
Sustainable Energy Technologies and Assessments 45 (2021) 101059

Available online 23 March 2021
2213-1388/© 2021 Elsevier Ltd. All rights reserved.

Original article 

Spatial impacts of technological innovations on the levelized cost of energy 
for offshore wind power plants in the United States 

Matt Shields a,*, Philipp Beiter a, William Kleiber b 

a National Renewable Energy Laboratory, 15013 Denver West Pkwy., Golden, CO 80401 USA 
b Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA   

A R T I C L E  I N F O   

Keywords: 
Levelized cost of energy 
Offshore wind energy 
Impact of technological innovations 
Spatial cost modeling 

A B S T R A C T   

Recent studies predict significant decreases in the future levelized cost of energy (LCOE) of offshore wind energy, 
much of which is attributed to anticipated cost reductions from technological innovation. This study evaluates 
the spatial variability of LCOE caused by technology-induced decreases in a range of capital, operational, and 
financial cost categories. A spatial cost model of fixed-bottom and floating offshore wind plants is used to model 
the impact across thousands of potential United States sites. A specified change in an individual turbine sub
system cost produces a range of LCOE outcomes due to the varying geospatial characteristics of the considered 
sites and the nonlinear, interactive dependency on these input parameters; for example, a 10.8% improvement in 
net capacity factor can reduce LCOE by between 6% and 20% at different sites. This work expands upon the 
existing offshore wind literature, which typically evaluates cost sensitivities at a single site and does not consider 
the spatial variance in LCOE. The results suggest that the impact of technological innovations can be considerable 
and should be considered on a spatial as well as temporal basis when prioritizing technology innovation research 
or funding decisions to advance offshore wind technologies in the United States.   

1. Introduction 

The growing deployment of offshore wind energy in northern Europe 
has seen the levelized cost of energy (LCOE) drop from $150/MWh to 
below $100/MWh between 2014 and 2019 [19]. Despite this precipi
tous decline, these costs remain high relative to land-based wind and 
fossil-fueled generation technologies [21]; as such, identifying cost 
reduction potential is a priority for the offshore wind industry and 
stakeholders. Future costs are influenced by a myriad of overlapping 
factors, including technology innovation, economies of scale, derisking 
of projects, variations in site characteristics, and various macroeco
nomic and competitive dynamics. Evaluating cost reduction potential 
necessitates a detailed understanding of how these factors impact LCOE 
and trade-offs to inform research, project, and policy decisions. 

Different approaches have been taken to understand offshore wind 
LCOE cost structures and their future trajectories. Expert elicitation 
[26,27,29], learning curve assessments [5,28], and empirical cost 
models [20] have been used to survey current and future costs and to 
separate LCOE into its constituent components. The results of these 
analyses provide a broad perspective of the composition, drivers and 
future trajectories of offshore wind costs. However, they have a limited 

ability to quantify and evaluate the complex relationships between in
dividual technology innovations and improvements in performance and 
costs. More detailed, bottom-up cost models can provide deterministic 
or probabilistic estimates of how improved component technologies and 
project design choices impact LCOE [1,15,8–10,17,13]. These 
component-level approaches can also be used to evaluate the model’s 
sensitivity to uncertainty in input values, which is typically conducted 
by varying individual parameters and reporting the subsequent change 
in LCOE for a representative project [25,14,9,11]. 

This work integrates these three modeling approaches to evaluate 
how the impacts of technological innovation vary over the U.S. Cost 
reduction potentials from various technological innovations are sourced 
from an expert elicitation conducted by [26]. The elicited values from 
[26] represent decreases in component costs that can be achieved in the 
near term through technology innovation. In the model used in this 
study, they are used to perturb baseline values of cost categories at 
thousands of sites in major U.S. coastal areas and to compute the net 
impact on LCOE at each location. The coupled, interactive relationships 
between each cost category result in a spatially-dependent range of 
attainable LCOE reductions for each cost reduction parameter. This 
contextualizes the results provided in representative project sensitivity 
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analyses, which typically perturb baseline values by the same increment 
(e.g., ±10%) and may not capture the full LCOE variance attributed to a 
given component cost reduction. Considering both attainable cost re
ductions and their spatial impact yields improved capabilities for 
prioritizing research and development (R&D) technological investment 
on a local and national level. 

