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Kriging and Local Polynomial Methods for Blending
Satellite-Derived and Gauge Precipitation Estimates

to Support Hydrologic Early Warning Systems
Andrew Verdin, Chris Funk, Balaji Rajagopalan, and William Kleiber

Abstract—Robust estimates of precipitation in space and time
are important for efficient natural resource management and for
mitigating natural hazards. This is particularly true in regions
with developing infrastructure and regions that are frequently ex-
posed to extreme events. Gauge observations of rainfall are sparse
but capture the precipitation process with high fidelity. Due to
its high resolution and complete spatial coverage, satellite-derived
rainfall data are an attractive alternative in data-sparse regions
and are often used to support hydrometeorological early warning
systems. Satellite-derived precipitation data, however, tend to un-
derrepresent extreme precipitation events. Thus, it is often desir-
able to blend spatially extensive satellite-derived rainfall estimates
with high-fidelity rain gauge observations to obtain more accurate
precipitation estimates. In this research, we use two different
methods, namely, ordinary kriging and k-nearest neighbor local
polynomials, to blend rain gauge observations with the Climate
Hazards Group Infrared Precipitation satellite-derived precipi-
tation estimates in data-sparse Central America and Colombia.
The utility of these methods in producing blended precipitation
estimates at pentadal (five-day) and monthly time scales is demon-
strated. We find that these blending methods significantly improve
the satellite-derived estimates and are competitive in their ability
to capture extreme precipitation.

Index Terms—Blending data, hydrologic early warning systems,
local polynomials, ordinary kriging, rainfall estimation.

I. INTRODUCTION

D ROUGHT and flood management practices require
accurate estimates of precipitation in space and time.

Observations from properly sited, calibrated, and maintained
rain gauges are the most reliable source of information as they
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are direct measurements of the physical process. However, in
regions of complex terrain, rain gauge data are often sparse,
clustered in valleys or populated regions, and can be of poor
temporal consistency. In mountainous areas, the spatial extent
of extreme precipitation events tends to be underrepresented
due to complications associated with the regular upkeep and
data retrieval from high-elevation weather stations. In addition,
mountains tend to receive more precipitation than valleys,
particularly in tropical regions, which is due largely to the
effects orography has on precipitation [46]. Satellite-derived
rainfall data are an attractive alternative in such regions and are
widely used, largely due to their ability to provide good spatial
coverage. However, these estimates provide areal averages and
tend to underestimate the magnitude of extreme precipitation
events [2]. Other issues with satellite-derived precipitation
estimates include their dependence on retrieval algorithms
and the indirect relationship between satellite remote sensing
measurements and precipitation intensities, which can lead to
numerically inaccurate precipitation estimates [2], [12], [48].
To take advantage of the strengths of both data sources, it seems
best to blend satellite-derived rainfall data of extensive spatial
coverage with rain gauge observations of high fidelity.

Much of the research in this field involves deriving precip-
itation estimates from satellite measurements of microwave,
infrared, and other signals. The Climate Prediction Center mor-
phing method [22] produces half-hourly global precipitation es-
timates derived from passive microwave data. The One-Degree
Daily [20] technique produces daily global precipitation esti-
mates derived from the Threshold-Matched Precipitation Index
for tropical and subtropical global regions (40◦ N−40◦ S). The
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks [40] produces half-hourly
global precipitation estimates derived from geosynchronous
satellite long-wave infrared imagery and is automatically up-
dated by incorporating the instantaneous rain-rate estimates
from the Tropical Rainfall Measuring Mission [25] into the
network parameter calibration process. The TRMM Multi-
satellite Precipitation Analysis (TMPA) [21] produces 3-hourly
global precipitation estimates derived from a calibrated com-
bination of passive microwave precipitation estimates and
infrared precipitation estimates. The TMPA also provides a
delayed product (TMPA 3B42V6) that incorporates rain gauge
data, effectively improving the analysis.

The products described above are produced in near real time,
thus generally cannot incorporate rain gauge measurements.
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One of the more widely used products that incorporate rain
gauge measurements is the CPC Merged Analysis of Pre-
cipitation (CMAP) [48], which covers the period from 1979
through 2012. CMAP linearly combines satellite-derived esti-
mates (based on infrared, microwave scattering, and microwave
emission methods) with output from the NCEP/NCAR Re-
analysis project [23] through the maximum-likelihood estima-
tion method. The Global Precipitation Climatology Project [1]
provides global monthly precipitation analyses, also beginning
in 1979, produced by merging interpolated rain gauge data
provided by the Global Precipitation Climatology Center. The
multisatellite estimate, which is derived from microwave and
infrared radiation sensors, is bias corrected with respect to the
gauge analysis and then combined with the gauge analysis via
inverse-error-variance weighting.

