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Modeling data with nonstationary covariance structure is important to represent
heterogeneity in geophysical and other environmental spatial processes. In this
work, we investigate a two-stage approach to modeling nonstationary covari-
ances that is efficient for large data sets. First, maximum likelihood estimation
is used in local, moving windows to infer spatially varying covariance param-
eters. These surfaces of covariance parameters are then encoded into a global
covariance model specifying the second-order structure for the complete spatial
domain. From this second step, the resulting global model allows for efficient
simulation and prediction. This work uses a nonstationary spatial autoregres-
sive (SAR) model, related to Gaussian Markov random field methods, as the
global model which is amenable to plug in local estimates and practical for large
datasets. A simulation study is used to establish the accuracy of local Matérn
parameter estimation as a reliable technique for small window sizes and a mod-
est number of replicated fields. This modeling approach is implemented on a
nonstationary climate model dataset with the goal of emulating the variation in
the numerical model ensemble using a Gaussian process.
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1 INTRODUCTION

Climate models produce high-dimensional spatial fields of variables related to various processes that comprise the Earth
system. To quantify uncertainty, ensembles are generated typically by perturbing initial conditions to the climate model;
however the ensemble size is usually limited to a handful of members due to the extreme computational demands of
such codes. An alternative approach is to emulate the climate model output using a statistical model from which uncer-
tainty can be readily derived. Many temperature fields appear to be well approximated by a Gaussian process but the
covariance structure is distinctly nonstationary. This paper focuses on statistical emulation of high-dimensional climate
model spatial output that exhibit substantial nonstationarity in the spatial covariance. The major challenges are in speci-
fying a flexible nonstationary model that is amenable to estimation for large datasets, but also allows for computationally
efficient simulation.

We investigate a two-stage approach to estimating and modeling nonstationary covariances, similar to the method-
ology in Nychka, Hammerling, Krock, and Wiens (2018). First, assuming the field is approximately locally stationary,

This article is based on the President’s invited Lecture from the 28th Annual Conference of the International Environmetrics Society (TIES), presented
16 July 2018.

Environmetrics. 2020;31:e2652. wileyonlinelibrary.com/journal/env © 2020 John Wiley & Sons, Ltd. 1 of 15
https://doi.org/10.1002/env.2652

https://orcid.org/0000-0002-7030-0602
https://orcid.org/0000-0003-1387-3356
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fenv.2652&domain=pdf&date_stamp=2020-09-16


2 of 15 WIENS et al.

we perform moving window local likelihood estimation to infer spatially varying Matérn covariance parameters. In
the approach of Nychka et al. (2018) these parameters are mapped into those of the LatticeKrig model (Nychka,
Bandyopadhyay, Hammerling, Lindgren, & Sain, 2015). A more direct approach for regularly spaced observations is
to exploit a relationship between the Matérn parameters and those of a spatial autoregressive (SAR) random field, to
reproduce local Matérn correlations. Finally, the spatially varying parameters are encoded into a global SAR preci-
sion matrix, specifying the global field’s dependence structure simultaneously. As this work is at the intersection of
nonstationary modeling, local estimation and Matérn-SAR connections, we begin with a brief review on these distinct
topics.

There are many general classes of nonstationary models, such as deformation methods (Anderes & Stein, 2008;
Sampson & Guttorp, 1992), basis function methods (Cressie & Johannesson, 2008; Kang & Cressie, 2013; Kang, Cressie,
& Sain, 2012; Katzfuss & Cressie, 2011; Nychka et al., 2015; Nychka, Wikle, & Royle, 2002), process-convolutions
(Fuentes, 2002; Fuentes & Smith, 2001; Higdon, 1998, 2002; Higdon, Swall, & Kern, 1999; Paciorek & Schervish, 2003;
Zhu & Wu, 2010), and the stochastic partial differential equation (SPDE) approach (Lindgren & Rue, 2007; Lindgren, Rue,
& Lindström, 2011; Rue & Held, 2005; Simpson, Lindgren, & Rue, 2012).

Both the spatial random effects model (SRE) (Cressie & Johannesson, 2008; Kang et al., 2012; Kang & Cressie, 2013)
and LatticeKrig (Nychka et al., 2015) use spatial basis functions at multiple resolutions to capture nonstationarity. The
inference for these spatial models includes estimating the distributions of the weights, or coefficients, on these basis
functions. Thus, computation reduces from the order of the number of observations in the dataset to the order of the
number of basis functions. In the SRE model, the weights are multivariate normal with a general covariance matrix.
In the LatticeKrig model, the weights are multivariate normal with a Gaussian Markov random field (GMRF) structure
imposed that increases the computational efficiency even further.

