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Abstract We present a Bayesian hierarchical space‐time stochastic weather generator (BayGEN) to
generate daily precipitation and minimum and maximum temperatures. BayGEN employs a hierarchical
framework with data, process, and parameter layers. In the data layer, precipitation occurrence at each site is
modeled using probit regression using a spatially distributed latent Gaussian process; precipitation amounts
are modeled as gamma random variables; and minimum and maximum temperatures are modeled as
realizations from Gaussian processes. The latent Gaussian process that drives the precipitation occurrence
process is modeled in the process layer. In the parameter layer, the model parameters of the data and process
layers are modeled as spatially distributed Gaussian processes, consequently enabling the simulation of
daily weather at arbitrary (unobserved) locations or on a regular grid. All model parameters are endowed
with weakly informative prior distributions. The No‐U Turn sampler, an adaptive form of Hamiltonian
Monte Carlo, is used to maximize the model likelihood function and obtain posterior samples of each
parameter. Posterior samples of the model parameters propagate uncertainty to the weather simulations, an
important feature that makes BayGEN unique compared to traditional weather generators. We demonstrate
the utility of BayGEN with application to daily weather generation in a basin of the Argentine Pampas.
Furthermore, we evaluate the implications of crop yield by driving a crop simulation model with weather
simulations from BayGEN and an equivalent non‐Bayesian weather generator.

1. Introduction

Time series of weather variables can assist in agricultural and water resources planning and decision‐
making as input to crop simulation, hydrologic, and other process‐based models (Berger, 2000; Berger
et al., 2006; Bert et al., 2006, 2007, 2014; Ferreyra et al., 2001; Freeman et al., 2009; Happe et al., 2008;
Schreinemachers & Berger, 2011). However, the historical record can be limited in that it covers too short
of a period or it can be incomplete or inaccurate due to missing data and human error. Many process‐based
models require complete daily sequences of input data (i.e., missing data are not allowed), so the problem of
“filling in the blanks” arises. If the problem requires the use of distributed hydrologic models, the user is
often required to input daily weather sequences on a regular grid, which is difficult, if not impossible, to col-
lect for even moderately sized basins. Alternatively, spatial interpolation based on available observations is
required, introducing yet another possible source of error. Stochastic weather generators have long been
used as a way to produce daily weather sequences for use in such applications, as they provide a means to
simulate a plausible range of climatic scenarios while representing the true underlying variability of the nat-
ural processes being modeled. For agricultural planning on seasonal to multidecadal scales, weather genera-
tors can be used to simulate daily input data consistent with forecasted or projected scenarios (Apipattanavis
et al., 2010; Verdin et al., 2018), which can drive crop simulation models to assess how such scenarios may
impact crop yields. A more complete history on stochastic weather generators can be found in Wilks and
Wilby (1999) and Verdin, Rajagopalan, Kleiber, and Katz (2015); a brief summary is provided below.

Long held in regard as the original stochastic weather generator, the methodology of Richardson (1981) has
paved the way for other approaches to producing synthetic daily weather sequences. These traditional
single‐site weather generators model precipitation occurrence as a chain‐dependent process (Katz, 1977);
thus, they are able to capture the length and frequency of wet and dry spells. Precipitation amounts are
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modeled using various probability distributions (e.g., gamma and lognormal). Minimum and maximum
temperatures are modeled using autoregressive time series models. There have been several multisite exten-
sions to traditional weather generators (Baigorria & Jones, 2010; Khalili et al., 2009; Qian et al., 2002; Wilks,
1998; Wilks & Wilby, 1999). However, parametric weather generators can quickly become unwieldy when
applied for multisite simulation, as a large number of parameters is needed to capture the spatial correlation
and statistics (Mehrotra et al., 2006). Wilks (2008, 2009) showed that using spatial process models on weather
generator parameters eases the simulation of gridded daily weather that adapts to local climates.

Nonparametric weather generators using k‐nearest neighbor time series bootstrapping, proposed for single‐
site (Rajagopalan & Lall, 1999) and subsequently extended to multisite (Apipattanavis et al., 2010; Beersma
& Buishand, 2003; Buishand & Brandsma, 2001; Sharif & Burn, 2007; Yates et al., 2003), are robust in their
ability to capture nonlinearities in both space and time and can easily capture the spatial correlation and sta-
tistics for multisite simulation. However, they have twomain limitations—(i) due to bootstrap resampling of
the historical record, values outside the historical observations are not possible, and (ii) they cannot easily
simulate sequences at unobserved locations.

Generalized linear models (GLMs) can greatly reduce the effort of modeling nonnormal variables through a
suite of link functions and can more easily simulate at arbitrary locations when coupled with spatial models
(Kleiber et al., 2012, 2013; Verdin, Rajagopalan, Kleiber, & Katz, 2015). Early use of GLMs for weather gen-
eration was by Stern and Coe (1984), with subsequent work by Yang et al. (2005) and Chandler (2005). GLMs
can incorporate any number of covariates to facilitate the simulation of weather sequences under various
conditions, such as wet or dry years. Such covariates have included large‐scale climate drivers (i.e., El
Niño Southern Oscillation and North Atlantic Oscillation) and total seasonal precipitation and mean tem-
perature trajectories, to name a few (Asong et al., 2016; Furrer & Katz, 2008; Hauser & Demirov, 2013;
Verdin et al., 2018).

