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We present the application of a parametric stochastic weather generator within a nonstationary context,
enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The
generalized linear model framework of the weather generator allows any number of covariates to be
included, such as large-scale climate indices, local climate information, seasonal precipitation and
temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study,
but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total
precipitation and mean maximum and minimum temperatures as covariates for conditional simulation.
Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial aver-
age is the dominant mode of variability across the domain. We find this modification to be effective in
capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further
illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts
and multidecadal projections, both of which are generally of coarse resolution.
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appening
1. Introduction

Scientific and technological advances, together with awareness
of the importance of climate on human endeavors, are creating
increased worldwide demand for climate information. Fortunately,
our ability to monitor and predict variations in climate has
increased substantially (Barnston et al., 2010; Stockdale et al.,
2010). A number of groups now forecast climate conditions a few
seasons ahead (Goddard et al., 2003; Saha et al., 2006). Emerging
developments may enable climate projections 10–20 years into
the future, a scale intermediate between seasonal forecasts and
manmade climate change projections (Haines et al., 2009; Hurrell
et al., 2009; Meehl et al., 2009). These advances, however, must
be matched by a better understanding of how science can inform
climate-resilient planning and development (Stainforth et al.,
2007).

To support public and private adaptation and mitigation
responses, climate information must be credible, legitimate and,
especially, salient – e.g., relevant to the needs of decision makers
(Cash et al., 2003). Needs include not only predictions or projec-
tions1 (Bray and von Storch, 2009) of regional climate: potential out-
comes of adaptation actions are probably more relevant to stakeholders
than raw climate information. Thus, an enhanced capacity is needed
to ‘‘translate” climate information into distributions of outcomes
for risk assessment and management (Hansen et al., 2006).

Process models (e.g., crop biophysical models, hydrological
models) can be useful tools to assess likely impacts on climate-
sensitive sectors of society, and to evaluate the outcomes of
alternative adaptive actions (Ferreyra et al., 2001; Berger, 2001;
Berger et al., 2006; Happe et al., 2008; Freeman et al., 2009;
Schreinemachers and Berger, 2011; Bert et al., 2006, 2007, 2014).
These models, however, typically require daily weather data.
Although historical daily weather can be used, getting long-term
daily weather is laborious and costly at best and, in some cases,
impossible. Typically, historical observations have missing data
ances. A
ction, or
r a range
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that are not accepted by impact models. Similarly, point measure-
mentsmay not represent the true spatial variability of a nonstation-
ary natural process (e.g., daily precipitation). Most importantly,
observed sequences provide a solution based on only one realiza-
tion of the weather process (Richardson, 1981).

The use of seasonal forecasts of regional climate and its impacts
can help decision-makers to lessen the adverse effects of unfavor-
able conditions or, alternatively, to capitalize on favorable condi-
tions. Nevertheless, a major obstacle to broader use of seasonal
climate forecasts is their coarse spatial and temporal resolution.
Similarly, 10–20 year projections of regional climate conditions
have been identified as important to infrastructure planners, water
resource managers, and many others (Hurrell et al., 2009). Unfortu-
nately, projections of regional monthly precipitation and tempera-
ture from climate models not only are coarse in space and time – as
seasonal forecasts – but also involve considerable uncertainty,
which requires exploration of the impacts of alternative, plausible
trajectories. Stochastic weather generators have long been used for
risk assessment and adaptation, as they can provide a rich variety
of plausible climatic scenarios. Moreover, weather generators can
produce spatially consistent series that can be used to downscale
larger-scale scenarios.

Traditional weather generators (stemming from Richardson,
1981) model precipitation occurrence as a chain-dependent pro-
cess (Katz, 1977) and thus are capable of generating physically
realistic prolonged wet and dry spells. The remaining weather vari-
ables (e.g., precipitation intensity and temperature) are parameter-
ized using probability distributions (for precipitation intensity)
and linear time series models (for temperature), which capture his-
torical climatological variability and linear relationships between
variables but fail to capture extremes (e.g., extreme drought or
flooding). In order to capture the variability of weather attributes
in any specific season, the simulations need to be conditioned on
appropriate covariates. One approach is to estimate the parameters
of the generator conditionally by considering ENSO (El Niño South-
ern Oscillation; Trenberth and Stepaniak, 2001) phase, or any other
teleconnection to a region’s climate, which enables simulation of
skillful sequences (Grondona et al., 2000; Ferreyra et al., 2001;
Wilby et al., 2002; Meza, 2005; Katz et al., 2002). Wilks (2008)
illustrated the capability of interpolating weather generator
parameters to arbitrary locations (e.g., on a grid) using local
weighted regressions; Wilks (2009) subsequently offered a method
to synchronize gridded synthetic weather series on observed
weather data. Approaches to producing weather sequences that
deviate from climatology have included the implementation of
seasonal correction factors, perturbation of parameters or input
data, and spectral approaches (Caron et al., 2008; Kilsby et al.,
2007; Hansen and Mavromatis, 2001; Schoof et al., 2005; Qian
et al., 2010).

