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Abstract Drought and flood management practices require accurate estimates of precipitation. Gauge
observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of
poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipi-
tation data are an attractive alternative, though they tend to underestimate the magnitude of wet events
due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared
observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipita-
tion gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation esti-
mates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear
function of satellite-derived estimates and any number of other variables—for this research we include ele-
vation. Prior distributions are defined for all model parameters and the posterior distributions are obtained
simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are
required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This
functional framework is applied to model parameters obtained by sampling from the posterior distributions,
and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior dis-
tributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this
method by applying it to pentadal and monthly total precipitation fields during 2009. The model’s perform-
ance and its inherent ability to capture wet events are investigated. We show that this blending method sig-
nificantly improves upon the satellite-derived estimates and is also competitive in its ability to represent
wet events. This procedure also provides a means to estimate a full conditional distribution of the ‘‘true’’
observed precipitation value at each grid cell.

1. Introduction

Drought and flood management practices require accurate estimates of precipitation in space and time.
However, rain gauge observations are often sparse in regions with complex terrain, clustered in valleys or
populated regions, and of poor temporal consistency. In these situations, gauge data may provide little
information about the spatial extent and intensity of a given precipitation event. Due to its extensive spatial
coverage, satellite-based rainfall estimates are an attractive and widely used alternative in such regions. Sci-
entists have long used the relationships between satellite-observed infrared brightness temperatures,
microwave radiation, outgoing longwave radiation, and precipitation intensities to estimate gridded precipi-
tation values [Arkin and Ardanuy, 1989; Adler et al., 1994; Kummerow et al., 1998; Sorooshian et al., 2000; Kidd
et al., 2003; Joyce et al., 2004; Huffman et al., 2007]. However, these estimates provide areal averages, and in
complex terrain they tend to underestimate the intensity of wet events [AghaKouchak et al., 2011]. Other
issues with satellite-based precipitation estimates include their dependency on any number of retrieval
algorithms and the indirect relationship between satellite infrared radiation observations and precipitation
intensities [Xie and Arkin, 1997]. Using unadjusted satellite-based precipitation estimates in hydrologic appli-
cations can lead to unreliable assessments of risk and reliability [AghaKouchak et al., 2011].

Over the years, there have been numerous studies focused on producing more accurate precipitation esti-
mates. To address the inherent bias of satellite-based precipitation estimates, many of these approaches
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implement unique methodologies for blending multiple data sources, typically rain gauge observations,
radar data, satellite-based precipitation estimates, and numerical model output [Xie and Arkin, 1997; Joyce
and Arkin, 1997; Huffman et al., 1995, 1997, 2001; Xie et al., 2003; Adler et al., 2003; Vila et al., 2009; Rozante
et al., 2010; Xie and Xiong, 2011; Lin and Wang, 2011; Berndt et al., 2013; Jin et al., 2014].

One of the first widely available analyses, the Climate Prediction Center Merged Analysis of Precipitation
(CMAP) [Xie and Arkin, 1997] was produced by blending a number of satellite-based estimates with rain
gauge analyses and numerical model output. At its inception, CMAP provided a 17-year time series of global
monthly analyses at 2.5" 3 2.5" spatial resolution. The Global Precipitation Climatology Project (GPCP) has
offered a suite of products over the years, produced by blending rain gauge analyses with a number of
satellite-based estimates. Through the years, the GPCP has produced and improved these analyses [e.g.,
Joyce and Arkin, 1997; Huffman et al., 1995, 1997], which boast increasingly fine temporal ranges (monthly,
pentadal (5 day), daily), spatial resolutions (2.5" 3 2.5", 2.5" 3 2.5" , 1.0" 3 1.0", respectively), and
unbounded global scales [Adler et al., 2003; Xie et al., 2003; Huffman et al., 2001].

Xie and Xiong [2011] offer a unique blending approach by matching the probability density functions of
satellite-based estimates with those of rain gauge analyses in order to correct for bias. These bias-corrected
satellite estimates are then blended with rain gauge analyses to produce robust, high-resolution analyses of
precipitation. Lin and Wang [2011] adopt the model form of Le and Zidek [2006, chap. 10] to offer yet
another approach to blending multiple bias-corrected satellite precipitation estimates, quantifying and
removing the bias by comparing the estimates to the rain gauge observations within the respective pixels.
A weighting technique based on rain gauge density is used to obtain final blended estimates.

