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Abstract Two common tasks when processing point cloud data sets are surface esti-
mation and point cloud registration. In this paper, a statistical approach is developed
to solve both of these problems simultaneously. In particular, a surface is estimated
from a pair of unregistered three-dimensional scans of the same spatial region. In this
method, one point cloud defines the fixed coordinate system, and a rigid transforma-
tion is applied to the second cloud. Observations from both scans are considered a
single realization of a Gaussian process. The registration problem is solved by jointly
optimizing the likelihood over the parameters specifying the domain transformation
and the mean and covariance functions. Given parameter estimates, surface estima-
tion follows using the spatial stochastic model. While other existent approaches do
not account for registration uncertainty, the likelihood-based approach to solving the
registration and surface estimation problems jointly allows uncertainty in registration
to be propagated to the surface prediction variance. The new method is motivated and
illustrated using a digital elevation model estimation problem near the Chalk Cliffs
in Colorado. The method developed is compared against the popular iterative clos-
est point method. The results of a simulation study show significant improvement in
transformation parameter estimates using the statistical approach. In a cross-validation
experiment with the Chalk Cliffs data, there is an 18% reduction in predictive mean
squared error using the likelihood method over iterative closest point.
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1 Introduction

Point clouds are datasets consisting of points located in space, most often R
3. These

datasets are also sometimes informally called point clouds, scenes, or scans. Such
data are common in a variety of applications in geology, computer vision, agricultural
science, remote sensing andmedical imaging. There are several methods for collecting
point cloud data, such as LiDAR and structure frommotion (SfM) algorithms. Most of
these data collection methods record a large number of points at very high resolution.

Point cloud data can often be viewed as a possibly noisy partial observation of
some continuous underlying surface, and surface estimation is typically the primary
goal. A prime example of point cloud data are those used to develop digital elevation
models (DEMs) that are widely used in geological, environmental, ecological and
geophysical sciences. Conversion of point cloud data to a regular grid can follow
from many methods, including linearly interpolated triangulation, inverse distance
weighting, and kriging (Lloyd and Atkinson 2002; Schwendel et al. 2012). Arun
(2013) reviews and compares several methods for estimating DEMs, finding kriging
to outperform most other approaches but at an added computational cost (Sunila and
Virrantaus 2011).

Most surface estimation methods rely on having a single partial observation of the
surface. However, especially for producing DEMs, multiple scans, flyovers or datasets
may be available that are representative of the same geographical region. A potential
issue with multiple scans of the same region is that they may not be a priori aligned in
the same coordinate system. An example case, which is explored in the data example,
is the construction of an SfM point cloud at a site that is too steep for the placement of
ground control points (GCPs). Point cloud registration is a process involving finding
a spatial transformation which approximately aligns two point clouds.

Point cloud registration is a well-established field in remote sensing and engineer-
ing. Registration algorithms generally fall into two classes—registration of the raw
point clouds or a surface representation step before registration. Methods which do
not convert the point clouds to a continuous representation rely on the concept of
point matching, in which the algorithm attempts to match each point in the first data
set to its closest neighbor in the second data set (either a point or another geometric
object). A transformation is then estimated to minimize a cost function, which is often
the sum of the squared differences between each pair of points. The popular iterative
closest point (ICP) method (Besl and McKay 1992) and the robust point matching
algorithm (Gold et al. 1998) fall into this category. The first step in the ICP algorithm
is discrete point matching, where every point in the source (or moving) point cloud
is put in correspondence with a point in the reference (or fixed) point cloud, usu-
ally the closest point according to some distance measure. Then, the optimal spatial
transformation applied to the moving point cloud is found by minimizing the sum of
squared distances between each set of two points in correspondence. After a suitable
transformation has been estimated, the transformation is applied to the moving point
cloud. This process is repeated iteratively by updating the point correspondences and
re-estimating and applying a spatial transformation. The algorithm terminates after a
fixed number of iterations or after the error becomes smaller than a set tolerance. One
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disadvantage of point matching methods is that finding nearest neighbors can incur a
large computational burden when trying to solve the discrete point matching problem.