Nonparametric weather generators have an improved ability to
capture nonlinearities between variables and sites. Included in this
subclass are the k-nearest neighbor (k-NN) bootstrap resampling
method (Brandsma and Buishand, 1998; Rajagopalan and Lall,
1999; Buishand and Brandsma, 2001; Beersma and Buishand,
2003; Yates et al., 2003; Sharif and Burn, 2007) and kernel density
based estimators (Rajagopalan et al., 1997; Harrold et al., 2003;
Mehrotra and Sharma, 2007). Caraway et al. (2014) first applied
a clustering algorithm to identify regions of similar climatology
before applying the k-NN approach, which has shown good perfor-
mance in regions of complex terrain. Apipattanavis et al. (2010)
modified the k-NN approach to create a semi-parametric weather
generator that better captures the duration of wet and dry spells
via Markov chain modeling. Modifications of the k-NN based
weather generator to incorporate seasonal precipitation forecasts
(Apipattanavis et al., 2010) and multi-decadal projections
(Podestá et al., 2009) have also been proposed. In these situations,
the resampling is weighted to reflect the projected distribution of
regional climate conditions. These methods are simple and
powerful, however their main drawback is that they cannot gener-
ate values outside the range of historical data. More importantly, it
is not easy to generate weather sequences at locations other than
those with historical observations.

Pioneered by Stern and Coe (1984), generalized linear models
(GLMs) are able to straightforwardly model non-normal data
through a suite of link functions. Relevant to this research, GLMs
can be used to model and simulate daily weather sequences, and
have paved the way for generating space–time weather sequences
at any desired location (Kleiber et al., 2012, 2013; Furrer and Katz,
2007; Kim et al., 2012; Yan et al., 2002; Yang et al., 2005; Chandler,
2005; Verdin et al., 2015). Recently Verdin et al. (2015) incorpo-
rated these developments into a robust space–time weather gener-
ator and demonstrated its capability to generate realistic weather
sequences at arbitrary locations in the Pampas of Argentina – also
the region targeted by this paper. The GLM framework offers sev-
eral advantages – mainly they reduce the effort in modeling non-
normal variables and are parsimonious (McCullagh and Nelder,
1989), especially for discrete and skewed variables (e.g., precipita-
tion occurrence and intensity, respectively). Coupled with spatial
processes, GLMs can generate sequences at any spatial resolution
– which is important for resource management. Furthermore,
covariates such as ENSO information, seasonal climate forecasts,
and annual cycles can easily be incorporated in the GLMs to refine
or narrow the distribution of expected values (e.g., Chandler and
Wheater, 2002; Wheater et al., 2005; Furrer and Katz, 2007; Kim
et al., 2012).

As motivated earlier in this section, skillful and realistic
sequences of daily weather in any given season are essential for
efficient planning and management of agricultural resources. One
method of obtaining such sequences requires generating space–
time weather sequences that are consistent with, and conditioned
on, coarse climate information from seasonal to decadal time
scales. To this end, here we propose a modification to the stochas-
tic weather generator presented in Verdin et al. (2015) to include
the coarse scale information as covariates. We refer to the weather
generator of Verdin et al. (2015) as ‘‘original”; that of this research
will be called the ‘‘modified” weather generator. The paper is orga-
nized as follows: the study region and data are described in Sec-
tion 2; Section 3 contains a brief summary of the modified
methodology. In Section 4 we discuss the results, and in Section 5
we conclude with a summary of the research and future work.
2. Study region and data

Application of this methodology is focused on a network of sev-
enteen weather stations located in and around the Salado A basin
of the Pampas of Argentina (see Fig. 1). The Salado is part of the
large Río de la Plata basin (Herzer, 2003). Note the study region dif-
fers from that of Verdin et al. (2015).

The A basin is an agriculturally productive sub-basin within the
Salado River basin where maize, soybean, and wheat are grown.
The Salado Basin has very flat topography and a poorly developed
and disintegrated drainage system. The western basin (Salado A)
includes mega-parabolic dunes separated by depressions that con-
strain evacuation of surface water (Aragón et al., 2010; Viglizzo
et al., 2009, 1997). Since colonial times, the Salado has shown alter-
nating floods and droughts that displace populations and disrupt
productive activities and livelihoods for extended periods. Floods
were frequent during the late 19th and early 20th centuries, a rel-
atively wet epoch. In contrast, extensive droughts were more fre-
quent during the drier 1930s–1950s (Herzer, 2003; Seager et al.,
2010). Partly in response to rain increases since the 1970s, severe
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Fig. 1. Study region: weather stations shown as dots, numbers correspond to Table 1. The Salado ‘A’ basin domain is outlined. Three stations withheld in spatial validation
shown as triangles.
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floods have occurred in the Salado Basin in 1980, 1991–93, and
2000–01 (Herzer, 2003). Floods in the western half of the Pampas
between 1997 and 2003 left 27% of the landscape under water,
halved grain production, damaged infrastructure and soil quality,
and transformed the few remaining natural areas (Viglizzo et al.,
2009). In contrast, an almost unprecedented drought in 2008
(Skansi et al., 2009) decreased soybean and wheat production in
the region by about 30% and 50% respectively.