A multiscale recursive estimation algorithm [Chou et al., 1994] for fusing precipitation data at distinctly dif-
ferent scales was performed and validated by Gorenburg et al. [2001]. Bayesian techniques were employed
to condition precipitation estimates on direct measurements. Validation was carried out on data from the
TOGA-COARE experiment, effectively fusing satellite microwave and shipborne radar data. This method is
very effective in handling large data sets, as the hierarchical structure of the algorithm does not require cal-
culation of large covariance matrices. Tustison et al. [2002] provides an assessment of the multiscale recur-
sive estimation algorithm with application to Quantitative Precipitation Forecast verification. Specifically,
sensitivities to model misspecification are analyzed. They concluded that misspecification of the model
structure has much more significant effect on estimation than a misspecification of the model parameters
of a correctly specified model structure. Although the assessment was carried out only on QPF verification,
it follows that model definition sensitivities are pertinent to a variety of applications.

Sinclair and Pegram [2005] employ the methodology developed by Ehret [2003] known as Conditional Merg-
ing to blend rain gauge data with radar-based rainfall estimates. In this technique, the mean field of the
rain gauges is maintained via ordinary kriging, while the bias of the interpolated values is reduced by incor-
porating the spatial structure as reported by radar. Although used in an artificial experiment, this method
proved very effective in reducing variance and bias of error estimates. B!ardossy and Pegram [2013] provide
two new methodologies for interpolating precipitation data from daily to yearly accumulation scales. Gaus-
sian copulas and unsymmetrical v-copulas, both incorporating elevation as an exogenous variable, were
developed and validated in a large region of Germany. For this study region, both copula-based methods
improve on traditional methods such as ordinary kriging and kriging with external drift while providing
robust conditional distributions at all target points. Berndt et al. [2013] provide a comparison of different
blending techniques—kriging and indicator kriging, both with external drift, and conditional merging—for
blending rain gauge and radar data at a wide variety of temporal resolutions (from 10 min to 6 h). They also
investigate the impact of station density on the blending performance. Even when the correlation between
radar pixels and the corresponding rain gauge values was weak, they found the blending process benefit-
ted from this additional information.

Specific to this research, recent South American rainfall estimation work has focused on improving real-
time satellite-based precipitation estimates using robust bias correction measures. Vila et al. [2009] devel-
oped a stepwise method for blending daily Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precip-
itation Analysis (TMPA) [Huffman et al., 2007] version 3B42RT output with rain gauge data for South
America. The blended analysis is a weighted combination of two distinct bias-correction schemes that also
minimize error. Rozante et al. [2010] provide a blending technique that uses the Barnes objective analysis

Water Resources Research 10.1002/2014WR015963

VERDIN ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 2



method to interpolate and blend TRMM satellite estimates with rain gauge data. This algorithm provides a
quick and efficient technique for blending satellite and surface observations, specifically in regions with
sparsely distributed gauge observations.

Incorporating a Bayesian framework to blend data sets of distinctly different spatial scales—as proposed in
this research—is not a new concept. Sans!o and Guenni [1999] developed a Bayesian space-time model to
predict monthly rainfall amounts for 80 stations in the Venezuelan state of Gu!arico. A Markov chain Monte
Carlo framework was adopted for the handling of missing data and dry spells. By using the predictive den-
sity of the data, the model can also estimate the probability of a dry period. Natural rainfall magnitudes and
space-time variability are reproduced with good skill.

Two other Bayesian approaches to blending data sets via ‘‘Bayesian melding’’ are Fuentes and Raftery [2005]
and Berrocal et al. [2010]. While these studies focus on air quality data as opposed to precipitation totals,
the methodology is assumed portable to any number of different data sets. Fuentes and Raftery [2005]
implement a full Bayesian spatiotemporal model to produce maps of dry deposition air pollution levels and
the uncertainty about them. The two data sources used are point-level observations (air quality readings
from 50 monitoring stations) and gridded numerical model output. Due to the numerical model’s tendency
to perform poorly in regions surrounding power plants, this method has proven to be worthwhile for
improving numerical model output. Similarly, Berrocal et al. [2010] offer a Bayesian model-based methodol-
ogy for blending the same class of data sources. While the paper explicitly examines a bivariate space-time
downscaler, the potential for a multivariate downscaler is evident, which is especially impressive. Spatial
downscaling is an increasingly important practice, considering that gridded numerical model output repre-
sents areal averages of a relatively large geographical region, which can lead to spatial misalignment when
comparing data sets.

One of the most recent advancements in this field is a Bayesian spatiotemporal model-based approach to
blending satellite-based estimates with rain gauge observations [Jin et al., 2014]. As in Lin and Wang [2011],
they adopted the model form as investigated in Le and Zidek [2006, chap. 10] for application in a southwest-
ern region of Canada. They show that their method improved upon Lin and Wang [2011] in small training
data sets—thus, it is useful for blending networks of sparse gauge measurements, as is commonly the case
in Canada. One limitation to the original methodology of Jin et al. [2014] had been a requirement that the
number of time steps exceeds the number of spatial locations. However, they have developed a working
solution to this problem, and the results are promising.