GLM‐based space‐time stochastic weather generators have become more popular recently due to their abil-
ity to generate weather sequences at any desired location (e.g., grids with different spatial resolutions) and
conditioned on large‐scale climate drivers. However, they do not incorporate model parameter uncertainty
in their simulations. Specifically, point estimates of model parameters based on maximum likelihood are
fixed for all ensemble members, and the variability between ensemble members result solely from the resi-
dual terms. Lack of treatment of parameter uncertainty is a major shortcoming, as it may reduce the varia-
bility of the simulated weather sequences, which, from a planning perspective, can lead to overconfident
estimates of system variables by not representing the full range of plausible future scenarios. Bayesian meth-
ods are known for their ability to capture uncertainty by providing a full distribution of model parameters. A
Bayesian stochastic weather generator would be advantageous in that uncertainty in model parameters
would propagate to the simulated weather sequences and, consequently, to process‐based model output
for natural resources decision support.

Bayesian methods are widely used to quantify uncertainty in a variety of models and applications. They are
computationally intensive, but with increasing computation power, Bayesian methods are becoming more
attractive. One of the more common Bayesian methods is Bayesian model averaging, first introduced by
Leamer (1978) and used in a variety of disciplines including hydrology, climate science, ecology, economics,
medicine, and politics. The applications include combining information from multiple sources (e.g., multi-
ple model outputs), making skillful predictions, calibrating forecasts, risk assessment, and quantifying
model uncertainty (Duan et al., 2007; Montgomery & Nyhan, 2010; Raftery et al., 2005; Sloughter et al.,
2007; Trujillo‐Barreto et al., 2004; Viallefont et al., 2001; Volinsky et al., 1997; Vrugt & Robinson, 2007;
Wintle et al., 2003; Wright, 2008).

Bayesian hierarchical models have been developed for a variety of applications—coupling with stochastic
weather generators for enhanced decision making (Hashmi et al., 2009; Pezzulli et al., 2006), spatial and
temporal modeling of precipitation extremes (Cooley et al., 2007; Cooley & Sain, 2010; Reich & Shaby,
2012), daily precipitation modeling (Lima & Lall, 2009; Smith & Robinson, 1997), analysis of precipitation
and temperature trends (Tebaldi et al., 2004; Tebaldi & Sanso, 2009), and Bayesian kriging (Aelion et al.,
2009; Cui et al., 1995; Handcock & Stein, 1993; Jin et al., 2014; Omre, 1987; Sahu & Mardia, 2005; Verdin,
Rajagopalan, Kleiber, & Funk, 2015). A spatially consistent Bayesian precipitation state generator was devel-
oped by Cano et al. (2004), though a full Bayesian weather generator was yet to be developed.

10.1029/2017WR022473Water Resources Research

VERDIN ET AL. 2901



GLM‐based space‐time weather generators offer a versatile framework for simulating a suite of variables of
various types—continuous, discrete, binary, categorical, etc. However, the simulations do not incorporate
the uncertainties in the model parameters, which is a notable drawback. Motivated by the need to fully
quantify and incorporate parameter uncertainties in daily weather simulation, we developed a GLM‐based
Bayesian hierarchical space‐time stochastic weather generator, hereafter referred to as BayGEN. This is a
novel contribution in that, to our knowledge, this is one of the first attempts at a fully Bayesian weather
generator. There are Bayesian generators of precipitation and streamflow (see references above), but none
that simultaneously simulate a suite of weather variables in space and time. BayGEN builds on a GLM‐based
space‐time weather generator (Verdin, Rajagopalan, Kleiber, & Katz, 2015) by embedding it in a Bayesian
hierarchical framework, thus enabling posterior distributions of the model parameters. Sampling from these
posterior distributions to generate ensembles of weather sequences robustly propagates model parameter
uncertainty to the weather simulations. Furthermore, with a Bayesian hierarchical framework, expert
knowledge about the weather system can be easily incorporated in the model structure and in the
prior distributions.

The BayGEN model is presented in section 2, followed by a description of the study region and data in
section 3. We discuss the results in section 4, and section 5 concludes this manuscript with a summary of
the research and future work.

2. BayGEN
2.1. Model Definition

There are three conceptual layers in the hierarchy of the BayGEN model. The first layer (the data layer)
explicitly models the data, in this case the observed precipitation occurrence and amount, and maximum
and minimum temperatures at a network of weather stations. The second layer (the process layer) models
the latent Gaussian process (i.e., linear regression on an unobservable process) that drives the precipitation
occurrencemodel (see section 2.2 for details). The third layer (the parameter layer) models the spatial depen-
dence of the statistical parameters in the models defined in the data and process layers and includes the
prior distributions.

As mentioned, the BayGEN model structure is motivated by the GLM framework of Verdin, Rajagopalan,
Kleiber, and Katz (2015) (hereafter GLMGEN). In the GLMGEN framework, at each location, (i) precipita-
tion occurrence is modeled using probit regression; (ii) precipitation amounts are modeled using gamma dis-
tributions; and (iii) maximum and minimum temperatures are modeled as separate Gaussian processes. The
statistical coefficients within these GLMs are modeled as spatial Gaussian processes to enable simulation of
daily weather at arbitrary (unobserved) locations or on a regular grid in such a way that the model adapts to
local climatological features. Much of the BayGEN model is similar to that of Verdin, Rajagopalan, Kleiber,
and Katz (2015), with the introduction of the Bayesian framework to account for parametric uncertainty
representing the main novelty of this section.

LetO(s, t),A(s, t), ZX(s, t), and ZN(s, t) denote precipitation occurrence, amount, maximum temperature, and
minimum temperature, respectively, at spatial location s ∈ R2 and day t ∈ Z. In the following sections, we
outline the data, process, and parameter layers of the hierarchical model for each of these processes.