We apply the proposed methodology on a sub-basin scale to
illustrate its ability in downscaling coarse seasonal (multi-
decadal) forecasts (projections) to local daily weather patterns
while maintaining physically realistic climatic characteristics. As
agriculture in the Pampas is entirely rainfed, it is of interest to
provide a robust risk assessment for crop yields in this region.

During the last half of the 20th century, the study region expe-
rienced one of the most significant positive trends in annual pre-
cipitation amounts in the world (Giorgi, 2002). This overall
increase in precipitation partly contributed to immense agricul-
tural expansion to the semi-arid regions of the western Pampas
(Bert et al., 2014). Since the turn of the 21st century, however,
observed conditions suggest a significant decrease in regional
annual precipitation, which begs the question: ‘‘Are the existing
agricultural production systems viable in a drier future?” Analysis
of a system’s response to an ensemble of possible futures that exhi-
bit significant fluctuations in annual precipitation on the multi-
decadal scale is of utmost importance for production risk analysis
in climatically marginal regions such as the western Pampas.

Daily time series of precipitation, minimum temperature, and
maximum temperature are available for a network of 17 weather
stations from 1 January 1961 to near present (in this research we
use data up to 31 December 2013). This data was collected and
organized by associates at the Servicio Meteorológico Nacional
(National Meteorological Service) of Buenos Aires, Argentina, and
extensive quality control was carried out to ensure its validity.
While there is a significant longitudinal gradient in precipitation
and temperature (800 mm/year precipitation and 24 �C maximum
temperature in the west, 1000 mm/year precipitation and
20 �C maximum temperature in east), the climatic tendencies
(e.g., trends) are similar between all weather stations, thus the A
sub-basin serves as an optimal test bed for this methodology.

3. Methodology

3.1. Model structure

We follow the model structure defined in Verdin et al. (2015), a
summary of which is provided below. In describing this methodol-
ogy, we also develop modifications to improve flexibility by pro-
ducing conditional weather sequences driven by seasonal
forecasts, multi-decadal projections, climate drivers or variables,
or any other relevant information introduced as time series of
covariates. It should be noted that in Equations (2), (4), (7), and
(8), the ellipses denote any number of relevant covariates the user
wishes to include, such as seasonal characteristics (e.g., mean tem-
perature or total precipitation), large-scale climate modes (e.g., El
Niño-Southern Oscillation, Pacific Decadal Oscillation, Atlantic
Multidecadal Oscillation), or any other climatic variables. Here
we propose to use seasonal spatial average precipitation and tem-
peratures as covariates. These additional covariates are calculated
from the gauge data. It is acknowledged that a possible scale mis-
match exists between the domain average calculated from 17 sta-
tions and the true domain average. However, the network of
stations is evenly spaced throughout the domain, thus it is fair to
assume the stations adequately represent the true domain average.

In the weather generator described here we define two explicit
components of daily weather patterns: local climate and daily vari-
ability (as suggested by Kleiber et al., 2013). Local climate repre-
sents the expected value of a given meteorological process
largely due to seasonal cycle; daily variability provides perturba-
tions to local climate due to weather. Precipitation is considered
the primary variable in that occurrence of precipitation tends to
modify maximum and minimum temperatures on that day (e.g.,
due to cloud cover and latent heat transfer). Minimum and maxi-
mum temperatures are therefore conditional on precipitation
occurrence; precipitation intensities are modeled and simulated
independently from occurrence.
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In this research, precipitation occurrence and intensity (e.g.,
amounts), and minimum and maximum temperatures at location
s 2 R2 for day t = 1, . . ., T, where T is the number of days in the
observational record, are denoted as O(s, t), A(s, t), ZN(s, t), and
ZX(s, t), respectively. As in Verdin et al. (2015), occurrence is mod-
eled as a probit process driven by a latent Gaussian processWO(s, t)
via:

Oðs; tÞ ¼ l WOðs;tÞ>0f g ð1Þ

If WO(s, t) is positive, this is indicative of rain on day t at location s
and is assigned the value 1; if the latent Gaussian process is nega-
tive or equal to zero, day t at location s is dry and is assigned the
value 0. The mean function of the latent Gaussian process is simply
a regression on covariates that are appropriate for the domain of
interest. Similar to Verdin et al. (2015), this regression has
covariates

XOðs; tÞ ¼ 1;Oðs; t � 1Þ; cos 2pt
365

� �
; sin

2pt
365

� �
; STðtÞ; . . .