It is known that satellite estimates can have substantial biases
[2], [12], [48], often underestimating heavy rainfall amounts.
Many products address this issue by combining near-real-time
satellite-derived estimates with gauge-based analyses. Xie and
Xiong [49] offer an approach where, first, the probability
density function of the satellite data is matched with that of
the gauge data and, then, an optimal interpolation technique is
implemented to combine the bias-corrected satellite estimates
with the gauge data. Lin and Wang [28] offer an approach to
merge multiple bias-corrected satellite precipitation estimates,
quantifying and removing the bias by comparison to the respec-
tive rain gauge observations.

Specific to this research, recent South American rainfall
estimation work has focused on improving real-time satellite-
derived precipitation estimates using robust bias correction
measures. Vila et al. [45] developed a stepwise method for
merging daily TMPA real-time (version 3B42RT) output with
site-specific data for the South American continent. Two bias
correction schemes are implemented: one that uses the ratio
of observed and estimated rainfall and another that uses the
difference. The final estimate is a weighted combination of
the two schemes that minimize error and bias and was shown
to have better performance than the TMPA 3B42V6 product.
Rozante et al. [39] provide a blending technique known as
MERGE that uses the Barnes objective analysis method to
interpolate and combine TRMM satellite estimates with rain
gauge data. The MERGE algorithm provides a quick and
efficient technique for combining satellite and surface obser-
vations, specifically in regions with sparsely distributed gauge
observations.

In this paper, we examine alternative approaches to blend-
ing satellite-derived precipitation estimates with rain gauge
measurements, similar to the work of Vila et al. [45] and
Rozante et al. [39]. The methods explored here utilize two
sources of regional climate information: kriging, which takes
advantage of the spatial variogram to define optimal interpola-
tion weights, and k-nearest neighbor local polynomials, which
uses generalized cross-validation (GCV) to optimize local fits
to location and elevation surfaces. It should be noted that
there have been numerous powerful extensions to the ordinary
kriging model used in this research, including universal kriging,
kriging with external drift, and regression kriging; greater detail
may be found in standard textbooks on geostatistics [7]. The

Fig. 1. Study region geography, z-scale is elevation (meters). Gauge observa-
tion locations are shown in black; locations of extreme monthly precipitation
for July 2009 are in white.

research presented here is application based, with emphasis
on simplicity. We aim to show that a generic ordinary kriging
model, conditioned on satellite estimation error, can be as
powerful as local regression. The simplicity of ordinary kriging
makes it a useful tool for use across all disciplines.

The study region and data are described in the following
section, followed by a description of the blending methodology,
in-depth descriptions of the kriging and local polynomials
frameworks, and finally, the results and discussion sections.

II. STUDY REGION AND DATA

A. Study Region

The study region for this research is equivalent to that in the
work of Verdin et al. [44], which covers a Central and South
American region, specifically Guatemala, Belize, El Salvador,
Honduras, Nicaragua, Costa Rica, Panama, Colombia, and
northwestern Venezuela (see Fig. 1). The dry season in the re-
gion extends from December through early May, and the effects
of both Pacific and Atlantic tropical weather systems are felt
during the wet season that extends from mid-May through
November. A major contributor to the prolonged wet season
is the intertropical convergence zone (ITCZ), which is an
asymmetric band of convection that encircles the globe. The
position of the ITCZ is nonstationary due to the seasonal shift
of the trade winds.

Another cause for intense spatial variability of rainfall within
the study region is its complex geography. Elevation of this area
ranges from sea level to over 4000 m (as shown in Fig. 1)
with numerous mountain ranges spanning Central America,
Colombia, and Venezuela. Costa Rica and Guatemala have
steep elevation gradients, making them vulnerable to extreme
weather spawning from both Pacific and Atlantic tropical
weather systems. Coastal mountain ranges cause an abrupt
rising of warm wet air. As this tropical air rises, it cools and
releases moisture from the air as precipitation. This is known
as orographic precipitation and is a major contributor to the
variability in extreme precipitation events in the region.
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B. Data