To ease the exposition, an overview of the statistical model is included in equations (1)–(9), followed by
detailed descriptions of the model in the following subsections. Equation (1) uses the indicator symbol l
to refer to the relationship with latent Gaussian process, WO(s, t). Equation (2) uses “Gamma” to refer
to a gamma distribution with spatially varying shape parameters, αA(s), and spatially and temporally vary-
ing scale parameters, αA(s)/μA(s, t). Equation (6) defines the denominator of the gamma scale parameters
as a regression on some covariates (see section 2.3 for details). Equations (3) and (4) use “GP” to refer to
Gaussian processes with means, μi(s, t), i = X, N, and covariance functions, Ci(t), i = X, N. Equation (8)
uses “GP” to refer to the Gaussian processes for the GLM model parameters with spatially varying means,
μβj sð Þ; j ¼ O;A;N;X , and covariance functions, Cβj ; j ¼ O;A;N ;X . The spatially varying means for these

Gaussian processes are defined by first‐order polynomials fitted on the point estimates of βj(s), obtained
for every sample in the posterior, using the spatial coordinates as predictors. Similarly, equation (9) refers
to a Gaussian process for the gamma shape parameter with spatially varying mean, μαA sð Þ, and covariance
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function, CαA . The spatially varying mean is defined by a first‐order polynomial fitted on the point
estimates, αA(s), using the spatial coordinates as predictors.

Data layer:

O s; tð Þ ¼ lWO s;tð Þ>0½ � (1)

A s; tð ÞeGamma αA sð Þ; αA sð Þ
μA s; tð Þ

� �
(2)

ZX s; tð ÞeGP μX s; tð Þ;CX tð Þð Þ (3)

ZN s; tð ÞeGP μN s; tð Þ;CN tð Þð Þ (4)

Process layer:

WO s; tð ÞeN μO s; tð Þ; σ2
O

� �
(5)

Parameter layer:

μA s; tð Þ ¼ exp XA s; tð Þ′βA sð Þ
� �

(6)

μi s; tð Þ ¼ Xi s; tð Þ′βi sð Þ; i ¼ O;N;X (7)

βj sð ÞeGP μβj sð Þ;Cβj

� �
; j ¼ O;A;N ;X (8)

αA sð ÞeGP μαA sð Þ;CαA

� �
(9)

2.2. Precipitation Occurrence

Precipitation occurrence is defined as any daily amounts exceeding 0.1 mm and is modeled as a binary space‐
time process that is locally equivalent to a probit regression. Our data layer specification isO s; tð Þ ¼ l WO s;tð Þ>0½ �,
where lS denotes an indicator function that is unity if the set condition S holds and is zero otherwise. The pro-
cess layer specifies WO(s, t) as a latent Gaussian process with mean function μO(s, t) that is independent in
time but correlated in space with the associated covariance CO(h), h ∈ R

2. The mean function is assumed
to be a regression on covariates 1, O(s, t − 1), cos(2πt/365), and sin(2πt/365) with associated regression coef-
ficients βj, O(s), j = 1, … , 4, that vary over space. Assuming βj, O(s) are independent Gaussian processes com-
pletes the third level of hierarchy. The spatially varying means of these Gaussian processes are defined by
first‐order polynomialsfitted on the point estimates, using the spatial coordinates as predictors, eachwith iso-
tropic exponential covariance functions defining the second‐order structure. The partial sills and range para-
meters are random variables, and the nuggets are fixed at 0.001. We fix a finitely small nugget value as a
computational convenience.

For our data application, multivariate probit regression would necessitate the inclusion of approximately
500,000 additional parameters, which would make the model unwieldy, overparameterized, and unlikely
to run in reasonable time. To this end, after the model is fitted, probit regression residuals are calculated
for each day and each location from the posterior distributions, and the empirical spatial correlation
matrices are calculated. From these empirical correlation matrices, partial sill and effective range para-
meters are estimated with a fixed nugget of 0.001, which enables simulation at arbitrary locations using
the theoretical exponential covariance function. The optimization is achieved by minimizing the squared
difference between the empirical correlations and a theoretical exponential variogrammodel. There are dis-
tinct correlation matrices—and thus distinct partial sills and effective ranges—for each calendar month to
account for seasonality. In total, there are 60 parameters in the precipitation occurrence model.

2.3. Precipitation Amount

Precipitation amounts are locally modeled as gamma random variables with spatially varying shape para-
meter, αA(s), to account for the climatological gradients, and spatially and temporally varying scale
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parameter, αA(s)/μA(s, t), to account for seasonality. The scale parameter is a function of the shape para-
meter and a spatiotemporal mean function, μA(s, t). Local estimates (that is, at a single observation location)
of shape and scale parameters are obtained by maximum likelihood, viewing each day as independent rea-
lizations of precipitation amounts—thus the likelihood is simply a product of gamma probability density
functions. Given these local estimates, spatial dependence is maintained by modeling αA(s) as a Gaussian
process, with spatially varying mean and isotropic exponential covariance function, CαA hð Þ for spatial lag
h ∈ R2. The spatially varying mean is defined by a first‐order polynomial fitted on the point estimates,
αA(s), using the spatial coordinates as predictors. Partial sill and range parameters are treated as random
variables, and the nugget effect is fixed at 0.001. We model log(μA(s, t)) as a Gaussian process whose mean
is a regression on covariates 1, cos(2πt/365), andMT(t), whereMT(t) denotes monthly average precipitation.
The regression coefficients βj, A(s), j = 1, … , 3 are modeled as independent Gaussian processes with spatially
varying means defined by first‐order polynomials fitted on the point estimates, using the spatial coordinates
as predictors, each with isotropic exponential covariance functions. Again, the partial sill and range para-
meters are random variables, while the nugget effects are fixed at 0.001. In total there are 60 parameters
in the precipitation amounts model.