2. Methodology 

2.1. Description of spatial cost model 

The Offshore Regional Cost Analyzer (ORCA) used in this analysis is 
a deterministic cost model that estimates the LCOE of a 600-MW 
offshore wind power plant at more than 7,000 locations across major 
U.S. coastal areas [1]. It uses a set of parametric equations for various 
technological (e.g., turbine rating, substructure type), spatial (e.g., wind 
speed, water depth, distance to port, wave height), and financial pa
rameters (e.g., debt-to-equity ratio, debt rate, equity rate) to estimate 
LCOE using Eq. 1: 

LCOE =
FCR(Cturbine + CBOS) + Cops + Cmaint

NCF × 8760
, (1)  

where LCOE is the levelized cost of energy ($/MWh), FCR is the fixed 
charge rate that must be collected annually (%/year), Cturbine are the 
turbine capital expenditures ($/kW), CBOS are the balance of system 
capital expenditures ($/kW), Cops are the operational expenditures 
($/kW-year), Cmaint are the maintenance expenditures ($/kW-year), and 
NCF is the net capacity factor (scaled by the 8760 h in a year). 

Individual cost terms are described in greater detail in Section 2.2.2. 
The FCR, capital expenditures (CapEx), and operation and maintenance 
expenditures (OpEx, or O&M) terms are represented in ORCA as 
multivariable (typically nonlinear) equations parameterized in terms of 
technological, financial, and geospatial inputs. The derivation of these 
equations is documented in [1]. Key equations used in this study are 
included in the Appendix for reference. Although the underlying cost 
equations are fully deterministic, the relationships between cost and 

spatial variables are sufficiently complex that the numerical sensitivity 
analysis approach used in this paper is considered more appropriate 
than analytic methods. 

ORCA can be used to estimate LCOE for single or multiple sites for an 
assessment of LCOE variation within a region.1 Constraints are imple
mented in ORCA to capture technological limitations; for example, 
fixed-bottom substructures are deployed only up to water depths of 60 
m, and floating substructures are excluded from the Great Lakes area as 
they are deemed inadequate to withstand icing. A map showing the 
delineations between fixed-bottom and floating sites is provided in 
Fig. 1. To estimate LCOE, ORCA is populated with key technological 
parameters (e.g., turbine rating) and the locations of potential offshore 
wind energy sites off the U.S. coast. The cost model uses predefined 
spatial layers to determine the closest construction and O&M port, a 
point of grid interconnection, the prevailing wind and wave regime, and 
water depth. Costs are calculated using parametric relationships be
tween CapEx, OpEx and Annual Energy Production (AEP) and these 
input spatial parameters. The relationships between costs and spatial 
parameters were calibrated using bottom-up engineering and techno- 
economic tools, such as NREL’s Balance of Station model [15], the 
ECN O&M model [22], the JacketSE and TowerSE tools [4], the AWS 
Truepower Openwind model 2 and Power System CAD (PSCAD)3. Each 
tool has a different capability in modeling the cost or performance of an 
offshore wind farm. Scenarios with varying spatial inputs were defined 
for each model. For instance, several scenarios were defined in the ECN 
O&M tool varying the distance from a given offshore wind site to an 
O&M base, while holding all else constant. The ECN model identifies the 
optimal O&M strategy and calculates maintenance costs as a function of 
the difference between the site and O&M base (and other factors). A 
regression was then run using the scenario data to obtain a curve fit 
between maintenance costs and the distance between site and O&M 
base. These parametric fits from the various bottom-up tools are 
aggregated in ORCA to estimate LCOE and are reported in the Appendix 
of this paper. 

Fig. 1. Offshore wind project sites for the continental United States considered in ORCA.  

1 In ORCA, U.S. regions are assigned to individual sites in alignment with the 
Regional Energy Deployment System (ReEDS) model developed by the National 
Renewable Energy Laboratory [24].  

2 https://aws-dewi.ul.com/software/openwind/  
3 https://www.pscad.com/software/pscad/overview 
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The goal of this work is to quantify the spatial impact from a set of 
anticipated technology innovations on offshore wind LCOE. The impact 
on LCOE is analyzed using a modified Morris factor screening technique, 
which has been used in previous studies to prioritize key inputs for 
offshore wind O&M and greenhouse gas emission models [16,6]. Instead 
of prescribing a constant perturbation, in this modified Morris factor 
screening technique a different perturbation is prescribed for each in
dependent variable. The independent variables in this study are specific 
cost categories. They are perturbed by an increment (i.e., a percentage 
value) that corresponds to their anticipated cost reduction potential as 
quantified by [26] and [27] through expert elicitations. In addition to 
assessing the LCOE impact from individual technology innovations, the 
spatial variation of this impact is assessed by perturbing the independent 
variables for thousands of potential offshore wind sites in the U.S. (each 
site characterized by its individual spatial conditions). Because ORCA 
can evaluate multiple sites simultaneously, it is an ideal tool for con
ducting a global analysis exploring spatial LCOE dependencies. The 
theory and modified implementation of the Morris factor screening 
method is summarized in the following section. 