The data used in this research are equivalent to that of
Verdin et al. [44]. Two precipitation data sets are utilized in this
research: gauge measurements and satellite-derived estimates.
Rain gauge measurements are point values that tend to be
clustered in populous and lower elevation areas and sparsely
scattered throughout the domain; the satellite-derived estimates
are high-spatial-resolution areal averages for five-day accumu-
lations (pentads). The satellite-derived precipitation estimate
used in this research is the Climate Hazards Group Infrared
Precipitation (CHIRP) [13], which is a fine-resolution (0.05◦ ×
0.05◦ or approximately 5 km × 5 km) pentadal product with
temporal range from the first pentad of January 1981 through
the near-present. There are six pentads per month, regardless
of month length. For example, the sixth pentad of October will
consistently be the sum of the last six days, October 26–31. The
sixth pentad of February, however, will be the sum of either
three or four days, depending on leap year status. Pentads may
be summed up to obtain monthly totals of precipitation. The sta-
tion data are sparsely scattered throughout the region (shown in
Fig. 1) and were collected from partner sources of the Climate
Hazards Group (CHG) at the University of California, Santa
Barbara (UCSB); quality control and pentadal-aggregation
techniques similar to those in the work of Funk et al. [13] were
implemented by the CHG to produce time-series data of the
same temporal range as the available CHIRP products.

III. PROPOSED BLENDING METHODS

Before describing the methods, we introduce some notation.
Let Ysat(s) and Yobs(s) be the satellite estimates and gauge
observations at some location s, respectively. It is confirmed
that the satellite estimates are of such fine spatial resolution
(0.05◦ × 0.05◦) that a maximum of only one gauge obser-
vation falls within any grid cell. We assume that the fine
spatial resolution of the satellite estimates allows for a direct
comparison with the gauge observations. It is acknowledged
that a change of support problem is present here, which will
inherently include some error, but it is beyond the scope of
this research. Suppose the observation network has spatial
locations si, i = 1, . . . , Ns, where Ns is the number of gauge
locations with nonmissing data for a given pentad or month.
The rain gauge measurements are assigned to the nearest grid
cell of the satellite estimate, where the difference between
the measurements and the estimate is considered the satellite
error, i.e., r(si) = Yobs(si)− Ysat(si). Easting and northing
(calculated in kilometers from the Prime Meridian) are used as
spatial coordinates, where s ∈ R3 includes easting, northing,
and elevation.

As previously mentioned, satellite estimates tend to under-
represent the magnitude of extremes, which have a spatial
structure such that extremes for a given snapshot in time tend to
be related to location and elevation. This relationship suggests
that the satellite error also inherits a similar spatial structure.
The basis for the two blending methods used in this research
is the assumption that the satellite’s estimation error has an
inherent spatial structure defined by location and elevation.

The blending methods involve developing a model for the
dependent variable r(s) as a function of covariates: easting,
northing, and elevation. Note that elevation is included as a
covariate due to its direct influence on precipitation occurrence,
particularly in moist and tropical regions. Thus, at any desired
location, i.e., s, the estimated satellite error r̂(s) is added to the
satellite estimate at that location, i.e., Ysat(s), to obtain the es-
timate of true precipitation, i.e., Ŷobs(s) = Ysat(s) + r̂(s). The
two spatial models used in this study, namely, ordinary kriging
and k-nearest neighbor local polynomials, are described below.

A. Kriging

Kriging is a geostatistical approach for surface estimation
where the prediction at an unsampled location is calculated
as a weighted linear combination of the available data that
minimizes expected squared error [9]. This is a popular method
applied to a variety of hydrologic and climatological applica-
tions [3], [4], [11], [15], [18], [19], [24], [26], [41], [47]. A brief
description of the method is provided below, and the reader can
obtain details from the aforementioned references.

The weights for this linear combination are obtained from a
variogram, which defines the spatial variability of the depen-
dent variable. Under the assumption of weak stationarity, the
variogram of a given process is defined as

γ(h) =
1

2
Var [r(si)− r(sj)] (1)

where h = ‖si − sj‖ is the Euclidean distance between obser-
vation locations si and sj . Note that the value of h has units of
meters because latitude and longitude are converted into easting
and northing. The empirical variogram is defined as

γ̃(h) =
1

2 |N(h)|
∑

(i,j)∈N(h)

|r(si)− r(sj)|2 (2)

where N(h) represents the set of observation pairs, and |N(h)|
represents the number of observation pairs si and sj that fall
within a tolerance of a given lag |si − sj | = h [10]. To this, an
exponential model variogram is fitted by minimizing the errors
|γ̃(h)− γ(h)| and has the following form:

γ(h) = C0 + C1

(
1− exp

(
−3|h|

a

))
, |h| ≥ 0 (3)

where C0 is the nugget effect, or the result of dissimilarity of
sample values separated by small distances; a is the effective
range, or the distance at which 95% of the sill is reached;
and C0 + C1 is the sill, or the maximum variogram value. The
parameters of the model variogram are fitted from the binned
empirical variogram, the details of which can be found in the
work of Cressie [10].