� �
; ð2Þ

which are the intercept term, the previous day’s occurrence, two
harmonic terms to account for seasonality, and the domain-
averaged seasonal total precipitation. The key modification to this
regression is the seasonal total covariate, denoted by ST(t). In prac-
tice this covariate is divided into four distinct covariates relating to
each season; covariates are set to zero for times not included in
their respective season. To maintain spatial correlations of precipi-
tation occurrence in the domain, an explicit correlation function is
defined for WO(s, t). A correlation function is used instead of a
covariance function because probit regression has variance unity
by definition. Precipitation amounts at any individual location are
modeled as a Gamma random variable as in Kleiber et al. (2012)
as follows:

Aðs; tÞ ¼ G�1
s;t U WAðs; tÞð Þð Þ; ð3Þ

where G�1
s;t is the quantile function (e.g., inverse cumulative distri-

bution function) of the Gamma distribution at location s and day
t, and U is the cumulative distribution function of a standard nor-
mal. The simulated rainfall values maintain spatial correlation by
applying a spatially varying copula function to the zero-mean Gaus-
sian process WA(s, t) with correlation function CA(h, t) (Chilés and
Delfiner, 1999). The shape parameter varies with space, such that
each location has its own distinct value; the scale parameter varies
with both space and time – its time dependence is based on the sea-
sonal characteristics of precipitation, which are generally captured
by annual harmonics. Similar to the occurrence process, the Gamma
model parameters are informed by a set of covariates, including the
areal seasonal total precipitation covariates as in the occurrence
model, as follows:

XAðs; tÞ ¼ 1; cos
2pt
365

� �
; sin

2pt
365

� �
; STðtÞ; . . .

� �
ð4Þ

Following Verdin et al. (2015), the minimum and maximum
temperatures, ZN(s, t) and ZX(s, t), respectively, at location s and
day t are decomposed as follows:

ZNðs; tÞ ¼ bNðsÞ0XNðs; tÞ þWNðs; tÞ ð5Þ
ZXðs; tÞ ¼ bXðsÞ0XXðs; tÞ þWXðs; tÞ ð6Þ
In each equation, the product on the right side of the equality is

a regression on some covariates, XN(s, t) and XX(s, t) for minimum
and maximum temperatures, respectively; these products repre-
sent the average behavior of temperatures over the observational
period. In this, the key modification to the weather generator of
Verdin et al. (2015) is the inclusion of areal seasonal mean mini-
mum (SMN(t)) and maximum (SMX(t)) temperature covariates,
which are included in both temperature models, as follows,

XNðs; tÞ ¼ 1;cos
2pt
365

� �
;sin

2pt
365

� �
; rðtÞ;ZNðs; t�1Þ;ZXðs; t� 1Þ;

�

Oðs; tÞ;SMNðtÞ;SMXðtÞ; . . .
�

ð7Þ

XXðs; tÞ ¼ 1;cos
2pt
365

� �
;sin

2pt
365

� �
; rðtÞ;ZNðs; t�1Þ;ZXðs; t� 1Þ;

�

Oðs; tÞ;SMNðtÞ;SMXðtÞ; . . .
�
; ð8Þ

which are the intercept term, two harmonic terms to account for
seasonality, r(t), which is a linear drift ranging from �1 to 1 to
account for temperature trends over the observational period, the
previous day’s minimum and maximum temperatures, the current
day’s precipitation occurrence, and the seasonal mean minimum
and mean maximum temperatures, respectively. Daily variability
is denoted as WN(s, t) and WX(s, t) for minimum and maximum
temperatures, respectively, and maintains spatial correlation by
realizations from a mean zero Gaussian process with an empirical
covariance structure defined by the residuals of the local
regressions. Kleiber et al. (2013) found that the Gaussian
assumption for temperature models was appropriate. The above
are GLMs and are fitted hierarchically – we refer the reader to
Verdin et al. (2015) and Kleiber et al. (2012, 2013) for details on
implementation.

It should be noted that the additional covariates are applied
only to the local climate component, and not the daily weather
component. The daily weather component is by definition random,
temporally independent noise (see Kleiber et al., 2012 for valida-
tion of this assumption), thus the daily weather component is
not conditional on the additional covariates, rather it is condi-
tioned only by the calendar date – there are distinct correlation
(and covariance) matrices for each month.

3.2. Significance testing

The inclusion of seasonal covariates could lead to a reduction in
the significance of the harmonic covariates. For all 17 stations the
seasonal covariates are highly significant, indicated by the respec-
tive p-values of their regression coefficients. For many of the sta-
tions both cosine and sine covariates remain highly significant,
however, at few stations the sine covariate loses significance. The
Akaike information criterion (AIC) of the modified models at each
location for each climate variable are consistently lower than those
for the original models that do not contain the seasonal covariates,
implying that the modified weather generator more adequately
describes the modeled processes. Table 1 reports the change in
AIC value (original minus modified models – positivity implies a
decrease) for all 17 stations, for the four variables that make up
the weather generators.

4. Results from application in the Salado A basin

4.1. Covariate selection

We apply the methodology as described in the previous sec-
tion to the network of 17 stations in and around the Salado A
basin of the Argentine Pampas (see Fig. 1). Given the relative
homogeneity of the basin area and scale at which seasonal cli-
mate forecasts are available, we propose three domain-averaged
covariates: seasonal total precipitation, seasonal mean minimum
temperature, and seasonal mean maximum temperature. The



Table 1
Differences between the AIC for occurrence, amounts, minimum temperature, and
maximum temperature models of the original and modified weather generators
(positivity implies a decrease).