The second class of methods circumvent point matching by using one or more
continuous representations of the point clouds. The kernel correlation method (Tsin
and Kanade 2004), a similar method based on Gaussian mixtures (Jian and Vemuri
2005), and the coherent point drift method (Myronenko and Song 2010) model the
point clouds using kernel density estimators or Gaussian mixture models and then find
the optimal spatial transformation between these new continuous representations. This
conversion strategy can reduce the computational burden of the optimization. See Tam
et al. (2013) and Maiseli et al. (2017) for recent comprehensive reviews of point cloud
registration algorithms. Although registration algorithms have been well explored,
the problem of registration uncertainty is not often addressed in the spatial statistics
literature: usually uncertainty quantification is limited to the response variable and not
extended to the positional variables.

Several authors have addressed inference and prediction of spatial models in the
presence of location error (Cressie and Kornak 2003; Fanshawe and Diggle 2011;
Fronterré et al. 2018; Kotsakis 2019). Cervone and Pillai (2015) provide a review, and
then they develop anMCMC approach to prediction. However, the main focus of these
approaches are cases where an individual dataset has positional data with independent
or uncorrelated errors. This is fundamentally a different problem than multiple dataset
registration where each position is internally consistent (i.e., without location error),
but there is inconsistency in the coordinate systems between datasets. As a working
hypothesis, we assume there is no location error. This is justifiable when the location
errors are much smaller than the translation parameters in the registration, and we
expect the location errors to be close to the order of magnitude of the nugget effect,
which is very small in the applications in this paper. In other words, the bias in the
positional variables applies to only one dataset and is common for all locations within
that dataset. Thus, the goal is to estimate and quantify uncertainty in the transformation
parameters and not the observation locations themselves.

In this paper a statistical approach is proposed to simultaneously solve the two
problems of point cloud registration and surface estimation. The solution was moti-
vated by a dataset consisting of two scans performed on the same spatial region near
the Chalk Cliffs in Colorado. An SfM algorithm generates point clouds over the same
domain, but whose location data are not registered. The approach developed here is
relatively simple: a joint Gaussian process specification for the observational model,
where one scan’s statistical model includes a rigid transformation of its coordinate
system. Observations from both scans are considered a single realization of the pro-
cess. The registration problem is solved by jointly optimizing the likelihood over the
transformation parameters and the other parameters specifying the mean and covari-
ance functions. Model parameters are estimated in a maximum likelihood framework
and use standard asymptotic arguments to obtain approximate parameter uncertainties.
Given model parameters, surface estimation follows directly by kriging the registered
datasets. This method is different compared to the current point cloud registration
methods: the task of discrete point matching is avoided, and the optimization in the
continuous domain doesn’t rely on kernels, mixture models, or representing the point
clouds as realizations of a point process before registration. A novel feature of the
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method developed in this paper is that the uncertainty in the surface estimate reflects
both the uncertainty that results from the stochastic surface model and the uncertainty
of the registration, implemented using Monte Carlo techniques.

2 A Surface Estimation Model with Registration

This section briefly describes the dataset and sets up some notation, followed by a
detailed description of the statistical model, and the registration and surface estimation
procedures.

2.1 A Drone-Based Elevation Dataset

Our data come from two drone-based flyovers of the Chalk Cliffs debris flow basin in
central Colorado. The Chalk Cliffs site is a 0.37 km2 watershed at the base of Mount
Princeton, sevenmiles west of Nathrop, Colorado in the Arkansas River Valley. Debris
flows occur at the site between one and four times per year, typically in response to
rain events (Coe et al. 2008; McCoy et al. 2010; Kean et al. 2009). The frequency of
debris flows and the uniformity of the underlying rock make the Chalk Cliffs an ideal
study catchment for developing a mechanistic understanding of natural debris flows.
Observational data relevant to a mechanistic understanding of sediment creation and
transport processes at Chalk Cliffs include maps of topographic change.

SfM is an image-based photogrammetric method that uses multiple images of a
static scene taken from many different locations to jointly solve for the camera lens
calibration parameters, the location and orientation of each photograph, and a sparse
cloud of prominent features in the scene (James and Robson 2012; Westoby et al.
2012; Fonstad et al. 2013). Finally, a multi-view stereo algorithm is used to construct
depthmaps of each image and create a dense point cloud. A common step in geological
applications is the placement of GCPs within the study scene that are used to place
the scene in an absolute reference frame (Reitman et al. 2015; Warrick et al. 2017).