The estimate of the dependent variable at any desired lo-
cation s is obtained as a weighted combination of all the
observations as follows:

r(s) =

Ns∑
i=1

λir(si). (4)
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The kriging weights λi are obtained as a solution to the
constrained optimization problem, i.e.,

Minimize L = E (r(s)− r̂(s))2 (5)

with the constraint that the weights λi must sum up to 1. The
standard error of the kriging predictor is the square root of the
predictive mean squared error at the minimized value of L.
The implementation can be summarized as follows.

1) Compute the empirical variogram from all pairs of obser-
vation locations.

2) Fit a theoretical variogram to the binned empirical
variogram, obtaining the parameter estimates for nugget,
sill, and range.

3) At any desired point s, obtain kriging weights via the
constrained optimization problem and produce the kriged
estimate.

B. k-Nearest Neighbor Local Polynomials

In the context of this paper, we seek the following functional
model:

r̂ = f(s) + ε (6)

where f represents a mean function that is fit to a set of predic-
tor variables s = (easting, northing, elevation); any number
of additional variables can also be included. r̂ is the dependent
variable of interest, and ε is the independent normally distrib-
uted (with mean 0 and unknown variance σ2) residual term.

In a traditional approach, f is linear and estimated globally
(e.g., using all the observations) leading to the familiar linear
regression; in this application, it would be

f(s) = β0 + β1X1 + β2X2 + β3X3 (7)

where X1, X2, and X3 represent easting, northing, and ele-
vation, respectively. The β coefficients are estimated by min-
imizing the mean squared errors. Linear regression has theory
that is well developed, is widely used, and can be found in any
standard book [17], [37].

The global estimation of the function has several drawbacks,
including 1) the assumption of a linear relationship between
the independent and predictor variables over the entire range
when local nonlinearities may be present, 2) the assumption of
normality of input data and errors, 3) that model parameters are
greatly influenced by outliers, and 4) that higher-order models
require large amounts of data to fit [27], [29], [36].

A “local” or nonparametric regression method can offer
an attractive alternative to alleviate the drawbacks of global
function estimation. In this method, the estimate of the function
at a point is influenced only by data points within a small neigh-
borhood surrounding that point, thus providing the capability
to better represent local nonlinearities in the data. Many local
estimation procedures have been theorized and tested, including
splines, kernel-based estimation [5], and local polynomials
[29], [35]. Local polynomials are easy to understand and im-
plement, while also offering a robust and flexible approach
in estimating a variety of functions, particularly in higher
dimensions. Local polynomial function estimation has been
widely used in a variety of applications, such as streamflow

and salinity modeling [32], [33], streamflow forecasting [6],
[16], [38], spatial estimates of precipitation [35], water quality
modeling [42], and many other applications.

The methodology and the implementation steps are briefly
described below; see the aforementioned references for details,
particularly that by Loader [29]. In this method, a local regres-
sion of order p (e.g., local polynomial) is fit at a desired point
of interest, i.e., s, based on a neighborhood of size k = αNs,
where Ns is the total number of observations, and α is a
fraction of observations that varies on the interval (0,1]. The
k-nearest neighbors of s are identified and weighted based on
their proximity [29], and then, weighted least squares is used
to fit the local polynomial or local regression of order p. This
fitted polynomial is used to obtain an estimate of the function
at the desired point s. The process is repeated for each point of
interest. Regression theory provides the error of the estimate
and, consequently, confidence and prediction intervals. Note
that a local polynomial model with α = 1, p = 1, and equal
weights will reduce to the traditional linear regression, thus
making it a general framework for function estimation.

To determine the appropriate values of α and p, objective
criteria such as GCV [8] are used. The GCV function is
calculated for a suite of α and p values, and the combination
with the minimum value is selected to be best. GCV can also
be used to select the best subset of covariates [38]. The GCV
objective function is calculated as

GCV(α, p) =

∑N
i=1

e2i
N

(1 − q
N )2

(8)

where q refers to the number of model parameters in the current
model, N is the total number of observations in the current
model, and ei is the residual for the ith data point. The de-
nominator penalizes model complexity, thus seeking a balance
between reducing errors in the numerator and complexity.

Confidence intervals of the estimate are based on estimates
of standard error from the local regressions that are consistent
with linear regression theory. Testing the significance of the
local polynomial model with respect to alternate models such
as linear regression is also done in the usual analysis of variance
(ANOVA) approach; these are described in detail in [29].

Note that the kriging method also estimates the weights
contributed by each observation point to the functional estimate
at the desired point. However, the weights in kriging are ob-
tained based on the fitted theoretical variogram, whereas in the
local polynomial estimation procedure, they are estimated in
a data-driven manner. Under some conditions, kriging can be
considered as equivalent to an appropriate order spline function
[31]. The goodness of the theoretical variogram is the key for
good estimates from kriging, which can be difficult in practice,
although other estimation methods are available.