Bayesian kriging (hereafter BK) [see Banerjee et al., 2004] is a powerful approach to kriging that treats the
covariance structure as unknown. Instead of using traditional methods of parameter estimation such as
ordinary least squares or maximum likelihood, a set of prior distributions for parameters and hyperpara-
meters is defined and routinely updated, based on available data, via Markov chain Monte Carlo (MCMC)
simulation. This in turn produces a posterior distribution for each of the parameters, which effectively quan-
tifies parameter uncertainty, a problem that has plagued traditional methods for decades. Over the years,
BK has been applied for a variety of purposes, namely to attain not only a spatial structure but also the
uncertainty of geophysical and ecological processes, environmental contamination fields, topography, and
subsurface processes and characteristics, among others [Omre, 1987; Handcock and Stein, 1993; Cui et al.,
1995; Chen and Hubbard, 2001; Aelion et al., 2009; Le and Zidek, 1992; Sahu and Mardia, 2005].

In this research, the authors propose a BK approach to blending in situ rain gauge observations with
satellite-based estimates, with application in Central America, Colombia, and Venezuela. This methodology
expands on the work of Verdin [2013, chap. 2] which is a spatial interpolation model-based blending com-
parison study. The skill of two models—residual kriging (RK) and k-nearest neighbor local polynomial—was
explored. While both models substantially improved the satellite-based estimates, there were certain short-
comings that are addressed in this manuscript. For example, when predicting on the satellite grid, the RK
model tends to estimate the expected value of the process. Because of this, in data-sparse regions, the
blended products resulting from the RK blending method are similar in magnitude and spatial structure to
the satellite-derived estimates, which are biased in regions with complex topography. Conversely, the local
polynomial model uses local functional estimation, which is powerful in capturing the local nonlinearities of
precipitation very well. In data-sparse regions, however, the local polynomial model is susceptible to extrap-
olation error, resulting in great, unwarranted changes from the satellite-derived estimates. It is believed that
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implementing a Bayesian
framework for a model-
based approach is straight-
forward and simple enough
to be applied for any study
region of comparable clima-
tology and topography,
while being powerful
enough to address the
shortcomings of traditional
model-based blending
methods addressed above.
For this reason, in section 4
of this manuscript we com-
pare the BK and RK models
side-by-side. Data-sparse
regions will see warranted
corrections when necessary,
based on the model param-

eters’ posterior distributions. Applying a Bayesian framework to a simple linear model will simplify the
blending process, specifically by maintaining the mean function and correcting for local nonlinearities by
incorporating elevation as a covariate and implementing a zero-mean Gaussian error field with covariance
defined by the residuals. Here, we show that using BK over Central and South America not only produces
accurate low-bias combinations of satellite precipitation and gauge observations, but also provides a means
to estimate a full conditional distribution of the ‘‘true’’ total precipitation value for each grid cell—informa-
tion that will greatly improve the quantification of estimation uncertainty at each grid cell. It follows that
these BK results are a valuable contribution to hydrologic early warning and modeling systems, supporting
ensemble-based assessments of possible risks and impacts.

The study region and data are described in section 2, followed by an in-depth description of the BK frame-
work in section 3. An overview and analysis of the results is included in section 4, and conclusions and
future work in the last section.

2. Study Region and Data

2.1. Study Region
This research focuses on a Central and South American region, specifically Guatemala, Belize, El Salvador,
Honduras, Nicaragua, Costa Rica, Panama, Colombia, and Venezuela (see Figure 1). The dry season in the
region extends from December to early May and the effects of both Pacific and Atlantic tropical depressions
are felt during the wet season that extends from mid-May to November. A major contributor to the pro-
longed wet season is the intertropical convergence zone (ITCZ)—an asymmetric band of convection that
encircles the globe. The position of the ITCZ is nonstationary due to the seasonal shift of the trade winds.

Another cause for intense spatial variability of rainfall within the study region is its complex geography. Eleva-
tion in this area ranges from sea level to nearly 5000 m (as can be seen in Figure 1) with numerous mountain
ranges spanning Central America, Venezuela, and Colombia. Costa Rica and Guatemala have steep elevation
gradients, making them vulnerable to extreme weather spawning from both Pacific and Atlantic tropical
depressions. Tropical mountain ranges cause an abrupt rising of warm, wet air. As this air rises, it cools rather
quickly, releasing moisture from the air as precipitation. This is known as orographic precipitation and is a
major contributor to the variability in extreme precipitation events in the region.

Given the spatial and temporal variability of rainfall in this region, coupled with vulnerable socioeconomic
conditions, droughts and floods can have a debilitating impact on countries in this region. It has been
observed that a single wet event may result in flooding, landslides, and potentially millions of dollars in
damages, thus setting the national infrastructure back many years. Conversely, a prolonged dry spell may
be equally devastating, causing widespread crop failures that can reduce food availability and agricultural

Figure 1. Study region geography, z scale is elevation. Gauge locations shown in black; loca-
tions of wet events for July 2009 are in red (see section 4.4).
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incomes. Thus, a comprehensive understanding of rainfall variability is of critical importance for resources
planning and management.