The setup of both of these models using randomly weighted basis functions significantly decreases the num-
ber of parameters to estimate in the model compared to the method we develop here. However, the local estima-
tion technique in our method provides an exploratory tool for assessing nonstationarity. Additionally, the variance
reduction gained by windowing the data can yield fields of covariance parameters that are useful as an end in
themselves.

Here, we investigate two existing nonstationary models from the GMRF families, and focus our attention on computa-
tionally efficient estimation using localized moving windows. Risser (2016) provides a review of nonstationary models and
Heaton, Datta, and Finley (2019) give a review of methods for large spatial datasets. Local estimation is a well-established
idea in spatial statistics (Haas, 1990a, 1990b; Risser & Calder, 2017; Ver Hoef, Cressie, & Barry, 2004), and is popular
in that full likelihood-based calculations, which become prohibitive for large sample sizes, can be circumvented. More-
over, this strategy is an easily parallelizable problem which can lead to further computational improvements. In practice,
there is often no clear indication of which parameters in the model should vary spatially (Fuglstad, Simpson, Lindgren,
& Rue, 2015) and what spatial scales are appropriate for the parameter surfaces. This difficult modeling choice is avoided
when using local estimation: we can allow all parameters to vary initially, and the local estimates will lead to a diag-
nostic as to whether the parameters should be constrained to be constant or vary over space. Furthermore, with local
estimation, we do not have to decompose the covariance fields into some prespecified low-dimensional representation
(Fuglstad et al., 2015a; Marques, Klein, & Kneib, 2019; Risser, 2016). Weighted local likelihoods have been studied to
accommodate irregularly spaced observations (Anderes & Stein, 2011), but in this work we use a simple moving win-
dow applied to data on a lattice. We focus on estimation of locally varying Matérn parameters, primarily because of their
interpretability and to exploit a relationship between Matérn and SAR covariance models. To justify local estimation as a
reliable technique, we use a Monte Carlo experiment to study the robustness of local estimation of the correlation range
parameter.

A drawback in our approach is the need for spatial replicates to estimate nonstationary structure. Although this may
seem overly restrictive, the availability of independent replicates are becoming the norm in climate simulations. Moreover,
many space-time datasets can be approximated as replicates in space when the time dependence is weak or explained by
fixed effects. Finally, we note that nonstationary covariance models that are estimated from replicates reduce the problem
of separating the variation in the covariance function from the variation in the spatial field itself. We believe that working
with a single realization of a spatial field is much more difficult.

For single realizations of a spatial field, basis function expansions, developed by Kang et al. (2012), for the individual
responses of regional climate models, and the recent work by Marques et al. (2019), for regional rainfall, are useful ways
to capture nonstationarity with a global model and so provide an alternative to local fitting. One can fit these models
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based on the reduced degrees of freedom that is implied by the basis representation. This basis representation will not be
effective, however, if the field has more spatial detail than can be represented by a reduced basis.

With locally estimated covariance parameters in hand, some care is required to combine these into a valid global
nonstationary covariance model. In this work, we use a nonstationary SAR model, related to the GMRF approximation
to GPs. The idea is to identify members of the Matérn family of spatial processes as solutions to a SPDE. The SPDE is then
discretized to a lattice and this motivates the form of the SAR (Lindgren et al., 2011). The correspondence between the
Matérn/SPDE form and a SAR was presented in Lindgren et al. (2011), and an analytical formula was proposed to connect
the parameters between the continuous and discrete cases. We have found that the analytical formula is inaccurate for
large correlation ranges and one contribution of this work is to sharpen this relationship using numerical results. The
advantage is that if we can successfully translate the Matérn formulation into a SAR framework, we can exploit sparse
matrix algorithms for fast computation.

An important contribution of this work is showing nonstationary spatial processes can be modeled by combining
local maximum likelihood estimation with a simple global nonstationary covariance model that is straightforward to
implement. As an illustration, we apply this two-stage modeling framework to analyze climate fields related to sur-
face temperature and simulated from the Community Earth System Modeling’s Large Ensemble (LENS) project (Kay
et al., 2015). These data comprise about 13,000 spatial locations over the Americas, and exhibit strong nonstationarities
that challenge the construction of statistical emulators.