IV. RESULTS

Both ordinary kriging and k-nearest neighbor local poly-
nomials (hereafter LP) models are applied to monthly total
precipitation as well as a representative wet pentad for 2009.
This research focuses on 2009 due to newly available station
data for Colombia provided by partner sources of the CHG at
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Fig. 2. Empirical (points) and theoretical (line) variograms for January, April, July, and October 2009 (from left to right, respectively).

TABLE I
α, p, AND BEST SUBSET OF COVARIATES FOR LP MODEL

UCSB. Analysis of results is broken into the following cate-
gories: model fitting, prediction verification, estimated maps,
and performance on extreme events. Analysis was performed
on several months, but we focused on January and July 2009,
which are representative dry and wet months, respectively.
However, in the interest of space, we show results for July 2009
and discuss the results for January 2009; figures for January can
be seen in the work of Verdin [43].

Two packages (and functions) in the statistical software
program R [34] provide a straightforward and user-friendly
framework for implementing the kriging and LP models, re-
spectively: fields (Krig) [14] and locfit (locfit) [30].

A. Model Fitting

The first step in kriging is to estimate the empirical var-
iogram, from which a theoretical variogram is fitted, which
can be seen for select months of 2009 in Fig. 2. Note that
the distance h is a normalized Euclidean distance with units in
meters. The modeled variograms are very good at describing the
spatial variability of the satellite error for a variety of months.

To summarize the LP model, Table I reports the values of α,
p, and the best subset of covariates as selected by GCV. The
fraction of neighbors is small, and the order is generally linear
(October and November yield order 0, or weighted moving
average), which implies that there is great predictive skill in
estimating the process locally. Moreover, note that x and y
(easting and northing) are consistently selected as the best
subset of covariates for the LP model.

The satellite error estimates are obtained from the two
models at each observed location, and the CHIRP product is
added to the error estimates to obtain the blended precipitation
estimates. Both of these models show good skill in estimating

TABLE II
SUMMARY STATISTICS REFLECTING MODEL

PERFORMANCE FOR MONTHS IN 2009

the observed rainfall values (see Table II for the summary
statistics of all months in 2009).

As can be seen in Table II, the CHIRP estimate generally
has poor representativeness of the gauge measurements, with
bias values ranging from −49% to 25.7%. Similarly, its root-
mean-square error (RMSE) values are quite large, with a range
from 67 to 200 mm. The kriging model shows very low RMSE
(all months report RMSE values lower than 10 mm) and no bias
(consistently at 0.0%). However, kriging is an exact estimator;
thus, no bias is expected. The LP model produces bias values
with a range of less than ±1%; its RMSE values have a range
of 44.1–89.7 mm.

B. Model Validation

To test the predictive capability of the models, cross-
validations are performed. First, a leave-one-out (LOO) cross-
validation is carried out, in which an observation and its
covariates are dropped, the models are fitted on the rest of the
data, and the dropped point is predicted using its covariates.
This process is repeated for every observation, thus producing a
vector of predicted values that can be validated using the vector
of observations. Fig. 3 shows the scatterplots of observed and
cross-validated estimates from the two models for July 2009;
the scatterplot of the CHIRP product is shown for comparison.
Both methods perform quite well in a cross-validated mode.
Note that in July (the wet season), both the models perform
much better than the CHIRP product. These findings are cor-
roborated in Table III, which reports the summary statistics for
LOO cross-validations.
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Fig. 3. Original CHIRP estimates (left) and LOO cross-validated estimates from kriging (middle) and LP (right) models for July 2009.

TABLE III
SUMMARY STATISTICS REFLECTING LOO CROSS-VALIDATION

PERFORMANCE FOR MONTHS IN 2009

Fig. 4. Prediction skill measures from drop-50% cross-validation for July 2009.
Black dots correspond to estimates from original CHIRP.

The months when both spatial models show modest improve-
ment in these measures are those when the CHIRP product has
good performance. Even in predictive mode, which genuinely
stresses the models, both blending methods improve upon the
CHIRP product.

In the second cross-validation procedure, 25% of the obser-
vations are dropped at random and are predicted with a model
fitted to the remaining data; this is repeated 500 times. Three
measures are computed: RMSE, mean absolute error (MAE),
and percent bias for each repetition. Drop-50% cross-validation
was also performed to further stress the models, and the results
are shown in Fig. 4. Note that the results from drop-25% cross-
validation are similar to those from drop-50%. The CHIRP
product has relatively poor performance, showing higher values
for these three measures. The median values of the measures
calculated from drop-50% cross-validation are comparable to
those of the measures calculated from LOO cross-validation
output.