For the data application, point clouds from two survey flights onOctober 3, 2017 are
available. A DJI Phantom 4 Pro drone was used, programmed using Universal Ground
Control Software (v2.11.250). The drone was programmed to survey a portion of
the Chalk Cliffs basin at 76 m above ground level with 70% photo overlap and 30%
sidelap. Each flight resulted in around forty photographs. Processing the photographs
into point clouds was done in Agisoft Photoscan (v1.4.2). Each survey resulted in a
sparse point cloud of about 80–100 thousand points and a dense cloud of about 60
million points (about 250 points per square meter). The Chalk Cliffs site is extremely
steep—over half of the basin is exposed bedrock cliff. For this reason, the surveys do
not have ground control; instead, the coordinates in the point clouds rely on the less
precise GPS on board the drone.

Several authors have attempted error quantification in producing point cloud SfM
data products, either in the context of georegistration (Harwin and Lucieer 2012;
Nilosek et al. 2014), or comparing against other data sources such as LiDAR or a
TLS, e.g. Mancini et al. (2013). See Ozyesil et al. (2017) for a survey of SfM research,
and Seitz et al. (2006) for a comparison of several multi-view stereo reconstruction
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Fig. 1 The two unregistered point clouds partially overlapping in red and blue. Axes are projected and
centered easting, northing and elevation coordinates

algorithms. Truong et al. (2017) explored registration of SfM point clouds correspond-
ing to RGB and thermal images using rigid body transformations and a variant of ICP,
but attempts at statistical uncertainty quantification have not been made.

The data are two point clouds in R
3, but the approach developed in this paper can

easily be extended with minor modifications to account for higher dimensions and
more than two datasets. As the interest in this paper is in creating a DEM by joining
two datasets, denote the first dataset as Y1(s1 j ) for j = 1, . . . , n1 and Y2(s2 j ) for j =
1, . . . , n2. Here, si j ∈ R

2 denotes easting and northing positional coordinates while
Yi (·) denotes themeasured elevation. Figure 1 shows both datasets in their unregistered
coordinate systems. There are clear coordinate shifts required for registering, and there
is also potentially rotational misalignment.

2.2 The Statistical Model

The following data generating model is proposed

Y1(s) = Z(s) + ε1(s)

Y2(s) = μ + Z(T (s)) + ε2(T (s)),

where the transformation is applied to the second dataset. Both datasets represent the
same underlying continuous surface, Z(·), which is modeled as a mean zero Gaussian
process. Data are subject to observational noise or microscale variations εi (·) for
i = 1, 2, which is assumed to be mean zero Gaussian white noise processes with
variance τ 2. Due to the unregistered nature of the two datasets, a bias parameterμ ∈ R
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which is a translation in the elevation coordinate and T which is a transformation in
the positional coordinates, are introduced.

Note that the identically distributed assumption on both datasets’ error processes
is natural, as both derive from the same observational platform. The independence
assumption (i.e., rather than specifying ε1 = ε2) is necessary, as any co-located points
between the two datasets are subject to independent errors as they were captured at
two different time points, not in the same flyover. If nonstationary error measures are
provided in the data set, the distribution of the residual process can be generalized to
εi (s) ∼ N (0, τ 2i (s)).

In this work T : R2 → R
2 is restricted to be a rigid transformation that includes

both a translation and rotation of the positional coordinates but not a reflection. The
transformation can be written with a translation vector r ∈ R

2 and a 2 × 2 orthogonal
rotation matrix R parameterized by an angle φ as follows.

T (s) = Rs + r

=
[
cosφ sin φ

− sin φ cosφ

] [
sx
sy

]
+

[
rx
ry

]
,

where s = [sx sy]T and r = [rx ry]T. The transformation depends on parameters
rx , ry and φ. By definition, a proper rigid transformation preserves Euclidean distance
among the points to which it is applied.