2 STATIONARY COVARIANCE MODELS

In this section, we discuss the connection between the isotropic Matérn family of covariance models for Gaussian pro-
cesses with the spatial autoregression (SAR) construction for GMRFs, and quantify this relationship in a numerical
study.

2.1 The Matérn covariance model

Let f (x) be a mean zero Gaussian process on x ∈ R2 with covariance function k(x, x′) ∈ R. The Matérn family of stationary
covariance models is important because of its flexibility and the interpretability of its parameters. The Matérn covariance
function with a unit range parameter is

C( d | 𝜈, 𝜎2 ) = 𝜎2 21−𝜈

Γ(𝜈)
(d)𝜈𝜈(d),

where d is the Euclidean distance between x and x′, 𝜈(⋅) is the modified Bessel function of the second kind of order 𝜈,
and Γ(⋅) is the gamma function. 𝜎2 is the spatial process variance, and 𝜈 is the smoothness parameter which controls the
mean square differentiability of the process. The isotropic covariance function with multiplicative range parameter 𝜅 is
given by

k(x, x′) = C(𝜅d | 𝜈, 𝜎2).

2.2 The SAR model

In contrast to modeling a covariance function for a process of continuous spatial variation, the SAR model parameterizes
the precision matrix for the process on a discrete lattice. For the following development we denote by y a Gaussian process
on an infinite regular lattice in R2.
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Denote by yi,j the element of y at lattice location (i,j). An homogeneous, approximately isotropic SAR model can be
written using lattice notation (Lindgren et al., 2011) as

0 −1 0

−1 4 + 𝜅2
S −1

0 −1 0

, (1)

which visually illustrates a set of decorrelating weights on the random vector y. To be precise, we interpret (1) as implying
that the following equation holds

(4 + 𝜅2
S)yij − (yi−1,j + yi+1,j + yi,j−1 + yi,j+1) = eij, (2)

for a mean zero unit variance normally distributed white noise vector e = {eij}.
Here 𝜅S > 0 is suggestive of a range parameter controlling the correlation length scale of the field and is similar, but

not identical, to 𝜅 for the continuous Matérn case above. For the model in (1), one can populate a matrix B using (2) such
that By = e. Furthermore, it is clear that if 𝜅S > 0, the diagonal dominance of B guarantees its invertibility. With y = B−1e,
the covariance matrix for y is B−1B−T = (BTB)−1 and thus y has precision matrix Q=BTB. Moreover, the precision matrix
implied by the SAR model is sparse. The SAR model is amenable to modeling large datasets because the sparse precision
matrix can be used in place of a dense covariance matrix for likelihood estimation and simulation. Following the ideas
from Lindgren et al. (2011) one can iterate the SAR weights to obtain higher-order models that approximate smoother
processes. For example, if BBy = e, this implies a precision matrix Q2 = (BB)T(BB). The SAR model detailed here is a spe-
cial case of a GMRF. For a given row of the precision matrix, the nonzero, off-diagonal entries index the neighbors that
determine the Markov property. Citing the order of neighborhoods is ambiguous depending on whether one is referring
to the SAR weight matrix, the precision matrix of the process, or the weight matrix in the related CAR model. In partic-
ular, the first-order SAR described above corresponds with a third-order CAR (Ver Hoef, Hanks, & Hooten, 2018), and
the nonzero elements in Q will include second-order neighbors. Two additional points in applying the SAR model are
important. For a given dataset y which is not defined on an infinite lattice, but rather a (typically) rectangular one, the
stencil in (1) should be modified at the boundaries of the domain. The center value of the stencil should be the 𝜅2

S plus
the sum of the weights of its nonzero neighbors, although a simpler option is to artificially extend the lattice a few nodes
outward to reduce boundary effects. Second, the value of 𝜅S has a one-to-one relationship with the marginal variance of
the process. It is also important to normalize so that the SAR has variance 1 at all grid points.

A version of the SAR model that exhibits approximate stationarity and also geometric anisotropy will be detailed in
Section 3.