2.2. Data
Two precipitation data sets are utilized in this research—gauge measurements and satellite-derived estimates.
Rain gauge measurements are point values that tend to be clustered in populous and low elevation areas and
sparsely scattered throughout the domain; the satellite-based products are high-resolution areal average rainfall
estimates. The gauge data used in this research (shown in Figure 1) were collected from the Global Historical Cli-
matology Network (GHCN) [Lawrimore et al., 2011], as well as partner sources of the University of California,
Santa Barbara, Climate Hazards Group (CHG); quality control and pentadal-aggregation techniques of the partner
source data were implemented by the CHG to produce station data of the same temporal scale as the available
CHG Infrared Precipitation (CHIRP) products [Funk et al., 2014], a fine-resolution (0.05" 3 0.05") pentadal product
with temporal range from the first pentad of January 1981 through the near present. There are six pentads per
month, regardless of month length. For example, the sixth pentad of October will consistently be the sum of the
last 6 days, 26–31 October. The sixth pentad of February, however, will be the sum of either 3 or 4 days, depend-
ing on leap year status. Monthly precipitation totals are obtained by summing the six pentads of any given
month.

3. Bayesian Kriging

Before describing the blending method developed in this research, we introduce some notation. Let YsatðsÞ
and YobsðsÞ be the satellite estimates and observed precipitation at location s, respectively. As the observa-
tion network is likely irregularly spaced, each observation within the network is assigned to its nearest grid
cell. Due to the fine resolution of the satellite estimates, it is fair to assume the observation is representative
of the areal average precipitation total within the grid it is assigned. Suppose the observation network has
spatial locations si; i51; :::;Nt , where Nt is the number of stations with nonmissing data for time t. Easting
and northing (from the Prime Meridian) are used as spatial information where s 2 R3 includes easting,
northing, and elevation. Define X1ðsÞ and X2ðsÞ to be covariates related to observed precipitation, where
X1ðsÞ5YsatðsÞ and X2ðsÞ is the elevation at location s; any number of other covariates may be incorporated.
To briefly describe the blending method developed in this research, the observation at location si and time
t is assumed to be a realization of a unique Gaussian process, the mean of which is modeled as a linear
function of covariates; the residual is modeled as a spatial process. The BK model involves an observation
process that we decompose as

YobsðsÞ5b1X1ðsÞ1b2X2ðsÞ1ZðsÞ (1)

The residual process Z(s) is assumed to be a mean zero Gaussian process with exponential covariance func-
tion (see equation (2)) with marginal variance r2 and effective range / which can be interpreted as the dis-
tance at which covariance decays to zero. We do not include a nugget effect s2 as exploratory analysis
suggested no presence of one—a zero nugget also forces the kriging model to be an exact interpolator of
points included in the fit.

~cðhÞ5s21r2
!

12expð2 jhj
/
Þ
"

(2)

This model structure treats rain gauge measurements as ‘‘perfect’’ information. However, data from both
the GHCN and CHG partner sources have been subjected to a suite of quality assurance reviews such that
this is not an unreasonable assumption. Similarly, an assumption of stationarity can be questionable over
large spatial domains. However, the details of implementing and choosing a nonstationary modeling frame-
work are beyond the scope of this research (these will be addressed in section 5).

A Bayesian approach involves prior distributions on the model parameters. The linear model has two b coef-
ficients, which we assign flat priors [Finley et al., 2009]. We endow r2 with an inverse Gamma prior with
shape a 5 5 and scale b51=100. Finally, / is given a uniform prior over a physically meaningful set of val-
ues. The range of the uniform is obtained as follows: a linear model is fit to the data of the form YobsðsÞ5b1

X1ðsÞ1b2X2ðsÞ1ZðsÞ using ordinary least squares to estimate the coefficients. An exponential variogram is
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fitted to the empirical isotropic variogram based on observed residuals Z(s). The empirical variogram is
defined as

cðhÞ5 1
2

Var½ZðsiÞ2ZðsjÞ& (3)

where h5jjsi2sjjj is the Euclidean distance between observation locations si and sj. The effective range (/)
of this empirical variogram is used as a midpoint for the uniform prior distribution defined above, with
upper and lower bounds defined as 175% and 275% of the midpoint value—e.g., with lower bound 0:25/
and upper bound 1:75/. The range parameter theoretically has a finite range and this approach provides a
wide yet realistic region. Restricting the prior range in an ad hoc manner such as this is necessary for the
spatial parameters since they are inconsistently estimable under infill asymptotics [Zhang, 2004]. Fortu-
nately, even though the pair of variance and range are not consistently estimable, a quantity that involves
both is consistently estimable, and it is this quantity that is important for spatial prediction. We then define
h as a vector of all model parameters,

h5fb1; b2; r
2;/g (4)

