compute the particle weights) using fast

numerical methods for self-adjoint elliptic partial dif-

ferential equations. Themethod can also be implemented

by smoothing the observations before assimilating them,

and then assimilating the smoothed observations with an

assumption of independent errors. Both of these ave-

nues are amenable to serial processing of observations,

as required by certain parallel implementations (e.g.,

Anderson and Collins 2007). All of these approaches are

compatible with periodic or aperiodic domains.

The results of the experiment using a one-dimensional

stochastic partial differential equation show that this

approach improves the effective sample size (ESS),

which measures how well the weights are balanced be-

tween the particles, by an order of magnitude. The root-

mean-square error of the particle filter’s posterior mean is

not significantly impacted by the approach. One of the

main motivations for using particle filters is that they pro-

vide meaningful uncertainty estimates even in prob-

lems with nonlinear dynamics and observations, and

non-Gaussian distributions. Thus, the continuous

ranked probability score (CRPS) is used to test the

quality of the particle filter’s associated probability dis-

tribution. The GRF observation error model improves

the CRPS by as much as 25%, which is a large

improvement, comparable to results obtained by statisti-

cal postprocessing of the ensemble (e.g., Kleiber et al.

2011a,b; Scheuerer and Büermann 2014; Feldmann et al.

2015). This improvement in CRPS is obtained even

when the ESS is less than 20 out of 400, which shows that

good probabilistic state estimation can be achieved even

withESSmuch less than the ensemble size. The theoretical

results suggest that an ensemble size on the order of 8000 is

required to avoid collapse in this example problem. Good

results are obtained with an ensemble size of 400, even

though the ensemble does collapse from time to time.

The theory of Snyder et al. (2008) estimates the en-

semble size required to avoid collapse, which is un-

realistically large for typical meteorological applications

using standard observation error models. Using a GRF

observation error model increases the ESS for a fixed

ensemble size, making it easier to achieve the goal of

avoiding collapse. The approach advocated here may

still prove insufficient to enable particle filtering of

weather, ocean, and climate problems; the minimum

required ensemble size will be reduced, but may still be

impractically large. Happily, the method is entirely

compatible with approaches based on altered proposals

(Chorin and Tu 2009; van Leeuwen 2010; Ades and van

Leeuwen 2015) and with localization methods (Penny

and Miyoshi 2016; Rebeschini and Van Handel 2015;

FIG. 6. Kernel density estimates (KDE) of the CRPS observed for different numbers of

particles demonstrate the concentration of probability as the number of particles increases

while ‘25 0.30 and Ny 5 64 are held fixed, for a fixed simulation and fixed observations

thereof. Each KDE is built from the CRPS computed for each of 2048 grid cells and all

100 time steps. The slow convergence in the number of particles is one of the reasons it is

attractive to seek other means of making the particle filter more effective in sampling

high-dimensional distributions.
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Poterjoy 2016). The method is also compatible with

ensemble Kalman filters and with variational methods,

but it is not clear whether the approach would yield any

benefit there.

Indeed, dynamics of extratropical synoptic scales are

often assumed to be approximately linear and are easily

estimated with an ensembleKalman filter. But ensemble

Kalman filters do not provide robust uncertainty quan-

tification in the face of nonlinear observation operators

or nonlinear dynamics (e.g., at synoptic scales in the

tropics). In contrast, the method proposed here has the

potential to provide robust uncertainty quantification

even with nonlinear dynamics and observations. How-

ever, it is still unknown in what contexts our peculiar

error model damages the posterior more severely than

approximating the system as linear and Gaussian for the

sake of assimilating data with ensemble Kalman filters.

We expect performance comparison to be context de-

pendent, and hope future work will help reveal how to

balance advantages and disadvantages that are relevant

in practice.
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APPENDIX

Generalized Random Fields

Generalized random fields (GRFs) are discussed at

length in Yaglom (1987), and a few extra details can be

found in Gelfand and Vilenkin (1964). A GRF whose

Fourier spectrum is not integrable at small scales has

infinite variance. The prototypical example is a spatially

uncorrelated field, whose spectrum is flat.

A GRF is not defined pointwise. Rather than being

defined pointwise, or ‘‘indexed by spatial location,’’ it is

indexed by rapidly decaying test functions (often taken

to be elements of a Schwartz space). This is perhaps best

explained by reference to an ordinary random field. If

Z(x) is a random field that is defined pointwise and f(x)

is a test function then we can define a new, ‘‘function

indexed’’ random field Z(f) using the following

expression:

Z(f)5

ð
Z(x)f(x) dx .

If the field Z is not defined pointwise, it may still be

indexed by test functions.

The concept of a covariance function for an ordinary

random field can be generalized to a GRF. The resulting

object is a ‘‘covariance kernel,’’ which can be a gener-

alized function (i.e., an element of the dual of a Schwartz

space). The prototypical covariance kernel is the so-

called Dirac delta function which is not, in fact, a

function.

The observation error covariance model advocated in

this article can be conceptualized in two ways. It can be

thought of as an approximation to a GRF where the

spectrum has been truncated at the smallest resolvable

scale on the grid. Alternatively, one can assume that

observations are not taken at infinitesimal points in

space, but rather that the observing instrument senses

over a small region of space via some test function f.

The value of the GRF for an observation is thus indexed

by the allowed test functions f rather than the spatial

location of the observation.
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