Station 1 2 3 4 5 6 7 8 9

OCC 112 92 66 98 56 122 92 112 106
AMT 103 29 20 89 17 63 74 92 97
MIN 732 439 420 559 157 489 340 661 625
MAX 240 186 165 254 39 144 196 165 237

10 11 12 13 14 15 16 17

OCC 89 103 48 134 114 98 127 98
AMT 82 87 66 50 63 54 66 58
MIN 560 540 258 603 495 547 877 403
MAX 176 181 104 231 264 244 194 219
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growing season for summer crops in the Salado A basin begins in
October with harvest coming in late March or April, therefore we
focus on the OND season. We define the seasons as January–
March (JFM), April–June (AMJ), July–September (JAS), and
October–December (OND).

The first principal component of OND seasonal total precipita-
tion at each of the 17 stations explains 47% of the total variance;
those of OND seasonal average minimum and maximum tempera-
tures explain 71% and 77% of the total variance, respectively. The
magnitudes of these first principal components are nearly constant
across space, which further justifies the use of domain-averaged
information. Fig. 2 shows the first principal component of the three
variables along with the domain-averaged time series, the behav-
ior of which are well described by their first principal components.
Thus the four GLMs as described in the previous section were fitted
with the additional covariates described above. These covariates
were found to be highly significant at all the locations (e.g.,
regression assigns all additional covariates p-values < 0.001). Other
seasons show similar results (not shown).
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4.2. Validation

To assess the efficacy of the additional covariates, we employ
both the original and modified weather generators in spatial and
temporal validations, described in the following subsections.

4.2.1. Spatial validation
To assess the spatial performance of the modified weather gen-

erator, three stations were withheld from the model fitting process
– these withheld stations are identified in Fig. 1. Spatial process
models were used to estimate the model parameters at the with-
held locations, and 100 realizations over the 53-year observational
period were produced using the estimated parameters. Fig. 3
shows the relationship between the observed and ensemble mean
OND probability of occurrence, seasonal total rainfall, mean maxi-
mum temperature, and mean minimum temperature for each of
the three stations as produced by the original (top row) and mod-
ified (bottom row) weather generators. Simulations from the orig-
inal weather generator show no relationship with the
observations; this is to be expected, as only harmonic and autore-
gressive covariates are considered. Conversely, simulations from
the modified generator capture the observations strongly, due to
the inclusion of the domain-averaged seasonal covariates. Similar
results were seen for other seasons (figures not shown).

4.2.2. Temporal validation
It is also worthwhile to investigate the temporal performance of

the weather generator to validate its use for seasonal forecasts,
multidecadal projections, and climate change scenarios. To this
end, we fitted the original and modified weather generators on his-
toric data for the calibration period: 1 January 1961–31 December
2000. Then 100 realizations were generated for the validation per-
iod: 1 January 2001–31 December 2013. Fig. 4 shows the difference
between observed and ensemblemean simulated domain-averaged
recipitation
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Fig. 3. Spatial validation: (a and b) OND 1961–2013 observed versus ensemble mean simulated probability of precipitation occurrence, (c and d) total precipitation, (e and f)
mean maximum temperature, and (g and h) mean minimum temperature, for the three withheld stations. Top row (a, c, e, g) corresponds to simulations from the original
generator and bottom row (b, d, f, h) is for simulations from the modified generator.
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Fig. 4. Temporal validation: JFM 2001 – OND 2013 observed minus ensemble mean simulated (a and b) seasonal total precipitation, (c and d) mean maximum temperature,
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Fig. 5. Top panels: Kernel density estimates of PDF of domain-averaged seasonal precipitation, maximum temperature and minimum temperature from 100 simulated
weather scenarios from the modified (blue) and original (red) weather generators (OND 2010 and OND 2012 denoted as solid and dashed lines, respectively), along with the
climatological PDF (dotted black line). Observed values are shown as vertical lines. Bottom panels: Sampled seasonal precipitation and temperatures from the categorical
probabilistic forecasts with the domain-averaged values generated from the two weather generators – modified (blue) and original (red). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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seasonal total precipitation, mean maximum temperature, and
meanminimum temperature: a ‘‘perfect fit” would show a horizon-
tal line of ordinate zero. Root mean square error (RMSE) is calcu-
lated between simulated and observed seasonal values for all 100
realizations. The RMSE is greatly reduced by including the
domain-averaged seasonal covariates in the validation period. For
seasonal total precipitation the RMSE is reduced from 77 (±2.4)
mm to 21 (±3.6) mm; for seasonal mean maximum temperature
the RMSE is reduced from 1.05 (±0.05) �C to 0.37 (±0.05) �C; and
for seasonal mean minimum temperature the RMSE is reduced
from 0.99 (±0.04) �C to 0.37 (±0.04) �C.