2.3 The Matérn-SAR link

Lindgren and Rue (Lindgren et al., 2011) developed an approximation of Gaussian random fields with Matérn covariance
functions using GMRFs with particular SAR structures. The connection is established through a SPDE formulation in
that a Gaussian field u(s) with stationary Matérn covariance is a solution to the SPDE

(𝜅2 − Δ)𝛼∕2u(s) = (s),

where 𝛼 = 𝜈 + d
2

, 𝜅 > 0, 𝜈 > 0, s ∈ Rd, d= 1 or 2, and (s) is a Gaussian white noise process with zero mean and vari-
ance 𝜎2. As in the Matérn model, 𝜈 controls the smoothness of realizations of the Gaussian field. Fixing 𝜈 = 1 and d= 2,
Lindgren et al. (2011) first proposed that the SAR covariance structure obtained by discretizing the pseudodifferential
operator (𝜅2 − Δ) approximates a Matérn covariance structure with range 𝜅 ≈ 𝜅S. This relationship, however, is approxi-
mate. Similar results can be obtained for different smoothness parameters 𝜈 by convolving the finite difference stencil in
(1) with itself 𝜈 times, as detailed in the previous section for 𝜈 = 1 and 𝜈 = 2.
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F I G U R E 1 For the isotropic case,
the optimal 1∕𝜅S parameter for a given
Matérn inverse range 1∕𝜅 is plotted in
(a). The relative error incurred by using
the spatial autoregression model with
optimal 𝜅S as an approximation to the
Matérn model is shown in (b) (estimated
relationship in black lines, Lindgren
et al., 2011 relationship of 𝜅S = 𝜅 in gray
lines)

2.4 Numerical translation of range parameters between the Matérn and SAR models

The connection between the isotropic Matern family and a SAR relies on the approximation of a discretized Laplacian
operator with finite differences of the field on a lattice. To develop an accurate statistical model, it is important to quantify
the error in such an approximation and improve its calibration beyond the limiting expression suggested in Lindgren
et al. (2011). In this section we provide numerical evidence to show that an accurate calibration is possible if restricted to
specific ranges of the covariance parameters.

Our calibration setup is as follows: given a Matérn range parameter 𝜅, we estimate the value of 𝜅S in the SAR model
which gives the best approximation to the Matérn correlation function. We consider the smoothness of the Matérn model
fixed at 𝜈 = 1 and 𝜈 = 2, and with unit marginal variance for all models. The first step is to fix the Matérn range parameter
and evaluate a Matérn correlation matrix for the process evaluated on the lattice grid. Then, we find the optimal 𝜅S from
the SAR model by computing its equivalent correlation matrix (the standardized inverse precision matrix) and minimizing
distance between the Matérn and SAR correlation matrices.

It is known that the SAR covariance model suffers from edge effects. To avoid the interference of edge effects, we
quantify the difference between the two correlation matrices by only comparing the correlations from the central lattice
point under both models. For an N ×N lattice of locations, with N odd, let 𝝎𝜅 denote the vector of correlations between
the center point in this lattice and all other locations based on the Matérn covariance function with range 𝜅. Let 𝝎𝜅S
be the analogous correlation vector for the SAR model with range parameter 𝜅S. Note that for the SAR correlations we
normalize so the marginal variance is equal to 1. We then find

�̂�S(𝜅) = argmin
𝜅S

||𝝎𝜅 − 𝝎𝜅S||2.
If the relationship proposed by Lindgren et al. (2011) holds we would expect �̂�S(𝜅) ≈ 𝜅.

𝜅−1 is varied over the interval [1,20] with N = 51 and lattice points having unit spacing. The approximation results are
summarized in Figure 1. In Figure 1a �̂�S(𝜅)−1 is plotted as a function of 𝜅−1. The solid line corresponds to the 𝜈 = 1 case,
the dashed line corresponds to 𝜈 = 2, and the dotted line shows the theoretical relationship, 𝜅−1

S = 𝜅−1 from Lindgren
et al. (2011). From this experiment we conclude that, at least over this distance scale, it is important not to rely on the
analytic formula to translate between 𝜅 and 𝜅S parameters. Accordingly, we use these numerical results to calibrate the
value of 𝜅S which achieves the best approximation to the desired Matérn covariance with range parameter 𝜅.

The relative error of approximating Matérn correlation with range 𝜅 using the SAR correlation with 𝜅S value derived
from the numerical experiment is given by ||𝝎𝜅 − 𝝎𝜅S||2∕||𝝎𝜅||2 and is shown in Figure 1b. The 𝓁2 distance measure used
in the optimization of the model correlation matrices is used to quantify the resulting model error, normalized by ||𝝎𝜅||2.
The relative error incurred when using 1

𝜅S
= 1

𝜅
as shown by the gray lines can be on the order of 20% or worse for higher

correlation ranges. However, using the calibrated range (black lines) gives relative errors on the order of 5%.
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3 ANISOTROPIC AND NONSTATIONARY PROCESSES

In this section, we extend the Matérn and SAR models to include geometric anisotropy, verify the accuracy of the
approximation, and finally discuss some related nonstationary models.