Although locallyA(s, t) is modeled as a gamma random variable, we require spatially correlated fields of pre-
cipitation amounts. This is attained via a spatially varying Gaussian copula function (Chilés & Delfiner,
1999), that is, W(s, t) = Φ−1(Gs, t(A(s, t))) where Gs, t is the local gamma cumulative distribution function
(cdf) and Φ−1 is a standard normal quantile function. SettingW(s, t) =WO(s, t) maintains the physical rela-
tionship between precipitation amounts and occurrence in that there is spatial continuity between areas
with zero precipitation bordering positive precipitation events.

2.4. Maximum and Minimum Temperatures

As in Richardson (1981), we condition the maximum and minimum temperature models on precipitation
occurrence. The maximum temperature process, ZX(s, t), is modeled as a Gaussian process whose mean is
a regression on covariates 1, ZX(s, t − 1), cos(2πt/365), sin(2πt/365), and O(s, t). ZX has isotropic exponential
spatial covariance functionsCm, X(h), h∈R2,m= 1,… , 12 that are separately modeled for eachmonth of the
year to allow for climatologically varying spatial dependence structure. The partial sills and range para-
meters are treated as random variables, and the nuggets are fixed at 0.001. Similarly, minimum temperature,
ZN(s, t), is also a Gaussian process whose mean is a regression on covariates 1, ZN(s, t − 1), cos(2πt/365),
sin(2πt/365), and O(s, t), with monthly varying isotropic exponential spatial covariance functions Cm,

N(h) ∈ R
2, m = 1, 2, … , 12.

Note that both maximum and minimum temperatures on day t depend on the current day's precipitation
occurrence. Maximum temperature on day t depends on the previous day's maximum temperature; mini-
mum temperature on day t depends on the previous day's minimum temperature. This mean function
dependency serves to temporally correlate the maximum and minimum temperature processes without
having to specify a complete space‐time covariance structure.

Each temperature process' mean function is a regression; the regression coefficients are denoted by βj, X(s)
and βj, N(s) for j = 1, … , 5 for maximum and minimum temperature, respectively. These coefficients are
assumed to vary in space to capture local climatological influences of the covariates and are modeled as
Gaussian processes with means defined as first‐order polynomials fitted on the point estimates, using the
spatial coordinates as predictors, each with isotropic exponential covariance functions. The partial sills
and range parameters are random variables, while the nuggets are fixed at 0.001. In total there are 112 para-
meters in both maximum temperature and minimum temperature models, totaling 224 parameters.

2.5. Likelihood and Priors

Let θ ∈ RP,P = 112 + 112 + 60 + 60 = 334 be the vector of model parameters and let Y ∈ RN,
N= 19,358 × 13 × 4 = 1,006,616 be the observational data vector of all occurrences, amounts, maximum tem-
peratures, and minimum temperatures. We seek the posterior distribution p(θ|Y) ∝ f(Y| θ)π(θ), where f is
the data likelihood and π is the joint prior distribution. The likelihood function f(Y| θ) factors into products
of marginal likelihoods for each weather variable. The likelihood for the precipitation occurrence process is
simply a product of Bernoulli probability mass functions; these probabilities are modeled via probit
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regressions. The likelihood for the precipitation amount process is a product of gamma probability density
functions. The likelihoods for the maximum and minimum temperature processes are independently multi-
variate normal. The likelihoods for the exponential covariance function parameters are independently
univariate normal.

We use weakly informative independent normal priors, thus π(θ) factors as follows: the prior distributions
for the GLM regression parameters are set to be independent normal distributions centered on the respective
MLE with standard deviations set to 100. Exponential covariance parameters, specifically the partial sill and
range parameters, are given independent normal prior distributions centered on the least squares optimiza-
tion estimates. The optimization is achieved by minimizing the squared difference between the empirical
covariances and theoretical exponential variogram models. The standard deviations for the normal priors
on the partial sill parameters are defined as the empirical standard deviation of the monthly optimized esti-
mates of partial sill (i.e., the standard deviation of the 12 values used to center the normal distributions). The
standard deviation for the normal priors on the range parameters are defined by the standard deviation of all
pairwise distances (i.e., the standard deviation of the distance matrix). All nugget parameters are fixed at
0.001. Nonnegative parameters (i.e., partial sill and range parameters) are given truncated normal priors
with lower bounds of 0. The range parameters are assigned an upper bound equal to the greatest distance
between all observation sites multiplied by 1,000 (i.e., the maximum value in the distance matrix multiplied
by 1,000). Truncated normal priors are defined by specifying bounds on the parameters themselves, regard-
less of the specified priors, which is an option in the rstan library.

2.6. Implementation

We use the R (R Core Team, 2014) library rstan (Carpenter, 2015; Stan Development Team, 2015a, 2015b) for
model development. This software employs the No‐U Turn sampler (NUTS), an adaptive form of
HamiltonianMonte Carlo (HMC) sampling (see Hoffman&Gelman, 2014). Other existing software typically
uses Markov chain Monte Carlo (MCMC) sampling, which, while effective, can take a long time to converge
with its random walk behavior. HMC avoids the random walk behavior of Markov chain Monte Carlo by
taking steps based on first‐order gradient information. The efficacy of HMC is highly sensitive to user‐
defined parameters, particularly step size and the number of steps per iteration. NUTS was developed to
adaptively and intrinsically set these key HMC parameters by (i) building a set of likely candidate points
spanning the target distribution until it “U‐turns” or doubles back and retraces its steps, eliminating the need
for the user to set a discrete number of steps per iteration, and (ii) implementing a primal‐dual averaging
(Nesterov, 2009) method for adapting the step size parameter on the fly, eliminating the need for the user
to set a discrete step size (Hoffman &Gelman, 2014). The partial derivatives required by the NUTS algorithm
are computed via automatic differentiation variational inference (see Kucukelbir et al., 2017).