4.3. Seasonal forecasts

Often times, seasonal climate forecasts are provided as proba-
bilities of precipitation and temperature being within different
ranges (e.g., terciles) for a large region – this is a common format
for presenting uncertain climate information. Among other agen-
cies around the world, the International Research Institute for Cli-
mate and Society (IRI, www.iri.columbia.edu) provides seasonal
(three-month) probabilistic forecasts with one to four months
lead-time. The IRI presents these forecasts in terms of A:N:B prob-
abilities, where ‘‘A” is above-normal, ‘‘N” is near-normal, and ‘‘B” is
below-normal. The three categories span an equal range and are
defined with respect to climatological terciles (e.g., 33rd and
67th percentiles). For example, a 15:35:50 precipitation forecast
implies there is a 15% chance of experiencing above-normal condi-
tions, a 35% chance of experiencing near-normal conditions, and a
50% chance of experiencing below-normal precipitation in the
upcoming season.
Agricultural decisions in the Salado A basin are typically made
before the beginning of the summer growing season (1 October)
every year, thus we focus on OND seasonal forecasts. The OND sea-
son is also a critical period in terms of crop yield generation, and
has shown tendencies towards skillful climate predictions, in part
due to significant ENSO signals (Grimm et al., 1998, 2000;
Montecinos et al., 2000; Ropelewski and Halpert, 1987; Barros
and Silvestri, 2002; Boulanger et al., 2005; Ropelewski and Bell,
2008; Grimm, 2011; Barreiro, 2010). We select IRI forecasts for
OND 2010 (a dry and hot forecast; e.g., 15:35:50 for precipitation,
40:35:25 for temperature) and OND 2012 (a wet and hot forecast;
e.g., 40:35:25 for both precipitation and temperature) as case stud-
ies for this methodology, issued on 1 September 2010 and 1
September 2012, respectively.

To generate space–time weather sequences for the two OND
seasons from the modified generator, ensembles of domain-
averaged seasonal precipitation and temperature are needed to
use as covariates. To this end, 100 observed OND domain-
averaged values of precipitation and maximum and minimum
temperature are sampled with replacement. This is accomplished
by first categorizing the observed domain-averaged seasonal
weather as above-, near-, or below-normal based on the empirical
terciles, then assigning the categorical forecasts as probabilities
(e.g., 15:35:50 and 40:35:25 for precipitation and temperature,
respectively) to the values in each category and resampling with
these assigned weights as the probability metric. For instance,
there is a 15% chance of sampling an above-normal precipitation
value; there are 35% and 50% chances of sampling near-normal
and below-normal precipitation values, respectively. The result of
this resampling scheme is 100 values that are used as covariates

http://www.iri.columbia.edu


Table 2
Kolmogorov–Smirnov tests comparing the original and modified weather generator
output. P-values lower than 0.05 indicate the output from original and modified
generators may come from different distributions.

2010 2012

Precip Max
temp

Min
temp

Precip Max
temp

Min
temp

p-values 0.0039 0.0014 0.0243 <0.0001 0.0541 0.5806
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to drive the modified weather generator 100 separate times. The
output of these 100 independent runs is essentially a downscaled
ensemble of weather patterns that exhibit the traits of the seasonal
forecasts.

The top row of Fig. 5 shows the probability density functions
(PDFs) of domain-averaged OND precipitation and temperatures
from the original and modified weather generators, the PDF of
OND climatology, and the observed values of OND 2010 and
2012. The precipitation PDFs from the modified generator have
shifted towards the observed values in both 2010 and 2012. This
shift is indicative not only of forecast skill, but also the effective-
ness of the modified generator in simulating scenarios representa-
tive of the forecasts. Mean maximum (minimum) temperature
during OND 2010 (2012) was observed to be above-normal, and
the PDF from the modified generator gives greater probability to
above-average temperatures than that of the original generator.
OND 2012 (2010) experienced near-normal maximum (minimum)
temperatures, so the original generator gives highest probability to
observed conditions. However, the range of possible scenarios
offered by the original generator is limited and will give near-
zero probability to above- and below-normal conditions, which
for planning purposes can be misleading. The domain-averaged
seasonal totals of precipitation and seasonal averages of tempera-
tures that are generated from the two weather generators are plot-
ted with the observed in the bottom row of Fig. 5.

Table 2 reports p-values from Kolmogorov–Smirnov tests com-
paring the distributions of original and modified generator output.
The differences between the original and modified distributions for
OND 2010 weather scenarios and OND 2012 precipitation are sig-
nificant at the 95% level; maximum and minimum temperature
scenarios for OND 2012 are not significantly different, indicating
the covariate values sampled from the IRI probabilistic forecast
(thus the scenarios produced by the modified weather generator)
do not deviate significantly from climatology.

Weather simulations on a regular grid are of particular interest,
as they are used to drive hydrologic and agriculture models for
agricultural planning to mitigate crop failure. To simulate daily
weather on a grid, the b coefficients for each covariate of the
weather generator models are estimated in space from their
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respective spatial models to the desired spatial resolution
(5 km � 5 km). These gridded coefficients are then used to obtain
the mean function, and the daily weather processes are simulated
via mean-zero Gaussian random fields.