The parameters are estimated in a Bayesian framework, wherein we seek the posterior distribution of h—e.g.,
the conditional distribution of h given the data, pðhjYobsÞ—which can be expressed using Bayes’ rule as follows:

pðhjYobsÞ5
pðYobsjhÞpðhÞ

pðYobsÞ
/ pðYobsjhÞpðhÞ (5)

where pðYobsjhÞ is the likelihood function for the observed data given the parameters and pðhÞ is the prior joint
distribution of the parameters. Assuming independence of the prior distributions of the parameters, the prior joint
distribution of parameters factors into the product of the prior distributions, and the posterior density simplifies to

pðhjYobsÞ / pðYobsjhÞ
Y

i

pðhiÞ (6)

The posterior distributions of the parameters are obtained using MCMC simulations [Gallagher et al., 2009],
the standard method for parameter estimation in a Bayesian framework. The MCMC routine samples param-
eter values from their respective prior distributions, which are accepted (or rejected) using the traditional
Metropolis ratio [Metropolis et al., 1953]. To obtain robust posterior distributions of these parameters, 15,000
MCMC simulations are carried out, thus yielding 15,000 values of h. However, due to a necessary burn-in
time, the first 5,000 values are discarded, leaving us with 10,000 posterior samples [Finley et al., 2009]. To
ensure convergence, trace plots for all model parameters were visually inspected and verified.

In some statistical applications, the posterior distributions of the model parameters are of primary interest.
However, for our blending purposes, we seek the posterior predictive distribution of the process.

f ðYobsðs
0
iÞjYobsÞ5

ð
f ðYobsðs

0
iÞ; hjYobsÞdh (7)

Specifically, at a new set of spatial locations s
0
i; i51; . . . ; n, we seek the conditional distribution

pðYobsðs
0
1Þ; . . . ; Yobsðs

0
nÞ; hjYobsÞ. Samples from this posterior predictive distribution can be readily generated

based on the MCMC posterior samples. To sample from this distribution, we first sample from the posterior
of h, followed by a sample from the conditional distribution of Yobsðs

0
iÞjYobs. Repeating this procedure

numerous times provides samples from the posterior predictive distribution. In particular, with the posterior
predictive samples of the rainfall process at each grid point, it is possible to create spatial maps of the
mean, median, and confidence intervals (e.g., 5th and 95th percentiles) of predicted rainfall.

In this research, the ‘‘spBayes’’ library [Finley and Banerjee, 2013] in R [R Development Core Team, 2011] is used for
model fitting, as it is capable of fitting multivariate spatiotemporal models using MCMC simulation. The spatial
estimation process, via ordinary kriging, is carried out in R as well, utilizing the ‘‘fields’’ library [Furrer et al., 2012].

4. Results

Analysis of the results is divided into the following categories: model fitting, model validation, model pre-
dictions, and performance evaluation for wet events. Analysis was performed on several months but we
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focus on monthly accumulations for January and July 2009—representative dry and wet months, respec-
tively—as well as the fourth pentad of August (P4) 2009, as it is one of the wettest pentads of 2009 (yielding
a maximum observation of 385 mm where the CHIRP reports only 130 mm). However, in the interest of
space we show results for July and discuss the results for January and P4. Figures for January can be seen in
Verdin [2013, chap. 3]; figures for P4 can be found in the supporting information of this manuscript.

4.1. Model Fitting
The prior and posterior distributions for the model parameters for July can be seen in Figure 2. Interpreta-
tion of these parameters can be suspect due to spatial confounding issues [Paciorek, 2010]. Posterior sam-
ples indicate substantially different parameter regions than the prior distributions, indicating Bayesian
learning has occurred. Posterior convergence was assessed by visually inspecting trace plots (not shown). It
should be noted that, although the prior distributions for the b parameters are assumed independent, the
posterior distributions exhibit dependent tendencies. There is nonnegligible negative correlation between
b1 and b2. It should also be noted that in Figure 2 the prior distributions for the b parameters appear to be
zero, when in fact the flat priors have such wide ranges that, when compared to the nicely converged pos-
terior distributions of the b parameters, they only appear to be zero. The posterior distribution for / is
imperfect due to a well-documented problem with identifying r2 and / simultaneously. Even though the
spatial variance and range parameter are inconsistently estimable within an infill asymptotics framework,
for the purposes of spatial prediction, optimal predictions can still be made [Zhang, 2004]. Results are con-
sistent from monthly to pentadal temporal scales, with only a change in magnitude for the kriging parame-
ters r and /. Figure 3a shows the empirical and theoretical variograms based on median parameters of the
posterior distributions shown in Figure 2. The theoretical variogram matches the empirical variogram
closely—as is the case for January and P4—which indicates a good fit. Random samples from these poste-
rior distributions were used to produce posterior predictive distributions of the models’ estimates of precip-
itation at each observation location si. For each parameter, a random value from its respective posterior

Figure 2. Prior (dashed lines) and posterior (solid lines) distributions for July 2009; (a and b) Regression coefficients and (c and d) kriging
parameters.
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distribution is sampled. With the values of b1 and b2 we may reproduce the mean function; with kriging
parameters r and / we may produce the corresponding residuals.