2.2. Implementation of the Morris method in ORCA 

2.2.1. Description of the Morris method 
Morris factor screening is a global, one-at-a-time sensitivity analysis 

technique that captures the nonlinear and interactive effects of different 
model parameters based on user-specified perturbations to these terms 
[18]. It has an advantage over local methods which perturb a single 
parameter while holding all else constant and therefore do not capture 
interaction effects between different variables [23]. Other global 
methods, such as linear regression, require sufficiently independent 
variables to extract the dependence of the output on each input 
parameter [12]. This is inherently challenging for offshore wind appli
cations due to correlations in spatial parameters such as water depth and 
distance from shore. Finally, the Morris method can be used to perturb 
the results of parametric cost category equations calculated within the 
ORCA model. This makes it more useful for this analysis than variance- 
based methods which evaluate the sensitivity to the distribution of the 
input variables [23]. 

The Morris method calculates a range of j elementary effects, EEi,j, for 
the ith input variable, Xi, over the design space and then evaluates the 
sensitivity of the output variable to this parameter based on the resulting 
distribution [18]. For a deterministic model with k inputs where i = 1,… 
, k in the design space X = (X1,X2,…,Xk), an elementary effect of the ith 

variable is defined as: 

EEi,j =
Y
(
X1,X2,…,Xi,j + δ,…,Xk

)
− Y(X)

δ
, (2)  

where δ is a constant value used to perturb Xi. A distribution of EEi,j is 
then obtained by generating a random sampling of j instances of Xi over 
the design space and perturbing each sample by the same δ. 

2.2.2. Customized elementary effects 
The standard Morris method uses the same (normalized) value of δ 

for every Xi,j in Eq. 2 [18]; however, expert elicitations in the offshore 
wind literature predict different cost reduction potentials for specific 
cost categories [26,27]. These future scenarios are typically applied to a 
single, representative project and the anticipated decrease in LCOE is 
reported. This does not provide insights into how these impacts on LCOE 
vary over a multitude of potential project locations. In order to address 
this, Eq. 2 is customized such that: 

ΔLCOEi,j =
Y
(
X1,X2,…,Xi,j + δi,…,Xk

)
− Y(X)

(Y(X) )
, (3)  

where ΔLCOEi,j is the jth elementary effect for the ith input variable, Y(X)

is the functional relationship by which ORCA calculates LCOE, (Y(X) ) is 
the mean baseline (unperturbed) value of LCOE in the design space, and 
δi is a perturbation defined specifically for each input variable. The 
process of creating the elementary effects for a given input variable is 
depicted in Fig. 2. Because there exists a range of input values for X over 
which δi is applied, ΔLCOEi,j captures how input variable interactions 
and nonlinearities affect the sensitivity of the output over the entire 
design space. This matters when evaluating the potential impact of a 
particular technological innovation as the achievable reductions in 
LCOE will not be consistent for every location and project in which it is 
implemented. 

The δi perturbations were chosen to reflect anticipated short-term 
reductions in a given cost category based on expert elicitation of in
dustry practitioners [26,27]. The individual values of δi, expressed as a 
percentage of the maximum value of a cost category for a given design 
space, are provided in Table 1; while the percentages of the maximum 
value are listed in Table 1, δi is dimensional and has the same units as 
Xi,j. Using these values for the perturbations allows the elementary 

Table 1 
Cost category perturbations based on innovation categories from [27]. Cost 
reduction potential for array and export cable installation are included in the 
Array Cable and Export Cable categories [1].  

ORCA cost category Symbol Innovation category Perturbation [%]    

Fixed Floating 

Development Cdev  Wind farm development 2.5 4.5 
Rotor nacelle 

assembly 
CRNA  

Wind turbine nacelle 13.1 14.3 
Wind turbine rotor 

Substructure Csub  Balance of plant 14.2 18.0 
Foundation Cfound  Balance of plant 14.4 14.3 
Array cable Carray  Balance of plant 13.3 16.9 
Export cable Cexport  Balance of plant 13.0 17.7 

Turbine installation Cturb,inst  Balance of plant 12.2 12.1 
Substructure 

installation 
Csub,inst  Balance of plant 19.2 21.3 

Operations Cops  Operation, maintenance, 
and service 

16.1 16.2 

Maintenance Cmaint  Operation, maintenance, 
and service 

18.1 17.9 

Net capacity factor NCF 
Total losses 

10.8 10.8 Gross AEP  

Fig. 2. Process for calculating the mean elementary effect for an ORCA 
input variable. 

Table 2 
Perturbations for financial inputs to ORCA.  

ORCA input Symbol Perturbation [%] 

Rate of return on equity RROE 10 
Debt fraction DF 10 

Capital payback period tlife  10  
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effects to be interpreted as the achievable LCOE reductions attributed to 
the cumulative effect of technological innovations within each cost 
category. Financial parameters, which are not subject to cost reduction 
potential because of technological innovations, are arbitrarily assigned a 
percentage of 10% to consider their impact on the cost of energy; these 
inputs are listed in Table 2. 