Fig. 5. (a) Original CHIRP estimates. (b) and (c) Estimated satellite error field
from kriging and LP models. (d) and (e) Blended precipitation estimates from
kriging and LP models for July 2009.

For both models, there is considerable decrease in RMSE
and MAE for both drop-25% and -50% validation scenarios.
Similarly, both models reduce the bias to nearly zero compared
with the high bias in the CHIRP product. The validation perfor-
mance of these blending methods for other months is similar,
with varying magnitudes of improvement (figures not shown).

C. Spatial Estimation

The models were applied to obtain blended estimates of
precipitation on the satellite grid. Spatial maps of the estimates
and predicted errors are shown along with the observed fields.

Spatial maps for July 2009 are shown in Fig. 5. The CHIRP
product for July 2009 [see Fig. 5(a)] does a good job in captur-
ing the spatial pattern, but fails in representing the magnitude
of precipitation totals, which is due largely to July being a wet
month and the inherent underestimation of satellite products
during wet months. Problem areas include the Caribbean coast
of Panama and the Pacific coast of Colombia, where the CHIRP
product underestimates the magnitude of precipitation events.
The interpolated satellite error fields from the kriging and LP
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Fig. 6. Estimates of standard error of the satellite error field from (a) kriging
and (b) LP models for July 2009.

models are shown in Fig. 5(b) and (c), respectively. The kriging
estimates are consistent with the satellite error observations,
producing a smooth and continuous residual field. The LP
model also estimates values consistent with the satellite error
observations, but is vulnerable to extrapolation error in data-
sparse regions, such as Caribbean Venezuela. Fig. 5(d) and (e)
shows the blended CHIRP products from kriging and LP,
respectively. The blended estimates from the kriging model
produce a spatial pattern similar to the CHIRP product, due to
its tendency to estimate the expected value in regions of sparse
data. Because the LP model tends to extrapolate large values
of error, the blended estimates show large (and likely unwar-
ranted) changes to the CHIRP. Despite these discrepancies, both
models adjust the estimates to better match the observations in
the study region.

Standard errors of both models for July 2009 are shown
in Fig. 6. The standard errors of predictions from the kriging
model are much lower in the regions surrounding the gauges.
The LP model has much less uncertainty in its prediction
process throughout the domain because it uses local functional
estimation, which tends to have smaller variance [29].

The CHIRP product for January 2009 does a better job in
capturing the spatial pattern and magnitude of precipitation
totals when compared with that for July 2009, which is due
largely to January being a dry month. Dry months in the region
exhibit more widespread and spatially correlated events with
low variability, which propagates to the satellite error field.
Conversely, the presence of the ITCZ in wet months tends to
promote highly variable and localized events, thus deteriorating
the spatial correlation of the satellite error field. Regardless,
model performances are comparable to those from July 2009.

D. Performance on Extreme Events

Good estimation of extreme events is important for hydro-
climatic hazard mitigation, particularly during wet months.
The hazards associated with extreme events consist of floods,
landslides, and agriculture overland flow, all of which are de-
structive to a nation’s infrastructure. We define an extreme event
at a gauge where monthly rainfall exceeds the 85th percentile
of all observations for that month. The 85th percentile of July
2009 precipitation totals is 410 mm/month. The locations of
these gauges and the majority of extreme precipitation events
occur in the mountainous and coastal regions (see Fig. 1).

As can be seen in Table IV, both blending methods proposed
in this research have a great impact on the performance of
CHIRP with respect to extremes. These statistics are computed

TABLE IV
SUMMARY STATISTICS OF LOO CROSS-VALIDATION BLENDING

PERFORMANCE ON EXTREME EVENTS FOR JULY 2009

Fig. 7. Empirical (points) and theoretical (line) variogram for the fourth pentad
of August 2009.

TABLE V
SUMMARY STATISTICS REFLECTING MODEL PERFORMANCE

FOR THE FOURTH PENTAD OF AUGUST 2009

from LOO cross-validation output. Validation statistics indicate
that both blending methods reduce the error and inherent bias
of the CHIRP. It should be noted that models for all months in
2009 show similar skill with respect to extremes.

E. Application to Pentad Rainfall Estimation

Here, we investigate the utility of the two blending methods
to shorter temporal scales, such as pentad rainfall. This is of
interest for assisting with natural hazard mitigation strategies.
Accurate gridded estimates of precipitation on pentad time
scales during the wet season can provide insight into the wetter
regions of river basins, can be used to drive hydrologic models
for modeling soil moisture, and consequently provide better risk
analyses for flooding and landslides.