While the rigid transformation provides positional translations and rotations, amore
complicated model could include three rotation parameters (the roll, pitch, and yaw).
Based on exploratory data analysis, this more complicated rotation does not appear
to be necessary for the Chalk Cliffs dataset. Moreover, such a choice preserves the
additive error structure of the model: if the z-axis is allowed to be rotated, the error
structure in the transformed data set will not be additive with the error in the first
data set, and it is not clear how to incorporate such errors into the model. Other work
has addressed how nonlinear transformations using splines and Gaussian processes
can be used to model the mapping function describing the transformation (Zhu et al.
2009). However, it is unclear how such a framework could preserve the structure of
the additive model. Thus, one limitation of this approach is that it assumes that the
points are a single-valued function in some reference frame.

All that remains to be specified is the structure of the continuous spatial varia-
tion process Z(·). Z is modeled as an isotropic random field with Matérn covariance
function. In particular

Cov(Z(s), Z(s′)) = C(s, s′) = σ 2 2
1−ν

�(ν)

(
d

a

)ν

Kν

(
d

a

)
,

where d = ‖s − s′‖ is the Euclidean distance between points, σ 2 is the marginal
variance, a > 0 a spatial range parameter and ν > 0 the smoothness. � is the gamma
function, and Kν is the modified Bessel function of the second kind, of order ν. The
Matérn covariance function is frequently used in spatial statistics due to its flexibility
and the interpretability of its parameters. Stein (1999) recommended general adoption
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of the Matérn family of models because spatial fields with any degree of differentia-
bility can be modeled by using different ν parameters.

2.3 Parameter Estimation

Data are available as Y = [YT
1 ,YT

2 ]T, where Y1 = (Y1(s11), . . . ,Y1(s1n1))
T and

Y2 = (Y2(s21), . . . ,Y2(s2n2))
T. Based on the statistical model, one can decompose

Y1 = Z1 + ε1 and Y2 = μ1n2 + Z2 + ε2, where Z1 = (Z(s11), . . . , Z(s1n1))
T and

Z2 = (Z(T (s21)), . . . , Z(T (s2n2)))
T with analogous definitions for ε1 and ε2.

The mean of Y is EY = m = [0Tn1 μ1Tn2 ]T where 0n1 and 1n2 are zero and unit
vectors of lengths n1 and n2, respectively. The covariance matrix for Y is

� + τ 2 I =
[
Cov(Z1,Z1) Cov(Z1,Z2)

Cov(Z2,Z1) Cov(Z2,Z2)

]
+ τ 2 I ,

where I is an identity matrix of dimension n1 + n2. Here, as an example, the (i, j)th
element of Cov(Z1,Z2) is C(s1i , T (s2 j )). In the event that, for some pair s1i and s2 j ,
it is true that s1i = T (s2 j ), the covariance matrix is still strictly positive definite due to
the independent error processes ε1 and ε2. If the error processes were equal, ε1 = ε2
then VarY would still be nonnegative definite, but would possess at least one zero
eigenvalue.

The log-likelihood function for Y is

	(Y) = −n1 + n2
2

log 2π − 1

2
log |� + τ 2 I | − 1

2
(Y − m)T(� + τ 2 I )−1(Y − m).

The development of the likelihood function can be found in the “Appendix”. The
maximum likelihood estimators for σ 2, τ 2, a, μ, rx , ry and φ are those that maximize
	(Y). For this work the smoothness parameter is fixed at ν = 1, corresponding to
the Whittle covariance model. For computational purposes, an iterative procedure is
implemented in the maximization of the likelihood, alternating fixing the covariance
parameters σ 2, τ 2 and a and the transformation parameters μ, rx , ry and φ. As a
preliminary step to help satisfy the zero-mean assumption of the model, the empirical
mean response of each point cloud individually is subtracted from each dataset. This
step forces the two point clouds to overlap near the origin of the fixed cloud at the
very least. Forcing the data sets to overlap is an important aspect in recovering the
optimal registration parameters using this model. A practical issue arises when the
optimization over the transformation parameters is left unconstrained. If the surfaces
are allowed to be completely non-overlapping, there is no incentive to intersect the
convex hulls of the two datasets—thus, the translation parameters must be constrained
to force the two point clouds to overlap.