The reported results for ΔLCOE computed using Eq. 3 represent the 
sensitivity of LCOE to perturbations in an input variable expressed as a 
percentage of the mean value of LCOE for the region being considered. 
While the Morris method does not explicitly describe the nature of the 
coupling and nonlinearities between input parameters, the variance in 
output sensitivities does permit the impact of these interactions on LCOE 
to be quantified over the design space. By using the customized values of 
δi from Table 1 that represent the cumulative effect of innovations in 
each cost category, the range of impacts of these technological advances 
over the U.S. can be determined. It is important to note, however, that as 
the elementary effects corresponding to different input parameters are 
perturbed by different values in Eq. 3, the sensitivities of LCOE to each 
parameter should not be directly compared. Doing so requires a constant 
value of δ to be applied uniformly across all input parameters, which 
permits a ranking of the relative importance of each cost category. This 
approach is taken in Section 3; the interpretation of these results is more 
similar to the standard Morris method defined in Eq. 2. 

2.2.3. Sampling distribution 
Spatial analyses in ORCA are performed by calculating LCOE at a 

range of individual sites that satisfy exclusion criteria described in [1]; 
this results in 3,849 permissible fixed-bottom sites and 4,792 permis
sible floating sites across the U.S. The conventional Morris method 
approach to evaluating the sensitivity of LCOE to site-specific parame
ters and cost categories would involve selecting a random sample of 
these sites [18]; however, as the ORCA code is computationally inex
pensive to run (on the order of seconds to calculate LCOE for the entire 
U.S.), the sensitivity module simply calculates elementary effects for 
every site. Previous work has shown that a selection in the order of 100 
samples should be sufficient to avoid convergence problems [3], and 
indeed no significant difference in the statistical properties of the output 
distribution were found in additional tests where the number of samples 
were varied. 

3. Results 

The modified Morris method described in the previous section was 
used to evaluate the range of LCOE impacts attributed to technological 
innovations across U.S. sites. First, the impact of the anticipated short 
term cost reductions listed in Table 1 on LCOE was computed using Eq. 
3. These yield a geospatially resolved range of LCOE impacts from the 
prescribed perturbation of each cost category and are described in 
Section 3.1. Second, the perturbation prescribed to each cost category 
was held constant at δ = 10%. This approach allows for a ranking of the 
relative sensitivity impact of each cost category on LCOE. Results from 
this second approach are discussed in Section 3.2. The paper concludes 
with an illustration of how the estimated LCOE impact can vary 
depending on whether the assessment is based on an individual refer
ence site or multiple sites with varying spatial conditions in Section 3.3. 

The results are presented as box-and-whisker plots centered at the 
median elementary effect value for each independent variable. The 
variance in elementary effects over the design space is conveyed by 
quartile boxes and the corresponding whiskers that encompass the 
remainder of the distribution. Outlier points are shown as diamonds 
outside the edge of the whiskers. For each test case, a relevance 
threshold for the median value of ΔLCOEi is specified and input vari
ables that produce changes in LCOE less than this value are not plotted. 

Each independent variable is perturbed by the values provided in 
Table 1 or Table 2. The sign of the perturbation is in the direction that 
will produce a reduction in LCOE; for example, CapEx categories are 
perturbed by a negative δi, whereas net capacity factor is perturbed by 
positive δi. As a result, the values of ΔLCOE are negative and represent 
the potential reduction in cost attributed to changes in an input variable. 
These results inherently depend on the underlying cost structure within 
ORCA (e.g., how individual cost line items are assigned to top-level 
items). LCOE sensitivities are reported for fixed-bottom and floating 
substructure designs as the differences between subsets of these cate
gories (monopiles/jackets and semisubmersibles/spars) are small rela
tive to the broader topologies. 

3.1. Spatial impact of cost and financial innovations 

ΔLCOE was calculated for all potential sites in major U.S. coastal 
areas for fixed and floating substructures and is shown in Fig. 3. It is 
apparent that a range of ΔLCOE values exist for each cost category. This 
indicates that different sensitivities to a given cost reduction exist for 
each site considered in the design space; for instance, the 10.8% increase 
in net capacity factor (NCF) suggested by [26] for a fixed-bottom project 
will introduce a reduction in LCOE between 6% and 20% depending on 
the site at which it is implemented. This represents a significant range of 
spatially-dependent outcomes attributed to a uniform technological 

Fig. 3. Spatial variability in LCOE attributed to technological and financial innovations for fixed-bottom (left) and floating substructures (right) in the United States. 
Input variables that produce ΔLCOE < 1% are not shown. The average LCOE for fixed-bottom and floating substructures across all U.S. sites considered is $152/MWh 
and $191/MWh, respectively. 