4.2. Model Validation
To test the out-of-sample predictability of the BK model, leave-one-out cross validation (LOOCV) was carried
out 10,000 times to produce a full conditional distribution of predicted values. LOOCV is a validation proce-
dure wherein one observation Yobsi and its covariates are dropped from the model fitting process and this
model is used to estimate the dropped observation. Because the observation and its covariates were not
included in the model, its estimate may be treated as a prediction. This process is repeated until all observa-
tions have been predicted, thus producing an ensemble of predictions that may be compared to the obser-
vations. Scatterplots are shown (Figure 3b) and summary statistics are calculated for the median of the full
conditional distribution and are reported below. For a more robust comparison, a residual kriging (RK)
model with easting, northing and elevation as covariates (as defined in Verdin [2013, chap. 2]) is also vali-
dated and discussed alongside the BK model and CHIRP. A nonparametric local polynomial method was
compared alongside RK in Verdin [2013, chap. 2], and has been shown to be comparable in skill, thus will
not be discussed. For a complete comparison of RK to local polynomial, see Verdin [2013, chap. 2]. Another
more intense validation method was carried out by randomly dropping 25% of the observations, fitting the
model on the remaining data, and predicting the dropped points. Three skill measures, root mean square
error (RMSE; equation (8)), mean absolute error (MAE; equation (9)), and percent bias (% Bias; equation (10))
were computed, where N denotes the number of dropped observations. To quantify the variability of model
skill, this was repeated 100 times—such that each iteration has an independent random sample of dropped
observations—and the skill measures are shown as boxplots in Figure 4. For comparison, the skill measures
of the CHIRP product are included as dots. To further stress the predictive capability of the model, the afore-
mentioned validation technique was repeated with 50% of the observations being dropped. Figure 3b
shows the median LOOCV results for July; Figure 4 shows the boxplots of skill measures from the drop-50%
cross-validation procedure for July—drop-25% results can be seen in Verdin [2013, chap. 3]. Note the valida-
tion statistics are similar for all months and pentads in the test period.

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i51

ðŶ obs2YobsÞ2
vuut (8)

MAE5
1
N

XN

i51

jŶ obs2Yobsj (9)

Figure 3. July 2009 precipitation—(a) empirical (black) and theoretical (red) variograms based on median parameters of the posterior distributions shown in Figure 2, (b) median leave-
one-out cross-validation performance.
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For January—or any month where the CHIRP is a good estimator of precipitation totals—the LOOCV output
proves the BK model is capable of reducing both bias and error of the CHIRP. RMSE for BK is 70 mm, RK is
76 mm, while that of the CHIRP is 76 mm. MAE is 45 mm for BK, 51 mm for RK, while CHIRP is 50 mm. The
resulting bias from BK is only 0.3%, that from RK is 0%, while the CHIRP has inherent bias of 211.1%. Simi-
larly, for July—or any month where the CHIRP fails in estimating precipitation totals—the LOOCV output of
the BK model effectively eliminates bias and greatly reduces the inherent satellite errors. RMSE for BK is
118 mm, RK is 139 mm, while that of the CHIRP is 200 mm. MAE is 79 mm for BK, 99 mm for RK, while CHIRP
is 154 mm. The resulting bias from BK is 0.0%, RK has a mere 0.4%, both of which have diminished greatly
from 249%, the bias of the CHIRP product. For P4, the representative wet pentad, LOOCV produces results
proving that the model eliminates bias and reduces error. For the BK model, RMSE is 38 mm, RK is 37 mm,
while that of the CHIRP product is 40 mm. Similarly, MAE is 25 mm for both BK and RK, while that of the
CHIRP product is 26 mm. The resulting bias from BK is only 0.1%, RK has 1% bias, and the CHIRP product
has inherent bias of 221.4%.

Figure 4 reports the results of the drop-50% validation measure—proving that the BK model greatly
reduces error and bias when compared to the CHIRP. Both RMSE and MAE were reduced by at least 30%,
but the most striking result is the reduction in bias from 249% to nearly zero for both validation measures.
The results from drop-25% are comparable to those shown in Figure 4. Similar results were obtained for
other months (figures not shown). For the pentadal scale, the median values of RMSE and MAE from cross
validation are similar in magnitude to the CHIRP, though there is a significant reduction in % Bias. The pen-
tad considered is one of the wettest, thus when 25% and 50% of observations are dropped from the
model-fitting process its predictive ability is compromised. Considering this, the performance of the blend-
ing method is very good.