The first step in the iteration is to optimize over the transformation parameters
while keeping the other covariance function parameters fixed at some reasonable val-
ues. The initial values for the covariance function parameters can be roughly estimated
by fitting a Gaussian process to one or both of the point clouds individually with the
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same covariance function (excluding the transformation part of the algorithm). In sim-
ulations it was observed that the likelihood function of the translation parameters is
well-behaved, even if the parameters in the covariance function are misspecified. This
first step should yield transformation parameters close to the optimal solution, and
can be verified with a visual check. In the second step, the transformation parameters
are kept fixed and the optimization is performed over the other covariance function
parameters. This process is then iterated until changes in parameter estimates become
negligible. Then, a final joint optimization can be performed over all parameters simul-
taneously.

2.4 Predictive Distribution of the Surface

The goal in surface estimation is to estimate Z(s0) at an arbitrary spatial location s0,
given dataY. Considering the MLEs as fixed, the conditional expectation E(Z(s0)|Y)

is used, which is the optimal predictor for minimizing predictive mean squared error.
Due to the Gaussian process specification, this coincides with the standard simple
kriging estimator, with minor modifications due to the positional translation function.
Specifically, let

�0 = Cov(Z(s0),Y) = [C(s0, s11), . . . ,C(s0, s1n1),C(s0, T (s21)), . . . ,C(s0, T (s2n2))],

denote the row vector of covariances between the process at the location of interest
and the observational process. Then E(Z(s0)|Y) = �0(� + τ 2 I )−1(Y − m) and
Var(Ẑ(s0) − Z(s0)|Y) = σ 2 − �0(� + τ 2 I )−1�T

0 .
An advantage of taking a statistical approach to point set registration is that uncer-

tainty in the registration parameters can be estimated. Indeed, most other point cloud
registrationmethods provide only a single point estimate of the transformation parame-
ters, either because they are not statistical in nature or are unconcernedwith uncertainty
quantification. Uncertainty in the parameter estimates is quantified by relying on the
asymptotic distribution of the MLEs using an increasing domain framework (Mardia
andMarshall 1984). In particular, the Fisher informationmatrix is approximated using
a numerical approximation of the Hessian of the log-likelihood function. Similar to a
Bayesian approach, the predictive distribution of Z(s0) is the quantity of interest. The
predictive distribution is [Z(s0)|Y] = [Z(s0)|θ,Y][θ |Y], by concatenating all statis-
tical parameters into a vector θ = (σ 2, τ 2, a, μ, rx , ry, φ)T. Instead of relying on the
posterior distribution of θ , one can generate samples from the asymptotic distribution
of the MLEs. To generate a prediction of the surface, a sample of each MLE is drawn
from its asymptotic distribution, which then defines a conditional normal predictive
distribution for Z(s0), given Y and the sample of θ .

3 Data Examples

This section is split into a simulation study and the data analysis of the Chalk Cliffs
point clouds. In both cases the method developed in this paper is compared against
one state-of-the-art method in point set registration, ICP.
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The simulation study allows for comparison of parameter estimation quality, while
the drone-based data example is validated by cross-validation where the fully executed
algorithm including surface estimation is considered.

3.1 A Simulation Study

The simulation study is designed to mimic the ensuing data example to suggest a
realistic measure of quality of registration ability from both methods. The simulation
study begins with sampling 1200 pairs of x- and y-coordinates independently from a
random uniform distribution on [0, 6] × [0, 6]. Next, the z-coordinates are simulated
as a spatially correlated field at these locations using the fixed Matérn covariance
parameters a = 0.6, σ 2 = 1, and τ 2 = 0.01. These parameters are similar to estimates
from the next section, and the estimated fields indeed appear qualitatively similar to the
geologic data sets analyzed in this paper. Next, the dataset is split in half by randomly
assigning each point to one of two subsets, and then one subset is de-registered using
randomly sampled translation and rotation parameters. The translation parameters are
sampled uniformly on [0, 1] and the two-dimensional rotation parameter is sampled
uniformly on [0, π/4]. The two de-registered datasets are inspected to make sure they
were not completely non-overlapping. Finally, both the proposed likelihood-based
method and ICP are used to recover the registration parameters. The experiment is
repeated thirty times, recording both true registration parameters and the parameters
estimated by each method.

ICP was performed using the implementation in the open source CloudCompare
software (Girardeau-Montaut 2018).