We have chosen the rstan library because it provides an R interface to the Stan modeling language
(Carpenter, 2015; Stan Development Team, 2015a, 2015b), which has an active users group mailing list for
real‐time troubleshooting.

3. Study Region and Data

Application of BayGEN is focused on the Salado A subbasin (hereafter SAB) of the Argentine Pampas (see
Figure 1). The climatology of the region surrounding the SAB exhibits longitudinal gradients, with higher
temperatures and lower rainfall in the west and lower temperatures and higher rainfall in the east. The
SAB is unique in that it is located where the climatological gradients are the greatest. Additionally, the
SAB is one of the most agriculturally productive regions of the Pampas. For a detailed description of the
SAB and its hydroclimatology, see Verdin et al. (2018).

Daily time series for three weather variables—precipitation, maximum temperature, and minimum
temperature—are available for a network of 17 weather stations located in and around the SAB for the
period from January 1961 to December 2013 (53 years). Because four stations have many missing data
(>25%), they were removed from the network. The remaining 13 stations were used in the analyses (see
Figure 1). The data were collected and organized by the Servicio Meteorológico Nacional (National
Meteorological Service) of Argentina.
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4. Results
4.1. Model Fit

We employed BayGEN in eight parallel chains (i.e., independent sampling routines) of 1,000 iterations, the
first 500 of which are discarded as “burn‐in” (i.e., warmup), which results in 4,000 posterior samples of θ.
Each parallel chain is initialized with a random sample from a uniform distribution, which ensures that
the sampler converges to the appropriate limiting distribution. An example of the sampler failing to con-
verge to the appropriate limiting distribution would be if one or more of the eight parallel chains converges
on different posterior modes. Additionally, it is advantageous to run multiple chains because it is easier to
diagnose convergence. Each chain uses NUTS to generate a sequence of plausible values for all parameters
in the model. The sampled values from each chain are combined into a single distribution for each model
parameter, which produces the full posterior distributions for each parameter in the model. From the poster-
ior distributions, we obtain a full representation of the range of parametric uncertainty. In rstan, the data are
first transformed to the unconstrained scale, and the initialization values are random samples from a uni-
form distribution spanning [−2, +2]. Numerical convergence is monitored by a weighted combination of
the between‐ and within‐sequence variances, as follows:

bR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varþ θjYð Þ

W

r
; (10)

where

varþ θjYð Þ ¼ n−1
n

W þ 1
n
B: (11)

In equations (10) and (11), θ is a vector of the parameters of interest, Y is the response data,W is the within
sequence variance, B is the between‐sequence variance, and n is the length of the simulated sequences

after burn‐in. bR is the factor by which the scale of the current distribution for θ might be reduced if the

simulations were continued in the limit n → ∞. A value of bR<1:1 implies convergence (Gelman et al.,

2004). Every parameter in this model has a value of bR<1:1 (most are bR ¼ 1:0, which is optimal); thus,
all parameters have converged within the allotted burn‐in period. Visual inspection of traceplots (i.e.,
the evolution of the sampled values of θ) was also used to assess convergence (figures not shown), confirm-

ing what is reported by bR.

Figure 1. Salado A subbasin location relative to South America; station locations shown as black dots; Junín shown as
large black triangle; grid cell locations shown as gray dots; and Salado A sub‐basin is outlined.
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4.2. Posterior Distributions

The posterior distributions of the model parameters were compared to their respective MLE values for con-
sistency. Figure 2 shows the posterior density of the intercept terms of the precipitation occurrence latent
Gaussian processes and the MLE at the 13 station locations. The MLE are very close to the mode of the dis-
tributions. Furthermore, the distributions are wide, which is indicative of the uncertainty not quantified by
using the point estimates of MLE. Although it is possible to obtain the unconditional distribution for the
point MLE from asymptotic arguments, it is not clear that such asymptotics are appropriate for these data.
Hence, the uncertainties in the model parameters are not reflected in non‐Bayesian GLM‐based stochastic
weather generation. Posterior distributions of other model parameters exhibit similar relationships with
their respective MLE (figures not shown).

4.3. Multisite Weather Simulation

We fitted the BayGEN and generated daily weather ensembles at the network of 13 stations. Each simulated
ensemble is 53 years long (the same length as the observational record). As there are 4,000 samples in θ,
which form the posterior distribution of the parameters, we generated an ensemble of 4,000 daily weather
series, each using a unique parameter set from θ. For each parameter set, the daily precipitation occurrence,
amounts, and maximum and minimum temperatures are generated following the equations and methods
described in section 2. A suite of monthly and spatial statistics was computed and compared with the
observed values.
4.3.1. Model Validation
We computed basic statistics for each simulation, resulting in a distribution of basic statistics. These basic
statistics were computed for each month—monthly mean and standard deviations of daily precipitation
and minimum and maximum temperatures. Spatial correlations between the simulations across the loca-
tions were computed and compared to the historic values. In order to investigate the ability of BayGEN in
capturing extremes, we show quantile‐quantile (Q‐Q) plots of observed and simulated daily minimum and
maximum temperatures, and domain maximum precipitation.
4.3.2. Basic Statistics
Figure 3 shows boxplots of the means and standard deviations of daily rainfall, maximum temperature, and
minimum temperature for each month at Junín (see Figure 1 for the location of this station), with the

Figure 2. Posterior distributions andmaximum likelihood estimates of the intercept terms for the precipitation occurrence model at each of the 13 locations shown
in Figure 1.
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corresponding observed statistics as solid lines. It can be seen that the historic means of all the variables for
all the months (Figures 3a, 3b, and 3c) are well captured by the simulations, as the historic values fall within
the interquartile range of the boxplots. The historic monthly standard deviations of precipitation (Figure 3d)
are well captured by the BayGEN simulations, while the simulations of maximum and minimum
temperatures (Figures 3e and 3f) show smaller standard deviation compared to observations; more so
with minimum temperatures.