Fig. 6 shows the difference between the ensemble mean of grid-
ded seasonal total precipitation, mean maximum temperature, and
mean minimum temperature for OND 2010 from the original and
modified weather generator. The modified generator simulates a
drier and hotter domain than the original generator, which is con-
sistent with the seasonal forecast. Notably, the modified weather
generator simulates a cooling for mean minimum temperature in
the southern part of the basin, which is inconsistent with the sea-
sonal forecast.

The differences between the 95% ensemble spread (97.5th per-
centile minus 2.5th percentile) produced by the original and mod-
ified weather generators are shown in Fig. 7. As can be seen, the
ensemble spread difference for seasonal total precipitation is
mostly red and yellow, while those for mean maximum and mini-
mum temperature are mostly blue and yellow, which illustrates
that the modified generator produced wider ensemble spreads
than the original generator. The uncertainty in the probabilistic
seasonal climate forecast is propagated to the modified weather
generator, resulting in a wider distribution than that of the original
generator. Similar findings can be seen for OND 2012 (figures not
shown).
4.4. Multi-decadal projections

Multi-decadal projections are useful in a number of applica-
tions, including environmental impact studies, agricultural
decision-making, and water resources management, to name a
few. In agriculture, multi-decadal projections help in making
informed investment decisions (e.g., whether or not to buy a farm
in a climatically marginal area, invest in irrigation, etc.). Specifi-
cally, the climate of the Pampas has shown significant decadal vari-
ability, and since the 1970s has exhibited a steady increase in both
annual and extreme precipitation. This trend in precipitation has in
part promoted significant expansion of agricultural area to climat-
ically marginal regions of the Pampas. Given the uncertainty of
future climate, coupled with a known decadal variability, it is
unclear if existing agricultural systems may remain viable if cli-
mate reverts to a drier epoch.

Specific to this research, future climate scenarios can be used to
drive hydrologic and crop simulation models, thus providing an
assessment of the viability of existing agricultural production sys-
tems in climatically marginal regions of the Salado A basin. How-
ever, future climate projections from climate models are
generally of coarse spatial (e.g., on a grid) and temporal (e.g.,
monthly) resolutions, and therefore cannot provide reliable
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projections of weather at the local scale. These monthly and
consequently seasonal projections can be incorporated into the
modified generator and thus enable the generation of daily
weather sequences conditioned on the projections at any desired
location – both monitored and unmonitored – in the study region.

To this end, we explored the ability of the modified generator to
downscale medium-term projections in the Salado A basin. A regio-
nal climate model projection, experiment RCP8.5, was obtained for
the period 1 January 2015 to 31 December 2050 (a 36-year projec-
tion), produced using the CORDEX-CMIP5 regional climate model
(EC-Earth Consortium, 2014) and bias-corrected (McGinnis et al.,
2015) using the CLARIS-LPB dataset (Penalba et al., 2014). This pro-
jection focuses on South America and is gridded at 0.44�. No nota-
ble long-term trends in annual precipitation totals are projected,
but the magnitudes are significantly lower than seen in the historic
record; both maximum and minimum annual average tempera-
tures show positive trends, and are projected to increase by
approximately 1 �C by the year 2050. Seasonal values of areal pre-
cipitation and temperature for the Salado A basin were computed
to use as covariates to drive the modified weather generator. Only
the grids that cover the Salado A basin and the 17 station data are
considered when computing domain-averaged precipitation totals
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and temperature means. 100 realizations of daily weather
sequences were simulated using both the original and modified
weather generators.

Fig. 8 shows seasonal residuals (projected minus simulated) of
the ensemble mean of the original and modified weather generator
simulations for the 36-year projection period. As was seen previ-
ously, the original generator shows much larger and more variable
residuals than does the modified generator. Consistent with the
temporal validation, RMSE is greatly reduced by including the
domain-averaged seasonal covariates in the models. RMSE for sea-
sonal total precipitation is reduced from 90 mm to 14 mm; RMSE
for seasonal mean maximum temperature is reduced from
1.09 �C to 0.48 �C; RMSE for seasonal mean minimum temperature
is reduced from 1.43 �C to 0.23 �C. There is a slight warm bias in
seasonal mean maximum temperature simulated by the modified
generator as compared to that projected by the RCM.

To illustrate the spatial ability of the weather generators, we
simulated 100 realizations of daily weather sequences for the per-
iod 2015–2050, conditioned on the projected seasonal characteris-
tics. Fig. 9 shows the difference in ensemble mean OND total
precipitation, maximum temperature, and minimum temperature
as simulated by the original and modified generators. Consistent
with the climate model trends, the modified generator simulates
a drier and hotter future across the domain.