The optimization in the likelihood-based algorithmwas performed with the optim
function in R using the L-BFGS-B option. Box constraints were included on the
parameter space: the translation parameters were confined to an interval of width
0.8 centered around the true values and, similarly, the rotation angle (in radians) was
confined to an interval of width 0.4 centered around the true value. The initial guess for
the optimization for all parameters was a random uniform drawn from the constrained
sample space.

In two of the thirty simulations, the likelihood-based algorithm returned one or
more parameters on the boundary of the search space. This indicates the optimization
got stuck in a local minimum instead of the global minimum near the true parameter
values. In these two cases a different initial guess was generated and the algorithm
was performed again, which resulted in near recovery of the true parameters, not
on the boundary of the search space. In general, to avoid finding local minima, the
likelihood-based algorithm can be run several times with different initial guesses. In
the applications of this paper, it was observed that different initial guesses returned
the same results, unless one or more returned a solution on the boundary of the search
space. Since there were no constraints put on the registration parameters in the ICP
algorithm, each simulation was visually inspected after registration. Only one time,
ICP returned results in which the two data sets were not registered by eye. In this
case, a manual transformation was applied to the unregistered dataset to bring it closer
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Table 1 RSMEs of transformation parameter estimates over 30 simulations for the proposed likelihood-
based method and ICP

Parameter Root mean squared error

Likelihood-based ICP

rx 0.005 0.308

ry 0.009 0.187

μ 0.010 0.060

φ 0.002 0.009

Table 2 Maximum likelihood estimates and standard errors as well as ICP estimates of the transformation
and covariance parameters for the full model using both point clouds

Parameter MLE MLE SE ICP est.

rx − 0.350 1.8 ×10−6 − 0.406

ry 0.505 3.3 ×10−7 0.486

μ − 0.063 7.3 ×10−7 − 0.049

φ − 0.008 1.4 ×10−6 0.037

σ 2 0.145 7.9 ×10−3 –

τ2 0.0009 2.3 ×10−10 –

a 0.831 6.6 ×10−2 –

to alignment with the fixed dataset. These adjustments realistically reflect how these
algorithms would be used in practice.

Basedon the thirty sets of true and estimated parameters, the rootmean squared error
(RMSE) in the estimates was calculated for both methods, displayed in Table 1. Over-
all, the likelihood-based method performs substantially better than ICP in estimation,
indicating anywhere between an 81–98% improvement depending on the parameter.
Table 2 shows that ICP can perform an order of magnitude worse than the likelihood-
based method when estimating the translation parameters. It should be noted that both
algorithms tend to fail if the data sets are not aligned well enough before they are
registered. Even when the two data sets have > 50% overlap, the algorithm might
not successfully register the data sets, especially if there is a large rotation needed to
realign them. In such cases an initial rough alignment by the practitioner is required,
but is also a realistic expectation in actual applications.

3.2 Drone-Based Point Clouds from the Chalk Cliffs

The proposedmethod is applied to a subset of the drone-based elevation data described
in Sect. 2.1. The original data consist of two scans of the same spatial region, taken
on the same day, in which no large scale erosion was occurring. The full scans contain
around 60 million data points each. For the purposes of this manuscript, the same
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geologic feature is identified in both scenes and each dataset is manually cropped
around this feature; see Fig. 1. Each cropped scene contains 6000 points. The goal
is to register the two point clouds and produce a surface estimate of the elevation
(a DEM) with parametric uncertainty incorporated. Note that the spatial boundaries
of the two cropped regions are not identical. Following the convention of this paper,
denote the two (subsetted) point clouds in this application Y1 and Y2. Finally, for
predictive validation, the data were split into training and testing subsets—randomly
holding out 25% of both point clouds as the testing sets, and the remaining 75% were
used for parameter estimation and spatial prediction.

For comparison, the ICP registration algorithm was also applied to the data. To
match the restrictions of the likelihood-basedmethod, in the ICP algorithm the rotation
was restricted to the xy-plane, along with the standard three-dimensional translation.
The open source CloudCompare 2.9.1 software package was used to perform ICP on
the two unregistered training sets (Girardeau-Montaut 2018).