Figure 4 shows the pairwise correlations of monthly mean precipitation, maximum temperature, and mini-
mum temperature from the simulations along with the observed values, with a 1:1 line for reference. The

Figure 3. The 4,000 simulations at Junín: (a–c) Climatological mean of daily precipitation, maximum temperature, and minimum temperature; (d–f) monthly
standard deviation of daily precipitation, maximum temperature, and minimum temperature. BayGEN shown as boxplots; observed statistics shown as lines.

Figure 4. Spatial pairwise correlations of (a) monthly mean precipitation, (b) monthly mean maximum temperature, and (c) monthly mean minimum tempera-
ture. Observed correlations are on the x axis, and posterior median correlations are on the y axis.
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spatial correlations of the variables across the stations are very well captured by the simulations (Figures 4a,
4b, and 4c) with a slight undersimulation of higher correlations in precipitation (Figure 4a).
4.3.3. Extremes
For crop and hydrologic modeling, it is important to reproduce precipitation and temperature extremes. We
assess the capability of BayGEN to produce extremes by Q‐Q plots of domain extremes. Figure 5 shows Q‐Q
plots of the observed versus simulated domain daily extrema of temperature and precipitation (i.e., domain
maxima and minima of maximum temperature and minimum temperature and domain maxima of daily

Figure 5. (a–d) Q‐Q plots of BayGEN daily domain temperature extrema computed as maximum or minimum of daily
values at all the locations: (a) domain maxima of maximum temperatures, (b) domain minima of maximum tempera-
tures, (c) domain minima of minimum temperatures, and (d) domain maxima of minimum temperatures. Units are
degrees Celsius. (e) Q‐Q plot of BayGEN daily domain maxima precipitation computed as maximum of daily precipitation
at all locations. Units are millimeters.
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precipitation). Daily extrema across the 13 stations (i.e., domain) for a randomly selected simulation are
paired with those from the corresponding historic values in computing the Q‐Q plot. The quantiles of the
simulated and observed daily extreme temperatures lie on the 1:1 line, except for slight deviations in the
lower values of maxima of maximum temperatures (Figure 4a) and the higher values of minima of
maximum temperatures (Figure 4b). The precipitation extremes are undersimulated for higher values,
which is not surprising, as precipitation extremes in space and time are difficult to capture. Furthermore,
considering that the model structure does not explicitly model extremes, the performance of the
simulations in capturing the extrema is quite good.

4.4. Gridded Weather Simulation

The BayGEN framework is structured to enable weather simulation at arbitrary locations, such as on a reg-
ular grid, via spatial process models. First, model parameters are simulated at desired locations using condi-
tional simulation informed by samples from the posterior distribution of the spatial process parameters.
Conditional simulation is used instead of other spatial estimation techniques (such as interpolation) to pre-
serve the uncertainty defined by the posterior distributions of spatial process parameters. Gaussian random
fields are used to produce spatially correlated residuals, akin to the multisite simulation. For consistency
between precipitation occurrence and amounts, the Gaussian random field that is used to simulate precipi-
tation occurrence is transformed to gamma space using a Gaussian copula function (Chilés & Delfiner,
1999). We show the model's ability in simulating spatial weather scenarios by displaying the ensemble mean
and spread from the simulations for the wet season, October–December.

Because gridded weather simulation is computationally intensive, we randomly sample 100 posterior sam-
ples from the 4,000 available in the posterior distributions, resulting in 100 gridded weather scenarios.
Gridded weather was simulated for the austral spring season (October–December; OND). For visualization,
we aggregated daily weather to the seasonal scale (seasonal total precipitation and seasonal average tem-
peratures). The ensemble mean and the 95% ensemble spread (i.e., the 97.5th percentile minus the 2.5th per-
centile) are calculated and shown in Figure 6. It can be seen that there is coherent spatial structure in the

Figure 6. BayGEN: (a–c) Ensemble mean total precipitation, mean maximum temperature, and mean minimum temperature, for the OND season; observed OND
values are shown as colored points; (d–f) corresponding 95% ensemble spread. Units are millimeters and degrees Celsius, respectively.
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simulated fields, and the gradients in both precipitation and temperatures are consistent with observations
(colored points in Figure 6). The 95% ensemble spread indicates significant uncertainty in precipitation
amounts (~300–600 mm), maximum temperature (~3.0–4.5 °C), and minimum temperatures (~2.5–4.0 °C).