4.3. Model Predictions From Blending
The fitted models were used to make blended predictions on the CHIRP grid. As mentioned above, 15,000
samples from the posterior distributions of the parameters are used to obtain 15,000 estimates of rainfall at
each grid point—with the first 5,000 discarded as burn in. For point-level support, the median (or mean) of
the 10,000 remaining estimates may be plotted on the CHIRP grid. Note that the posterior predictive sample
distributions from the BK model are Gaussian, such that the medians and means are effectively equal
(please see Figure 13 in the supporting information for a figure depicting the 95% uncertainty envelope
with respect to the observed values). Similarly, a robust confidence interval (5th and 95th percentile) can be
computed to visualize and quantify the range of uncertainty in the model’s predictions. These gridded

Figure 4. Drop-50% validation for July 2009 precipitation, (a) RMSE, (b) MAE, and (c) % Bias (CHIRP statistics shown as point).
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products are shown in Figure 5 for July. For ease of visualization, ‘‘wet’’ values (defined as exceeding the
85th percentile of all gauge measurements for a given month) are plotted as the same deep blue color.

Figure 5c shows the difference between the median BK blended estimates and CHIRP, illustrating that the
blended estimates are higher over Nicaragua and Colombia, consistent with topography. There are very few
regions with blended estimates lower than the CHIRP values, confirming its wet season underestimation
tendencies with respect to rain gauge measurements.

The spatial maps of 5th and 95th percentiles from the predictive posterior distributions (Figure 6) also show
consistent behavior with elevation. The difference between the lower bound and upper bound of this confi-
dence interval is nonnegligible. However, access to the full distribution is helpful for better informing deci-
sion makers of drought and flood risks. Regions with low probability of supporting agriculture, or high
probability of extreme precipitation, can be identified. The kriging standard deviation is quantified and
shown in Figure 6c, showing that the uncertainty is greatest at locations furthest from observation
locations.

Median blended estimates improve upon the CHIRP similarly for January—the greatest change occurring
along the Caribbean coast of Honduras and Nicaragua, where the CHIRP overestimates the magnitude of
precipitation by at least 100 mm. The magnitude of change from the CHIRP due to blending is small and
has spatial coherency. There are many localized events in Colombia, implying there is great variability of
rainfall even in this representative dry month. Further, it is apparent that much of the change is due to the
estimation of the residual, Z, since CHIRP is a largely unbiased estimator during this month. Robust confi-
dence intervals show a very small range, implying that this model is consistent in its estimation process.

Figure 5. July 2009 precipitation—(a and b) CHIRP and Bayesian median predictive blended estimates, respectively; station values on same color scale, (c) difference between Bayesian
median predictive blended estimates and CHIRP (e.g., positive values indicate increase from CHIRP).
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Similarly for P4, median blended estimates are higher over much of Nicaragua and Colombia, indicating the
model has predicted more rain in these regions, which is corroborated by the observations. Similar to the
monthly blended estimates, the regions of greatest increase for this pentad have a spatial pattern consist-
ent with topography and the CHIRP estimate. Areas of increase and decrease are about equal, consistent
with the tendency of the CHIRP to over and underestimate low and high-magnitude precipitation events,
respectively, at the pentadal scale. The robust confidence interval of the posterior predictive samples is con-
sistent from monthly to pentadal scale. The uncertainty in the kriging estimates is also similar in spatial
structure, but smaller in magnitude when compared to monthly uncertainty.

4.4. Model Performance on Wet Events
Although the model presented in this research does not explicitly account for extremes, it is worthwhile to
analyze its performance on wet events. As previously noted, satellite-derived precipitation estimates tend
to underestimate wet events, thus biasing the risk and reliability analyses when used for hydrological mod-
eling purposes. Good estimation of wet events is important for hydroclimatic hazard mitigation. The haz-
ards associated with wet events consist of floods, landslides, and agricultural overland flow, all of which are
destructive to a nation’s infrastructure. We define a wet event at a location where monthly (pentadal) rain-
fall exceeds the 85th percentile of all rain gauge measurements for that month (pentad). For July, this quan-
tity is 410 mm/month. The locations of these events and the majority of wet events occur in the
mountainous and coastal regions (see Figure 1). Table 1 summarizes how blending with the BK model con-
sistently improves the performance of the satellite estimate with respect to wet events. These statistics are

Figure 6. July 2009 precipitation—(a and b) 5th and 95th percentile of Bayesian predictive blended estimates, respectively; station values on same color scale, (c) kriging standard devia-
tion from median parameters of the posterior distributions.
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computed from median LOOCV estimates. For a more
robust comparison, statistics from the RK model are
shown as well.