To determine the maximum likelihood estimates, optimization of the likelihood
was performed on the training data in an iterative fashion as detailed at the end of
Sect. 2.3. The changes in the parameter estimates from the first to the second iteration
were negligible, likely due to the large, spatially dense nature of the study data set.
The final joint optimization over all parameters resulted in small changes compared
to the initial estimates. The ICP algorithm’s four registration parameters are the same
as those in the statistical model, and are thus directly comparable. All parameter
estimates with associated standard errors are displayed in Table 2. The transformation
parameters are significantly nonzero in all three cardinal directions, while the rotation
parameter shows that very slight rotation is necessary for proper registration of these
two point clouds. Note the noise-to-signal ratio for these data is estimated to be under
1%, indicating very accurate elevation estimates. Harwin and Lucieer (2012) estimate
elevation accuracy up to 25–40mm from a point cloud generated via SfMwith< 1−3
cm point spacing. The Chalk Cliffs point cloud is 0.1389 points/cm2 and, remarkably,
the estimated residual standard deviation is τ = 0.03 m, or 30 mm accuracy, which
conformswith the estimated accuracy reported byHarwin andLucieer (2012). Figure 2
shows the registered datasets using the optimal transformation estimated bymaximum
likelihood. Visually the point clouds appear to be aligned, with the common valleys
and hills coinciding.

To quantify the quality of the alignment, a cross-validation experiment was also
conducted. In particular, after training the model on the training data, the predictive
performance is compared using standard simple kriging to predict values in the testing
data. As a statistical method, the method developed here produces point estimates,
but also a predictive distribution for the testing data that incorporates predictive and
parametric uncertainty, as described in Sect. 2.4. Thus, predictive performance is
quantified in terms of RMSE, validating the kriging predictor, and also the continuous
ranked probability score (CRPS) for assessing the predictive distributions (Gneiting
and Raftery 2007; Gneiting et al. 2007). Given a forecast distribution F and realizing
observation x , the CRPS can be written

CRPS(F, x) = EF |X − x | − 1

2
E|X − X ′| , (1)
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Fig. 2 The two point clouds are aligned by eye after the estimated transformation has been applied, colored
by elevation (Z). Alignment was performed by the likelihood algorithmwith a three-dimensional translation
and a two-dimensional rotation, meaning there are 4 transformation parameters rx , ry , μ, and φ

where X and X ′ are independent random variables with distribution F . For Gaussian
predictive distributions, this formula can be simplified in terms of the standard normal
probability density and cumulative distribution functions (Gneiting and Raftery 2007)
as follows

CRPS(N (μ, σ 2), x) = σ

[
1√
π

− 2ϕ

(
x − μ

σ

)
− x − μ

σ

(
2�

(
x − μ

σ

)
− 1

)]
,

where ϕ and � are the probability density and cumulative distributions functions,
respectively. The predictive distribution of Sect. 2.4 is only normal conditional on
parameter estimates; the posterior predictive distribution implemented here accounts
for uncertainty in parameter estimates and is thus no longer exactly normal. To estimate
CRPS, Monte Carlo approximations of Eq. (1) are used.

To assess the method, the cross-validation experiments are split up into predicting
from each individual dataset, as well as the aligned dataset pair. The goal is to predict
the held-out 25%of data from each point cloud. The four predictionmethods employed
are [A] predict held-out data using only Y1, [B] predict held-out data using only Y2,
[C] predict held-out data using Y = (YT

1 ,YT
2 )T aligned by the proposed statistical

model, and [D] predict held-out data using Y = (YT
1 ,YT

2 )T aligned by ICP. In all
four cases, predictions are made at the locations of all held out data from both point
clouds. In experiments A, B and C the transformation parameters estimated jointly are
applied; the major difference between these three experiments is the data on which
kriging is conditioned. In experiment D, the transformation is estimated using ICP, but
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Table 3 RMSE and CRPS of the testing data for kriging using only individual point clouds or both point
clouds with alignment estimated statistically or using ICP

Data used for kriging Alignment method RMSE CRPS

Y1 Statistical 2.75 0.023

Y2 Statistical 2.14 0.020

Y1 and Y2 ICP 2.06 0.019

Y1 and Y2 Statistical 1.69 0.016
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Fig. 3 aMean Kriging surface predictions evaluated on a 100× 100 grid. bKriging standard errors on the
same grid. Predictions are valid only within the area encompassed by the data, so the grids are constructed
to cover the data but not to extrapolate. Units for x , y, z (elevation), and the standard errors are all in meters

the kriging is performed on the full testing dataset using spatial parameters estimated
by maximum likelihood after the ICP transformation.