Table 3 
Range of cumulative ΔLCOE from summing effects of individual cost categories.  

Technology Minimum [%] Mean [%] Maximum [%] 

Fixed − 22.0 − 33.1 − 56.1 
Floating − 22.1 − 37.2 − 67.6  
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innovation. While NCF exhibits the largest ranges, variances exist for all 
reported cost categories in both fixed-bottom and floating technologies. 
Consequently, providing a single value for the cost reduction potential of 
a given technology innovation may be misleading because its impact 
will vary for geospatially diverse projects. The cumulative impact of this 
variance can drastically impact future cost predictions, as reported in 
Table 3. Summing the minimum and maximum ranges of the bounds 
plotted in Fig. 3 leads to ΔLCOE ranges between − 22% and − 56.1% for 
fixed-bottom technologies and − 22.1% and − 67.7% for floating. 

The range of LCOE outcomes impacted by a given improvement in 
NCF is considered in more detail by plotting the ΔLCOE of each fixed- 
bottom site in the United States against its net capacity factor in 
Fig. 4. As NCF appears in the denominator of Eq. 1, perturbations to this 
term have a diminishing effect for larger baseline magnitudes. This is 
evident in Fig. 4, in which the sites with higher capacity factors expe
rience smaller reductions in LCOE than lower capacity factor sites for the 
same 10.8% increase in NCF. In effect, there is more advantage to be 
gained by implementing technological innovations at sites with low 

Fig. 5. Distributions of key spatial parameters for fixed-bottom sites (left) and floating sites (right) in the U.S.  

Fig. 4. Spatial variability in LCOE compared with net capacity factor for fixed- 
bottom substructures at all sites in the United States. 
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capacity factors; however, the higher variance observed at these sites 
indicates that these innovations will have a broader range of potential 
impacts than they would at higher capacity sites. Research and funding 
agencies can use these results to target their efforts. Cost categories with 
lower variance may be of more interest to institutions with a regional or 
national focus, as similar LCOE outcomes may be expected for a realized 
cost reduction, whereas categories with broader ranges may be of more 
interest to local entities near sites associated with the higher cost 
reduction potential. 

The variance in the ΔLCOE elementary effects is attributed to the 
nonlinearity in the underlying parametric equations in ORCA and the 
interactive effects between input variables [18]. These equations, which 
are listed in the Appendix, are primarily dependent on the geospatial 
parameters of each site; the key parameters of water depth, distance to 
cable landfall, and significant wave height are plotted in Fig. 5 for fixed- 
bottom and floating technologies. The distributions differ as fixed- 
bottom solutions are assigned to water depths below 60 m whereas 
floating technology is selected for greater depths. The different distri
butions mean that the inputs to the parametric cost equations in ORCA 
are weighted towards different regions of the nonlinear relationship; for 
instance, fixed-bottom sites are skewed towards shorter distances to 
cable landfall, whereas floating sites show multiple peaks with a rela
tively large tail. These differences impact the export cable cost equation 
which only depends on distance to cable landfall, with the floating sites 
more heavily populating the higher distance regions. This subsequently 
leads to greater variance in export cable costs for floating technologies 
than fixed-bottom technologies in the U.S., as seen in Fig. 3. This trend is 
consistent for the reported CapEx categories, indicating that techno
logical innovations will have a wider range of impacts for floating sites 
due to differences in the distribution of spatial parameters relative to 
fixed-bottom sites. 

3.2. Relative sensitivity of LCOE to key cost categories 

While the results presented in Fig. 3 provide insights into the range of 
impacts that a particular technological innovation may have on the costs 
of offshore wind, they are not appropriate for ranking the importance of 
different cost categories as each input is perturbed by a different δi. A 
more common approach in the sensitivity analysis literature is to perturb 
each category by the same relative amount, which permits a direct 
comparison of the resulting sensitivity of LCOE [18]. Again using Eq. 3 
to compute ΔLCOE, but now using a constant perturbation of δ = 10%, 
the relative significance of the different input parameters can be ranked. 
The corresponding magnitudes of the LCOE sensitivities are effectively a 
proxy for the impact of R&D investment. The results, plotted in Fig. 6, 
are similar for fixed-bottom and floating systems. Both are primarily 
impacted by technological innovations in net capacity factor, followed 

by the rate of return on equity (RROE), debt fraction (DF), the capital 
payback period (tlife), and the capital costs of the rotor-nacelle assembly. 
OpEx maintenance costs and the capital costs of the substructure and 
export cables are also seen to produce significant sensitivities in LCOE, 
although the relative importance of these parameters varies between 
fixed-bottom and floating systems. 