5. Summary and future work

Wehave proposed and validated the use of a parametric stochas-
tic weather generator in a nonstationary context, such as climate
change impact studies, with application in the Salado A basin of
the Argentine Pampas. This region was selected due to its status
as one of themost productive agricultural regions in South America,
and its strong climatic variability that is experienced at multiple
time scales. Agriculture in the Pampas is predominantly rainfed,
thus high quality seasonal forecast information could greatly
impact the outcome (e.g., crop yield, risk of failure) of a growing sea-
son. The modified weather generator presented in this research has
flexibility in its GLM framework such that any number of covariates
can be included in the model fit, effectively conditioning the
weather generator to produce downscaled weather sequences.

For example, in this research we used areal average seasonal
total precipitation and mean minimum and maximum tempera-
tures as additional covariates, which were shown to be highly sig-
nificant in the model fit. The use of areal averages was justified via
principal component analysis; for non-homogeneous or mountain-
ous regions, consider site-specific averages or a clustering algo-
rithm. The coarse information provided by these additional
covariates successfully trickled from seasonal (regional) down to
daily (local) scales, such that wet (dry) days are more prevalent
during seasons with above-normal (below-normal) seasonal total
precipitation. It is with the conditioned output of the weather gen-
erator that research teams may provide a more robust estimate of
production risk for a region, by running the daily weather
sequences through process based (e.g., crop simulation, hydro-
logic) models. The output of process based models may be inter-
preted and provided to a farmer or decision maker, who then
will have seasonal forecast information that is relevant to the deci-
sions they must make (e.g., probability of not meeting a crop yield
goal, where and when to plant a certain crop) as opposed to spa-
tially coarse probabilistic statements as are typically reported.
Similarly, multidecadal projection information can be used to gen-
erate conditional weather sequences to assist in assessing the via-
bility of existing agricultural infrastructure in climatically marginal
regions. In this, a regional climatic trend may be extracted and
used to produce conditional weather sequences, which may be
used to drive any relevant process based models.

The output of the modified weather generator presented in this
manuscript has been validated by direct comparison to the original
weather generator of Verdin et al. (2015). It has been shown that
using simple covariates such as domain-averaged seasonal total
(mean) precipitation (temperatures) improves the skill of the gen-
erator in producing daily weather sequences that exhibit the traits
(and trends) of a seasonal forecast or multi-decadal projection. In
representing domain-averaged behavior for the validation period
(2001–2013), this modification to the weather generator reduced
RMSE values from 77 mm to 21 mm for precipitation, 1.05 �C to
0.37 �C for maximum temperature, and 0.99 �C to 0.37 �C for
minimum temperature. Similarly, the modified generator faithfully
reproduced the trends and variability of historic precipitation
and temperature at individual sites, while the original generator
replicates the expected behavior of (e.g., climatology) of each
season with little to no interannual variability.

In generating sequences consistent with a seasonal forecast, the
Kolmogorov–Smirnov tests suggest the output from original and
modified weather generators exhibit significantly different traits
with 95% confidence, unless the seasonal forecast is similar to cli-
matology. The modified weather generator was shown to produce
PDFs that better represent the range of possible futures, while the
PDFs from the original weather generator give near-zero probabil-
ity to the upper and lower terciles (e.g., wet (hot) and dry (cold)
conditions). On the multi-decadal scale, the modified weather gen-
erator is flexible in its ability to capture the considerable interan-
nual and decadal variability prevalent in the projected
precipitation totals, as well as the increase in both minimum and
maximum temperatures.

Application of this methodology to other areas is called for.
However, careful attention must be paid to the spatial and
temporal climatic variability in the region of interest. Local climate,
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regional teleconnections, and global climate drivers should be
identified for optimal skill in downscaling seasonal forecasts and
multi-decadal projections. Principal component analysis on
seasonal attributes such as seasonal total precipitation and mean
temperatures can help decide if domain-averaged, clustered, or
site-specific covariates should be considered. However, the model
setup, as defined in Verdin et al. (2015), should be considered a
baseline model for use in any basin – the additional covariates as
described in this manuscript need be fine tuned to successfully
generate skillful weather scenarios.

One shortcoming to the weather generator presented in this
research is that it uses only precipitation and temperature covari-
ates to condition the weather generator. There has been great pro-
gress in the identification of teleconnections and climate drivers
for regions around the world – the Pampas are no exception. While
it was mentioned in this manuscript that such teleconnections
could be used as covariates to condition the weather generator
output, this approach was not investigated. A second shortcoming
to this methodology is that the uncertainties associated with the
parameters of the weather generator are not propagated to the
simulations, as the maximum likelihood estimates of the parame-
ters are kept fixed. As a result the variability of simulations can be
underestimated. Bayesian methods that explicitly quantify the
parameter uncertainties are attractive options.

The methodology of this weather generator is inherently hierar-
chical, thus considering the use of a Bayesian hierarchical frame-
work is a natural extension to this problem – the authors are
currently exploring this approach. In a Bayesian context, the
parameters are treated as random variables and are sampled from
appropriate distributions (typically via Markov chain Monte Carlo)
based on likelihood acceptance criteria, which results in posterior
distributions of all model parameters. These posterior distributions
better represent the uncertainty involved in traditional parameter
estimation techniques, and when used in a weather generation
framework will provide a more realistic range of uncertainty in
synthetic weather sequences.
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