Table 3 shows summary statistics for all four experiments. Considering only point
prediction accuracy, kriging based on datasets aligned by ICP is slightly better than
based on one subset of data. However, accuracy of the point predictions is 18% better
using statistical alignment over ICP. The results are striking for the predictive distribu-
tions as well: there is a 15% reduction in CRPS using the statistically aligned data over
the data aligned by ICP. The superior performance of the statistical model using both
Y1 and Y2 is due to the better-aligned data that have a substantially higher sampling
density than either individual point cloud alone.

To conclude the validation, the final DEMproduct estimated by the statistical model
is presented. The left panel of Fig. 3 shows the mean surface prediction evaluated on
a grid, conditional on both point clouds and the maximum likelihood estimates. The
right panel of Fig. 3 shows predictive kriging standard errors using fixed covariance
and registration function parameters at their MLEs. Greater uncertainty is apparent
in regions without changing elevation, due to the SfM’s inclination to produce fewer
points in these regions.
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4 Conclusions

In this paper, a method was developed based on a Gaussian process model which
can simultaneously perform point cloud registration and surface estimation of two
point clouds. The model is statistically straightforward, which allows for standard
likelihood-based estimation methods. Furthermore, the parsimonious approach per-
formswell against non-statistical competitors. Themodelwas compared against ICP in
both a simulation study and on a digital elevation dataset. In both cases the likelihood-
based model significantly outperformed ICP in recovering registration parameters,
and thus also produced a better surface prediction based on these parameter estimates.
Moreover, by using a statistical approach, uncertainty is readily quantified in parameter
estimates and ensuing surface estimates using either Bayesian methods or asymptotic
distributions of maximum likelihood estimators. Another advantage of the model is
that it is easily extendable for multiple unregistered point clouds to be used in the
surface estimation, whereas most existent registration algorithms are constrained to
pairwise comparisons.

The computational efficiency for the straightforward likelihood-based algorithm is
O(n3). For ICP, a naive nearest neighbor search isO(dn) for n points in d dimensions,
while the number of iterations has been bounded by O(n/d)d+1 (Ezra et al. 2008;
Arthur and Vassilvitskii 2009). Clearly there is a large computational savings in using
ICP, possibly at the expense of accuracy as shown in this work. Future work could use
techniques in spatial statistics to reduce the computational burden of the likelihood-
based approach (Gelfand et al. 2010). Using sparsematrixmethods or other techniques
would also make this approach capable of handling larger data sets.

Future work may address fitting spatio-temporal models to multiple scans of the
same spatial region that are temporally correlated. In the context of the drone-based
elevation application in this paper, a spatio-temporal model could be a way to model
the erosion that occurs over time in the Chalk Cliffs. However, before this task can be
attempted, it is necessary to have an accurate spatial model for multiple temporally-
indexed point clouds. Another possible extension of this model would be to tackle
the large sample size problem without subsetting the point clouds. Fitting Gaussian
process models to massive elevation point clouds has been implemented by Vasudevan
et al. (2009) using a combination of nearest neighbor prediction and k-d trees for the
storage and retrieval of the point clouds. The authors also account for discontinuities in
the complex terrain by employing a nonstationary, neural network covariance function.

Data and R scripts are available at https://github.com/awiens11/GPregistration.

Acknowledgements Funding was provided by Division of Mathematical Sciences (Grant No. 1811294).

Appendix

Let n = n1 + n2. The data generating process is Y ∼ MVNn(m, � + τ 2 I ). The
density for Y is
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π(Y) = 1

(2π)n/2
√|� + τ 2 I | exp

(
−1

2
(Y − m)T(� + τ 2 I )−1(Y − m)

)
.

The log-likelihood function for Y is then

	(Y) = log

(
1

(2π)n/2
√|� + τ 2 I | exp

(
−1

2
(Y − m)T(� + τ 2 I )−1(Y − m)

))

= −n

2
log 2π − 1

2
log |� + τ 2 I | − 1

2
(Y − m)T(� + τ 2 I )−1(Y − m).
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