It is also notable that the financial parameters have a larger impact 
on LCOE than the most significant capital cost categories for both fixed 
and floating technologies. While much of the research into cost reduc
tion potential of offshore wind energy focuses on technological in
novations, it is important to note that the development of the offshore 
wind industry in Europe has led to increasingly favorable financial 
structures because lenders are willing to fund projects through nonre
course debt and with debt-to-equity ratios of at least 70:30 [2,7]. 
Although initial investments in offshore wind projects in the United 
States may be viewed as riskier than the more mature European in
dustry, project financing in the domestic industry may develop in par
allel with technological innovation. 

3.3. Impact of technological innovations at active U.S. lease areas 

A common practice in the offshore wind cost modeling literature is to 
calculate LCOE magnitudes or sensitivities at a representative wind 
plant site; however, as geospatial characteristics can vary significantly 
between sites, the conclusions drawn from these studies may not be 
equally applicable for a range of neighboring locations. In order to 
evaluate this, LCOE sensitivities calculated for fixed-bottom sub
structures at the 2,058 permissible sites in the Atlantic are compared 
with sensitivities calculated at two specific locations corresponding to 
active U.S. offshore wind lease areas in the same region. ORCA input 
files were developed based on the average geospatial characteristics for 
each site, which are listed in Table 4. Although a larger number of pa
rameters are required to run ORCA, the LCOE calculation is most sen
sitive to the values in Table 4. These values are averaged over the lease 
areas as described in [1]. 

As a set of at least 100 points is required to compute elementary 
effects for each input variable, a uniform, random distribution of 100 

Fig. 6. Sensitivities of LCOE to cost and financial categories using constant perturbations of δ = 10% for fixed-bottom (left) and floating (right) substructures in the 
United States. Input variables that produce ΔLCOE < 1% are not shown. The average LCOE for fixed-bottom and floating substructures across all U.S. sites considered 
is $152/MWh and $191/MWh, respectively. 

Table 4 
Average site characteristics for sample Atlantic offshore wind lease areas.  

BOEM 
lease area 

Project 
name 

Capacity 
factor 

Depth, 
m 

Wave 
height, m 

Distance to 
landfall, km 

OCS-A 
0519 

Skipjack 0.56 22.6 1.2 33.9 

OCS-A 
0522 

Liberty 
Wind 

0.61 41.1 1.6 102.6  
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input conditions was created using a Latin Hypercube (LHC) sampling 
method within a range of ±25% of the site-specific values listed in 
Table 4. Each of the artificially generated data points in each cost 
category is then perturbed by the appropriate δi values from Table 1. The 
relative error, er, of the average ΔLCOE for each cost category at an 
individual site relative to the aggregated regional sensitivity from all 
Atlantic sites was calculated using Eq. 4. 

er =
ΔLCOEsite − ΔLCOEregion

ΔLCOEregion
. (4)  

The relative error describes the accuracy with which an individual site 
represents LCOE sensitivities over an entire region. As er approaches 
zero, the degree to which an individual site adequately represents an 
LCOE sensitivity for a given cost category increases. The relative error 
between individual sites and the regional average for cost category 
sensitivities is plotted in Fig. 7. 

Considering the impact of the CapEx innovations from Table 1 at the 
individual sites described in Table 4 reinforces the key takeaway from 
the spatial results presented in the previous sections: a constant cost 
reduction associated with innovations in a specific CapEx category can 
produce significantly different decreases in LCOE at different sites. This 
is particularly evident in the ΔLCOE values attributed to a change in 
export cable cost computed for the Skipjack and Liberty Wind lease 
areas; the former is slightly less sensitive to cable innovations than the 
overall Atlantic region, whereas the latter is nearly 50% more sensitive. 
It is also worth noting that the relative errors are not consistently pos
itive or negative for either site, indicating that analysis of a represen
tative site would alternately over predict and under predict cost 
sensitivities in different categories for specific sites in the region. This 
reinforces the importance of considering the spatial variability of LCOE 
when reporting the cost sensitivities of a representative offshore wind 
site. 

4. Conclusions 

This analysis utilized a modified version of the Morris factor 
screening method to evaluate the spatial variation of offshore wind 
LCOE to changes in constituent cost categories and financial parameters 
over a broad range of sites in the United States. Perturbing the baseline 
input parameters with a single value resulted in a broad range of LCOE 
outcomes due to the interactive and nonlinear relationships between the 
underlying cost equations and the geospatial characteristics of each site. 
By using customized perturbation magnitudes that correspond to 
anticipated short-term reductions in each category, the resulting vari
ance in LCOE demonstrates that a given technological or financial 
innovation can have a range of outcomes on project cost. This differs 
from existing sensitivity studies in the offshore wind literature, which 
typically report a single change in LCOE for a given perturbation. 
Furthermore, the magnitude of the LCOE variance was seen to be sig
nificant; for example, a 10% improvement in net capacity factor resulted 
in decreases in LCOE between 6% and 20% for the range of sites 