As can be seen in Table 1, the BK blending method has a
strong positive impact on CHIRP performance with
respect to wet precipitation events. Validation statistics
indicate that blending reduces the error and inherent

bias of the CHIRP satellite estimate. It should be noted that models for all months—as well as the pentadal
model—in 2009 show similar skill with respect to wet events, thus it is worthwhile to implement this blend-
ing method on all available data to produce a more representative gridded time series of precipitation.

5. Summary and Conclusions

An approach for blending satellite-derived precipitation estimates with rain gauge measurements has been
applied and validated with application in a Central and South American region. This blending method incorpo-
rates a Bayesian framework wherein precipitation at any location is assumed to be a realization of a Gaussian
process, the mean estimates of which are modeled as a linear function of covariates (e.g., satellite-derived esti-
mates and elevation). The residuals from this linear function are modeled as a spatial process using ordinary krig-
ing. Prior distributions are defined and the posterior distributions of the model’s parameters are obtained via
MCMC, thus providing a complete representation of the variability and a quantification of the uncertainty in the
parameters. The posterior distributions are used to produce predictive posterior distributions of precipitation,
along with the respective probability density functions of precipitation estimates, at any arbitrary location.

The model was applied to January and July 2009 precipitation—dry and wet months, respectively—which
showed very good model fits. As expected, the model is an exact fit at the observations due to the zero
nugget. Leave-one-out, as well as drop-25% and drop-50%, cross-validation predictions of the model all
showed good skill especially in eliminating all of the bias prevalent in satellite-derived estimates. Spatial
estimates of blended precipitation showed robust and consistent improvements in that satellite estimates
were enhanced appropriately based on the precipitation values of the surrounding gauges. The model was
also tested with equally skillful performance on pentad time scales where the rainfall process is much more
erratic and lacks spatial structure. The Bayesian kriging model proposed here has produced robust spatial
precipitation maps, with full distributions at each grid cell, in near-real-time that will be of immense use in
hydrologic and hazard models to provide risk estimates of various hazards in space, which can be used in
mitigation efforts. Furthermore, this method offers a complementary suite to the standard methods based
on kriging and less traditional k-nearest neighbor local polynomial [Verdin, 2013, chap. 2].

One of the major drawbacks of the blending method proposed here is the Gaussian assumption. Precipita-
tion has positive support, thus a Gaussian assumption can result in negative estimates of precipitation in
very dry regions. At coarse (i.e., monthly) temporal scales, however, this is rare. This Gaussian assumption is
unique to each location s at every time t, and therefore is much more reasonable than to assume all resid-
uals can be described by a single Gaussian distribution. It is not assumed all residuals at time t will be best
described as Gaussian, rather each residual is uniquely Gaussian. Unfortunately, at finer temporal scales (i.e.,
daily) the Gaussian assumption is invalid. However, blended estimates of precipitation on pentadal time
scales during wet seasons can provide insight into risk-prone regions of river basins, drive hydrologic mod-
els for modeling soil moisture, and help identify the potential for flooding and landslides.

The assumption of stationarity over a large spatial domain is another drawback of this blending method.
However, the inclusion of elevation in the model structure does help to capture the nonstationarity in pre-
cipitation induced by elevation—which is a major contributor. The details of explicitly defining a nonsta-
tionary modeling framework are beyond the scope of this research. This manuscript is presented to provide
a natural starting point for future research into this problem, which will address these apparent
shortcomings.

Another relevant drawback of this method is that the satellite’s gridded areal estimates are not downscaled
for direct comparison to in situ measurements. However, the resolution of the satellite estimate is substan-
tially fine (5 km 3 5 km) that it is rare for multiple measurements to fall in the same grid cell. Still, there is

Table 1. Summary Statistics of Blending Performance on
Wet Precipitation Events for July 2009

RMSE (mm) MAE (mm) % Bias

Original CHIRP 386 344 258.8%
Bayesian kriging 222 159 219.2%
Residual kriging 322 279 247.8%
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obvious misalignment in spatial scales, prompting the authors to consider a downscaling similar to Berrocal
et al. [2010] in future work. Another shortcoming of this methodology is that it is applied separately for all
available temporal snapshots—e.g., individual months or pentads. However, time series of precipitation
(both satellite and gauge) are available, and incorporating the temporal variability can provide greater accu-
racy and reduce processing time for near-real-time application. This would involve fitting a separate gener-
alized linear model for each gauged location using all the data available in time and fitting a spatial process
for each model parameter. Thus, estimation of precipitation at any location would involve first obtaining
the estimates of model parameters from the respective spatial process models and then combining in the
hierarchy to obtain the precipitation estimates. The hierarchy could be non-Bayesian [Verdin, 2013, chap. 4],
latent Gaussian process models [Kleiber et al., 2012], or a Bayesian approach used in other applications, par-
ticularly of modeling spatial extremes [Cooley et al., 2007; Cooley and Sain, 2010]. The use of temporal vari-
ability can help improve the near-real-time blended estimates by incorporating climate drivers that
modulate the precipitation variability.
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