4.5. Coupling With DSSAT

The utility of stochastic weather generators for decision‐making is assessed, typically, by coupling themwith
process‐based models (e.g., crop yield, hydrologic, and water resources) to generate ensembles of decision
variables that will be of use in risk‐based decision‐making. For the sake of completeness, we offer a limited
demonstration of this by integrating the weather ensembles from BayGENwith the Decision Support System
for Agrotechnology Transfer (DSSAT; Jones et al., 2003), a widely used modeling system for simulating
yields of many crops. DSSAT can be used to assist in the analysis of complex alternative decisions in agricul-
tural management and adaptation. For a selected crop, the agronomic management (e.g., genotype, planting
date, and fertilization rate) and soil type (values for many parameters that describe the soil of the agricultural
plot of interest) are prescribed. Daily weather (i.e., precipitation, minimum and maximum temperatures,
and solar radiation) are required inputs to DSSAT; optional inputs include dew point and wind speed.
Outputs include crop yield (at the seasonal scale), total biomass, flowering and harvest date, soil water con-
tent for each layer, and root depth, among many other variables. DSSAT simulation models have been cali-
brated and tested in the Pampas for soybean, maize, and wheat (Apipattanavis et al., 2010; Bert et al., 2006,
2007; Ferreyra et al., 2001; Mercau et al., 2007; Meira et al., 1999; Podestá et al., 2009), which are commonly
grown crops. Currently, DSSAT simulates crop development and growth for one point (i.e., plot); however,
there are at present some tools that facilitate running a gridded version of DSSAT (Elliott et al., 2014;
McNider et al., 2011).

BayGENmodels precipitation and temperature but in its current form does not simulate additional weather
variables (e.g., solar radiation, wind speed, and reference evapotranspiration). However, BayGEN can easily
be modified to model any relevant additional variables. Here we estimated solar radiation after the simula-
tion process using a modified Bristow‐Campbell method (Bristow & Campbell, 1984). Bristow and Campbell
(1984) suggest using the mean of minimum temperature for days t and t+ 1 to help reduce the effect of large‐
scale hot or cold air masses moving through the domain. The modification to the Bristow‐Campbell method
that we used involves using minimum temperature for day t directly. We had these modifications implemen-
ted from prior research (e.g., Bert et al., 2006), thus readily available for this demonstration.

We simulated daily weather sequences for 2 years using 100 randomly selected parameter samples from the
BayGEN posterior distributions. Using a calibrated DSSAT soybean simulation model, 100 soybean yields
were computed for the austral spring‐summer growing season (October–March) at Junín, an agriculturally
productive region in the northeastern corner of the SAB. We also simulated 100 soybean yields using
weather simulations from GLMGEN for comparison. Figure 7 shows the cdf of the 100 soybean yields from
BayGEN and GLMGEN simulations. Themoderate slope in the cdf of soybean yields from BayGEN indicates

Figure 7. Cumulative density functions of summer growing season (left) total precipitation and (right) soybean yields at
Junín, based on 100 simulations of daily weather for a 2‐year period. Simulations from BayGEN are shown as a solid
line and GLMGEN as a dashed line. Break‐even yields are shown as dots on the distributions of soybean yield; these values
can be used as indicators of production risk.
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higher risk of lower crop yields relative to GLMGEN.We select a heuristic “break‐even” production quantity
(~2,300 kg/ha) based on expert input to enable comparison between BayGEN and GLMGEN. The risks of
not meeting break‐even soybean production are 31% and 16% for BayGEN and GLMGEN, respectively.
The higher risk can be attributed to the robust quantification of uncertainties in model parameters from
BayGEN as reflected in higher standard deviation of simulations, especially precipitation during the wet
season (Table 1). The decisions resulting from simulations exhibiting a higher risk estimate will likely be
conservative, thus minimizing losses to farmers.

5. Summary and Discussion

We developed a novel GLM‐based Bayesian hierarchical space‐time stochastic weather generator, BayGEN.
To our knowledge, this is one of the first attempts at a fully Bayesian weather generator. In this, the
GLM‐based space–time weather generator of Verdin, Rajagopalan, Kleiber, and Katz (2015) is embedded
in a Bayesian hierarchical framework to obtain the posterior distributions of the model parameters.
Sampling from these posterior distributions provides ensembles of weather sequences, thereby robustly
reflecting the uncertainty in the model parameters.

We demonstrated the utility of BayGEN with application to daily weather generation in the Salado A
subbasin of the Argentine Pampas. Daily weather simulations, each 53 years long (the same length as the
observational record), were generated for each of the 4,000 posterior parameter samples, which produced
a rich variety of weather sequences that incorporate parametric uncertainty. The BayGEN daily weather
ensemble captured the basic statistics and domain extremes of the observations well, which is noteworthy
as extremes were not explicitly modeled.

As is apparent in Table 1, BayGEN generates precipitation with greater variability than GLMGEN; however,
minimum and maximum temperatures generated by BayGEN exhibit slightly less variability than those

Table 1
Climatological Monthly Means and Standard Deviations From the Observational Record (Denoted as Obs) for Precipitation, Maximum Temperature, and
Minimum Temperature