considered. The LCOE of both fixed-bottom and floating offshore wind 
projects was also seen to be particularly sensitive to financial parameters 
such as the rate of return on equity, the debt fraction, and the project 
payback period as well as the capital costs of the rotor-nacelle assembly. 
The cumulative variances of these key cost and financial categories 
indicate that the prescribed set of component level cost reductions could 
produce a range of LCOE decreases of between 22% and 56% from the 
baseline cost of $152/MWh for all potential fixed-bottom projects in the 
United States. Similarly, the baseline value of $192/MWh for floating 
projects could be reduced by between 22.1% and 67.6% at different sites 
if all cost reduction trajectories are fully realized. While the upper 
bounds of these LCOE decreases are site specific and can not be uni
versally applied, they provide an indication of the high potential for 
significant cost reduction that can be obtained through innovation in a 
myriad of different cost categories. 

These results illustrate the importance of considering the spatial 
variation of LCOE caused by component cost reductions. Costs of 
offshore wind energy remain high at this nascent stage of the United 
States industry and the impact of technological innovations is a critical 
factor for project developers striving to deliver competitively priced 
offshore wind energy. In this environment, the realization of even small 
reductions in LCOE can define the success or failure of a project. The 
results in this paper show that an innovation-induced reduction in 
component costs will not have a singular impact on costs, but instead 
will produce a range of values depending on the location of the project; 
future work will build upon these results to better understand the spatial 
dependency of LCOE sensitivity and where specific technological in
novations can have the greatest impact. For developers estimating the 
value of a potential lease area years before the financial investment 
decision is made, it is important to understand the range of cost impacts 
that anticipated technology innovations can have at different sites. 
Government policy makers can prioritize research and development 
funding based on the spectrum of outcomes for a proposed technological 
innovation and whether these impacts will be consistent over a broad 
range of sites or will vary significantly depending on where they are 
implemented. These considerations are important to help advance the 
deployment of offshore wind in the United States. 
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Appendix A. ORCA cost equations 

The levelized cost of energy, reprinted in Eq. A1 for convenience, comprises parametric equations for the individual cost categories listed in 
Table 1. These equations are provided in this appendix for reference; furthermore, the aggregation of various capital expenditures into the balance-of- 
system is also provided. The capital costs of the turbine, Cturbine, are provided as an input value based on current market trends. 

LCOE =
FCR(Cturbine + CBOS) + Cops + Cmaint

NCF × 8760
, (A1)  

In ORCA, equations are defined for several substructure types and turbine ratings; for illustration, the equations are only shown for jackets and semi- 
submersible substructures using a 10-MW turbine rating (see [1] for the equations for monopiles, semi-submersible, and spar substructures, as well as 
turbine ratings other than 10 MW). The equations are derived from multi-dimensional curve fits of bottom-up empirical and modeled data, which 
results in lengthy and nonlinear parametric relationships [15,1]. The values of several coefficients are not provided in order to protect the proprietary 
data used to develop the equations. 

A.1. Common variables 

Variables commonly used in the following equations are provided in Table A1. 

A.2. Rotor nacelle assembly 

The total turbine capital cost used in Eq. A1 is a user input in ORCA; the cost of the rotor nacelle assembly, which includes the blades, generator, 
and hub, is derived from the overall turbine capital cost as shown in Eq. A2. The cost of the tower comprises the remainder of Cturbine. 

CRNA = 0.86Cturbine
(
0.00044e − 4P2

r + 0.0445Pr + 0.7174
)
. (A2)  

A.3. Substructure and Foundation 

The support structure capital costs are split into the foundation and substructure, both of which have fabrication and installation elements. The 
fabrication relationships are provided in Eqs. (A3)–(A6) and the installation equations are given Eq. A7 and Eq. A8. 

CSubstructure,Jacket =
(

e(3.7136+0.00176P2.5
r +0.645logD)CLatticecost

)
×

(

− 0.0131 +
.0381
logPr

− (2.3e − 9)D3
)− 1

CTransitionpiece

+COutfitting,

(A3)  

where CLatticecost,CTransitionpiece, and COutfitting are empirically derived cost factors for the jacket lattice, transition piece, and outfitting expenses. 

CSubstructure,Semi =
(
a1P2

r + a2Pr + a3
)
CStiffenedcolumn+

(a4logPr + a5)CTruss +
(
a6P2

r + a7Pr + a8
)
CHeaveplate+

(
a9P2

r + a10Pr + a11
)
COutfitting,

(A4)  

where CStiffenedcolumn,CTruss,CHeaveplate, COutfitting, and a1 - a11 are empirically derived cost factors for the semisubmersible stiffened column, truss structure 
and heave plate. 