The fourth pentad of August 2009 will be used in this
application, as it is one of the wettest pentads of 2009, yielding
a maximum gauge observation of 385 mm where the CHIRP re-
ports only 130 mm. The two blending methods as applied to the
monthly precipitation described in the previous section are ap-
plied to this pentad data. Fig. 7 shows the empirical and theoret-
ical variograms for the satellite error. During this pentad, there
are multiple convective regimes that impact the spatial correla-
tion structure; thus, there is more scatter surrounding the theo-
retical variogram when compared with the monthly time scale.

The CHIRP product overestimates regions of low rainfall
while underestimating extremes. Table V reports the relative
performance of the CHIRP, as well as the performances of the
two blending methods.



VERDIN et al.: KRIGING AND LOCAL POLYNOMIAL METHODS FOR BLENDING PRECIPITATION ESTIMATES 2559

Fig. 8. Original CHIRP estimates (left) and LOO cross-validated estimates from kriging (middle) and LP (right) models for the fourth pentad of August 2009.

TABLE VI
SUMMARY STATISTICS REFLECTING LOO CROSS-VALIDATION

PERFORMANCE FOR THE FOURTH PENTAD OF AUGUST 2009

Fig. 9. Prediction skill measures from drop-50% cross-validation for the fourth
pentad of August 2009. Black dots correspond to estimates from original CHIRP.

LOO cross-validation analyses consistent with those of the
monthly totals section were carried out on this representative
wet pentad. These predictions are shown as scatterplots in
Fig. 8, and summary statistics are reported in Table VI.

Under LOO cross-validation stresses, the error statistics of
the two blending methods are comparable to that of the CHIRP
product. That being said, these blending methods eliminate the
large inherent bias of the CHIRP product even in predictive
mode, which is encouraging of the model’s predictive skill.
Both drop-25% and -50% validation techniques were applied to
this pentad, yielding results consistent with the monthly totals
section. Summary statistics for these validation scenarios are
shown in Fig. 9. For completeness, the appropriate statistics for
the CHIRP are shown as points.

Fig. 9 shows that both the kriging and LP models are robust
to the predictive stresses of validation measures, consistently
reducing both error and bias with respect to the CHIRP product.

The two blending methods were implemented in predictive
mode to estimate the pentadal satellite error at the resolution
of the CHIRP product, as in the monthly totals section. Spatial
maps of the CHIRP, model estimates of the satellite error, and
the blended CHIRP from kriging and LP models are shown
in Fig. 10.

Fig. 10. (a) Original CHIRP estimates. (b) and (c) Estimated satellite error
field from kriging and LP models. (d) and (e) Blended precipitation estimates
from kriging and LP models for the fourth pentad of August 2009.

Problem areas include the Caribbean coast of Belize and
eastern Guatemala, where the CHIRP product both over-
and underestimates rain gauge measurements, respectively
[see Fig. 10(a)]. Similarly, Colombia is a problem area where
the CHIRP underestimates the magnitude of precipitation
events on the Pacific coast and overestimates the magnitude of
inland rainfall.

The kriging model estimates relatively constant values of
satellite error for the Caribbean coast of Belize, although the
observations are dissimilar, but captures the spatial structure
of satellite error for Colombia [see Fig. 10(b)]. The LP model
produces a smooth spatial map of estimated satellite error,
consistent with the point values. This model captures both
positive (Belize, Colombia) and negative (Colombia) satellite
errors and better represents the sign and magnitude of predicted
errors along the Pacific coast of Colombia [see Fig. 10(c)].
However, there is obvious extrapolation error coupled with edge
effects in the southeastern corner of the study region.
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Fig. 11. Estimates of standard error of the satellite error field from (a) kriging
and (b) LP models for the fourth pentad of August 2009.

TABLE VII
SUMMARY STATISTICS OF LOO CROSS-VALIDATION BLENDING

PERFORMANCE ON EXTREME EVENTS FOR THE
FOURTH PENTAD OF AUGUST 2009

Fig. 10(d) and (e) shows the blended estimates from the krig-
ing and LP models, respectively. The kriging model produces
a blended product with similar spatial properties as the CHIRP
due to the predictive issues previously discussed. The LP model
tends to reduce or increase precipitation consistent with the
problem regions. However, the extrapolation and edge effects
seen in mainland Colombia [see Fig. 10(c)] cause the blended
product to underestimate where the CHIRP previously overes-
timated. Fig. 11 shows the standard error of predictions for the
kriging and LP models, which are similar in spatial pattern but
much smaller in magnitude to those for monthly totals.

To test the ability of these two blending methods in capturing
extreme precipitation, as before we define an extreme event at a
gauge where rainfall exceeds the 85th percentile of all observa-
tions for the pentad, in this case, 78 mm/pentad. The locations
of these gauges and the majority of extreme precipitation
events occur in the mountainous and coastal regions (consistent
with Fig. 1).