Precipitation Maximum temperature Minimum temperature

Obs BayGEN GLMGEN Obs BayGEN GLMGEN Obs BayGEN GLMGEN

Jan mean 4.1 4.1 (9.1) 4.0 (8.9) 30.0 29.9 (4.5) 30.4 (5.3) 16.3 16.1 (4.2) 15.9 (4.3)
Jan std. dev. 11.8 10.1 (20.4) 10.0 (20.2) 3.6 3.5 (2.2) 3.5 (2.5) 3.1 3.1 (2.1) 3.1 (2.1)
Feb mean 3.9 3.5 (8.5) 3.4 (8.4) 28.7 28.9 (4.7) 29.5 (5.5) 15.5 15.5 (4.4) 15.2 (4.3)
Feb std. dev. 11.4 8.8 (19.5) 8.7 (19.3) 3.7 3.5 (2.4) 3.5 (2.6) 3.4 3.2 (2.2) 3.1 (2.2)
Mar mean 4.8 4.0 (9.9) 3.9 (9.7) 26.5 26.4 (4.5) 26.9 (5.2) 13.4 13.3 (4.3) 13.0 (4.4)
Mar std. dev. 15.5 10.7 (24.2) 10.7 (23.9) 4.0 3.6 (2.4) 3.6 (2.7) 3.8 3.4 (2.3) 3.3 (2.3)
Apr mean 3.2 2.2 (6.2) 2.2 (6.1) 22.8 22.9 (4.5) 23.3 (5.1) 10.3 10.1 (4.7) 9.7 (4.8)
Apr std. dev. 10.0 6.4 (16.2) 6.4 (16.1) 4.0 3.6 (2.4) 3.5 (2.7) 4.3 3.6 (2.5) 3.6 (2.6)
May mean 1.8 1.4 (4.1) 1.4 (4.1) 19.1 19.3 (4.1) 19.7 (4.9) 7.2 6.8 (4.8) 6.3 (5.1)
May std. dev. 7.6 4.3 (11.6) 4.2 (11.5) 4.1 3.4 (2.3) 3.3 (2.5) 4.8 3.7 (2.5) 3.9 (2.7)
Jun mean 1.0 1.1 (3.5) 1.0 (3.4) 15.4 16.8 (4.2) 17.1 (4.8) 4.4 4.4 (4.8) 3.8 (5.2)
Jun std. dev. 4.0 3.4 (10.0) 3.4 (9.9) 3.7 3.3 (2.2) 3.1 (2.3) 4.9 3.6 (2.5) 3.8 (2.6)
Jul mean 1.1 1.1 (3.4) 1.0 (3.4) 15.1 16.0 (4.4) 16.3 (5.0) 3.8 3.3 (4.9) 2.8 (5.2)
Jul std. dev. 4.8 3.4 (9.9) 3.4 (9.9) 4.2 3.5 (2.2) 3.3 (2.4) 5.0 3.7 (2.4) 3.8 (2.6)
Aug mean 1.2 1.2 (3.7) 1.2 (3.6) 17.4 17.1 (4.7) 17.3 (5.2) 4.6 4.0 (4.9) 3.6 (5.2)
Aug std. dev. 4.7 3.8 (10.3) 3.7 (10.2) 4.5 3.8 (2.5) 3.5 (2.5) 4.7 3.7 (2.5) 3.9 (2.6)
Sep mean 1.8 1.7 (4.8) 1.6 (4.6) 19.7 19.7 (4.9) 20.0 (5.5) 6.7 6.2 (4.9) 6.0 (5.1)
Sep std. dev. 6.5 4.9 (12.5) 4.8 (12.5) 4.5 3.9 (2.6) 3.7 (2.8) 4.2 3.7 (2.5) 3.7 (2.6)
Oct mean 3.8 3.1 (7.7) 2.9 (7.5) 22.4 23.2 (4.9) 23.5 (5.5) 9.9 9.4 (4.7) 9.2 (4.7)
Oct std. dev. 10.4 8.4 (19.1) 8.2 (18.8) 4.2 4.0 (2.6) 3.8 (2.8) 3.8 3.7 (2.5) 3.5 (2.5)
Nov mean 3.7 3.6 (8.5) 3.5 (8.3) 25.9 26.7 (5.0) 27.1 (5.7) 12.6 12.6 (4.6) 12.5 (4.7)
Nov std. dev. 11.1 9.2 (19.7) 9.0 (19.5) 4.3 3.9 (2.6) 3.8 (2.9) 3.6 3.5 (2.4) 3.4 (2.5)
Dec mean 3.5 4.1 (9.0) 4.0 (8.8) 29.0 29.2 (4.8) 29.7 (5.7) 15.1 15.1 (4.4) 14.9 (4.6)
Dec std. dev. 10.0 10.0 (20.3) 9.9 (20.2) 4.1 3.8 (2.4) 3.8 (2.7) 3.4 3.3 (2.3) 3.4 (2.3)

Note. BayGEN ensemble medians are presented with 95% ensemble spread (97.5th percentile minus 2.5th percentile) included in parentheses; GLMGEN med-
ians are presented with 95% ensemble spread included in parentheses.
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from GLMGEN. The fact that temperature variability from BayGEN and GLMGEN is approximately equiva-
lent is indicative of the fact that the main drivers of variability in the temperature processes are the random
noise processes. It would follow that the noise processes overpower the parametric uncertainty for tempera-
ture simulations. However, the greater variability of daily precipitation in the BayGEN daily weather simu-
lations was magnified when the weather simulations were used to drive a DSSAT soybean crop simulation
model. The greater variability in DSSAT yields can be attributed to the greater variability in seasonal preci-
pitation totals, which is the main driver of crop development in the DSSATmodel. For comparison, weather
simulations from GLMGEN were also used to drive the same DSSAT model. Break‐even production risks
from the BayGEN runs (31%) were nearly double that of the GLMGEN runs (16%), which is likely due to
the increase in variability between the simulated weather series.

Extending BayGEN to include seasonal covariates to enable conditional weather simulation, informed with
seasonal forecasts and multidecadal projections similar to the work of Verdin et al. (2018), would be bene-
ficial for short‐ and long‐term planning of agriculture and other resources. Additionally, teleconnections
between the El Niño Southern Oscillation and the climate of a region may also be included to enable
seasonal forecasting.

While effective in quantifying parameter uncertainty, BayGEN comes with a high computational cost, espe-
cially when applied to large domains or dense grids. Even in this application, spatial correlation of latent
residuals in the precipitation occurrence probit regression is modeled during postprocessing using empirical
correlation matrices for each month. Future work will investigate new and efficient ways to incorporate this
step into the BayGEN workflow.
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