CFoundation,Jacket = 8CPilecost

(
e3.7136+0.00176P2

r .5+0.645logD
)0.5574

, (A5) 

where CPilecost is an empirically derived cost factor for the jacket piles. 

CFoundation,Semi = 3
(
b1D2)+ b2D + b3

)(
b4Pr + b5

)
, (A6)  

where b1 - b5 are empirically derived constants for the semisubmersible 
foundations. 

Table A1 
Common variables in ORCA parametric equations.  

ORCA input Symbol 

Water depth, m D 
Significant wave height, m Hs  

Site to cable landfall distance, km dS L  

Number of turbines n 
Turbine rating Pr  

Site to construction port distance, km dP S  

Site to operations port distance, km dOP S   
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CInstallation,Jacket = (1.3e8) − 2490356D + 174980.65dP S + 80518.69D2 + (7.3e − 8)d2
P S−

4226.92D × dP S − 514.33D3 − (6.4e − 11)d3
P S−

(4.5e − 10)D × d2
P S + 49.24D2dP S.

(A7)  

CInstallation,Semi = c1 + c2 × D + c3dP S, (A8)  

where c1, c2, and c3 are empirically derived constants for the installation of the semisubmersible 

A.4. Array and export cables 

The cost of array cables is provided in Eq. A9 for fixed-bottom projects and Eq. A10 for floating projects. 

CArray,Jacket =
(
d1D2 + d2D + d3

)
(

1 +
n − 100

300

)

, (A9)  

CArray,Semi =
(
e1D2 + e2D + e3

)
(

1 +
n − 100

300

)

, (A10)  

where d1 - d3 and e1 - e3 are empirically derived constants for the array cable costs.The cost of the export system (including the offshore substation and 
connection to the onshore grid) is provided in Eq. A11 for fixed-bottom projects and Eq. A12 for floating projects. 

CExport,Jacket =
(

f1d5
S L − f2d4

S L + f3d3
S L − f4d2

S L

+f5dS L + f6),
(A11)  

CExport,Jacket =
(

g1d5
S L − g2d4

S L + g3d3
S L − g4d2

S L

+g5dS L + g6),
(A12)  

where f1 - f6 and g1 - g6 are empirically derived constants for the export cable costs. 

A.5. Turbine installation 

The cost of installing the turbine are given in Eq. A13, 

CInstallation = 57108119+ 1166745.7D − 58333.39D2 + 1217.1D3 − 10.57D4 + 0.03233D5 + 24986.8dP S, (A13)  

A.6. Maintenance 

The maintenance costs incurred during the lifetime of the wind plant are provided in Eq. A14, 

Cmaint = 4.3079logdOP S + 2.1306H2
s + 7.3227Hs + 31.314. (A14)  

A.7. Net capacity factor 

The net capacity factor of the wind plant is found using Eq. A15, 

NCF = GCF(0.006 × Pr + 0.9691)(1 − L), (A15)  

where GCF is the gross capacity factor and L represents the total losses from wakes, electrical, environmental, and technical sources. These terms are 
inputs to ORCA obtained from external tools, as described in Section 2.1. 

A.8. Fixed charge rate 

The fixed charge rate is a scaling factor for the capital costs of the project which aggregates relevant financial parameters; it represents the annual 
return which must be met to cover carrying charges on the initial capital investment. It is defined in Eq. A15, 

FCR =

(
WACC − 1

1 − WACC− t

)

(ProFinFactor), (A16)  

where t is the length of time for paying off assets, ProFinFactor is a financial multiplier to account for any applicable differences in depreciation 
schedule and tax policies, and WACC is the weighted average cost of capital. WACC is defined by Eq. A17, 

WACC =
1 + ((1 − DF)((1 + RROE)(i + 1) − 1) + (DF((1 + IR)(i + 1) − 1)(1 − TR) ) )

i + 1
, (A17) 
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where DF is the debt fraction, RROE is the rate of return on equity, i is the inflation rate, IR is the interest rate, and TR is the corporate tax rate. 
A.9. Development 

Project development costs, including site and resource studies, socioeconomic and environmental evaluations, and permitting, are found using Eq. 
A18, 

CDevelopment = 0.04 ×
(
Cturbine +CSubstructure + CFoundation + CArray

+CExport + CInstallation + CInstallation,substructure
)
.

(A18)  

A.10. Balance of system 

The aggregated balance of system costs are the sum of project development, management, lease costs, and capital expenditures; this summation 
appears in Eq. 1. 

CBOS = CDevelopment +CLease +CManagement +CSubstructure +CFoundation +CArray +CExport, (A19)  

where CLease is the lease price paid to secure site control and CManagement is the cost associated with project management. 
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