Table VII summarizes how the two blending methods im-
prove the performance of the satellite estimate with respect
to extremes. These statistics are computed from LOO cross-
validation output.

As seen in Table VII, the two blending methods proposed in
this research are portable from monthly to pentadal scales. Both
have positive impacts on the performance of the CHIRP with
respect to extremes. Validation statistics show that blending re-
duces the error and inherent bias of the CHIRP. In light of these
results, implementing these blending methods is encouraged to
produce a more accurate gridded time series of precipitation.

V. SUMMARY AND CONCLUSION

Satellite-derived estimates of precipitation are becoming
widely available and in near real time, which are significant as-
sets particularly for data-sparse regions. While these estimates
provide a window into the spatial distribution and extent of
precipitation, they tend to underestimate extreme precipitation
events. Rain gauge observations are generally the most reliable
method for capturing the magnitude of precipitation events, but

can be sparse in their spatial coverage, particularly in moun-
tainous regions. Thus, there is a clear need to blend information
from these two sources to provide robust estimates of the
underlying precipitation field and its uncertainty. To this end,
we offered two blending methods, namely, ordinary kriging and
k-nearest neighbor local polynomials, and demonstrated their
capabilities by applying them to precipitation data from the
mountainous regions of Central America and Colombia.

In these methods, the difference between gauge observations
and the nearest satellite grid cell is calculated; the two methods
are applied to this “satellite error” process. Thus, at any desired
location, the satellite error is estimated from the models and
added to the satellite-derived product to obtain the blended
precipitation estimate.

We found that both methods substantially improve the
satellite-derived products, particularly during the wet season
when the satellite-derived values consistently underestimate
extreme precipitation events. The models were also shown to
perform very well in drop-25% and drop-50% cross-validation
mode. The error statistics and inherent bias are generally much
lower when compared with the satellite estimates. The krig-
ing model, however, tends to predict the expected value of
the modeled process in data-sparse regions. This shortcoming
causes the blended estimate to have spatial properties similar
to the satellite-derived estimates. It follows that this model is
useful in regions with a well-distributed network of gauges, or
where isotropic spatial variability is a reasonable assumption
and no change in data-sparse regions is acceptable. The LP
model captures the spatial variability very well, supported by
local function estimation. Furthermore, the blended estimates
from the LP model incorporate the precipitation magnitudes
of rain gauge observations in a smooth function. However, the
LP model is much more sensitive to extrapolation and edge
effects than the kriging model. Therefore, the LP model is
most useful for smaller domains with great local nonlinearities
in precipitation, such as mountainous regions. To exploit the
strengths of both models, one could estimate the local error
trend with the LP model and interpolate via kriging.

What should be emphasized in this paper is that the ability of
the ordinary kriging model to withstand the stresses of cross-
validation is comparable to that of the k-nearest neighbor local
polynomials model, particularly in such a large domain. The
satellite-derived product’s error field is coherent and system-
atic such that local regression adds a minimal advantage to
this methodology. The inclusion of the satellite information
provides a sturdy backbone for an ordinary kriging model to
produce results on par with a local regression model. This
is encouraging in that scientists with limited statistical back-
ground can apply the methodology simply and swiftly. With
the tools provided in this study, it is possible to retroactively
improve satellite-derived estimates of precipitation, producing
a robust gridded time series of precipitation over any period
record, which is very useful for natural hazard mitigation and
management.

Since the satellite errors are spatially modeled, both satellite
and gauge precipitation data sets are required for blending. The
main assumption of these two proposed methods is that the
CHIRP products are unbiased estimators of the true underlying
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precipitation field and that only the satellite errors need to be
spatially modeled. It has been shown in this paper that CHIRP
estimates are indeed biased, to such a degree that it is necessary
to acknowledge this bias in the blending process. A hierarchical
approach seems appropriate, where the observed precipitation
is modeled as a function of CHIRP and other covariates, and
the residuals from this first level are spatially modeled [44].
This addresses both issues previously described. Hierarchical
modeling can be performed in a Bayesian framework, providing
a posterior distribution of the parameters and subsequently
that of the precipitation process at any desired location [44].
Consequently, the entire uncertainty of the parameters and esti-
mates are easily obtained. Another extension to this approach
would include the use of the entire time series of precipitation
at each gauged location. In this, the first level of hierarchy
previously mentioned is fitted as a generalized linear model
to the satellite estimates over the entire time period at each
location, and the parameters and residuals of this are spatially
modeled separately [43]. Any number of covariates, including
climate drivers, seasonal totals, or lagged seasonal totals, may
be easily incorporated. This simple extension can enable short-
term forecasting that will be of great use to decision makers and
resource managers.
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