3.1 The anisotropic Matérn covariance model

The Matérn family can be extended to include geometric anisotropy (Delfiner & Chilès, 2012) by defining a distance
measure based on a linear scaling and rotation of the coordinates. Let A=D−1UT be a 2× 2 matrix where U is a rotation
matrix parameterized by angle 𝜃

U =

[
cos(𝜃) −sin(𝜃)
sin(𝜃) cos(𝜃)

]
,

and

D =

[
𝜉s1 0
0 𝜉s2

]
,

is a diagonal matrix scaling the s1 and s2 coordinate axes separately. Then the pairwise Mahalanobis distance between
two locations s,s′ is defined as d = ||As − As′|| = [(s − s′)TATA(s − s′)]

1
2 , which is used as the argument to the isotropic

Matérn covariance function. A useful interpretation of this form is that if one transforms the coordinates according the
linear transformation A then the resulting field will be isotropic.

3.2 The anisotropic Matérn-SAR link

The SAR model can also be extended to incorporate geometric anisotropy. Let H denote a 2× 2 symmetric positive definite
anisotropy matrix and modify the Laplacian in the pseudodifferential operator as follows

(𝜅2 − ∇ ⋅ H∇)𝛼∕2u(s) = (s). (3)

To avoid potential ambiguity it is helpful to identify the Laplacian operator above for two dimensions in its expanded
form as

∇ ⋅ H∇ ≡ H1,1
𝜕2

𝜕2s1
+ 2H2,1

𝜕2

𝜕s1𝜕s2
+ H2,2

𝜕2

𝜕2s2
.

From this expression, a first-order finite difference discretization of the anisotropic SPDE at (3) gives the following stencil
for filling the rows of the B matrix,

2H12
hs1 hs2

−H22
h2

s2

− 2H12
hs1 hs2

−H11
h2

s1

𝜅2 + 2H11
h2

s1

+ 2H22
h2

s2

−H11
h2

s1

− 2H12
hs1 hs2

−H22
h2

s2

2H12
hs1 hs2

, (4)

where hs1 and hs2 are the grid spacings along the x-axis and y-axis. This is just a reparameterization of the results in
Appendix A of Lindgren et al. (2011) but facilitates the practical translation between these models. Moreover, setting
hs1 = hs2 = 1, H12 =H21 = 0, and H11 =H22 = 1 yields the first-order isotropic model from (1).

Finally, we connect the role of H in the SPDE formulation to the anisotropic model for the Matérn. Under the linear
transformation A=D−1UT from Section 3, let s* =A−1s, and let u be an isotropic field solution to the SPDE with Laplacian
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F I G U R E 2 For the anisotropic case, the optimal eigenvalues of H, 𝜁s1
and 𝜁s2

, are plotted against the 𝜉s1
and 𝜉s2

, in panels (a) and (b),
and the relative error is shown in (c), analogous to Figure 1

∇ ⋅∇. Furthermore, set u*(s)= u(A−1s)=u(s*). Then from elementary properties of the gradient

∇u∗(s) = ∇(u(A−1s)) = A−1∇u(A−1s)||s=As∗ = A−1∇u(s∗)||s∗=A−1s

and so we have

∇ ⋅ ∇u∗(s) = (A−1∇) ⋅ A−1∇u(s∗) = ∇ ⋅ A−TA−1∇u(s∗)||s∗=A−1s.

From this expression we identify H =A−TA−1 =UTD2U. From Section 2.1, if u is an isotropic field then u* will be
anisotropic with coordinates transformed by A−1. Moreover, u* will also be the solution to the SPDE with H =A−TA−1.
This connection provides guidance how to interpret H. Finally, note that if A is a pure rotation then H = I and isotropy is
preserved.

3.3 Numerical translation of anisotropic range parameters between the Matérn
and SAR models

In the climate data analysis below, we find it necessary to include geometric anisotropy in the covariance model. For this
reason, we also investigate how the presence of geometric anisotropy affects the numerical correspondence established in
Section 2.4. We repeat the experiment from Section 2.4, modified by adding the presence of geometric anisotropy. Let 𝜉s1

and 𝜉s2 be the eigenvalues in the Matérn anisotropy matrix, encoded as the diagonal values of D2, and recall A=D−1UT .
Through the connection of the Matérn covariance model to the SPDE formulation, we also have H =A−TA−1 =UTD2U,
so these are the eigenvalues of H. To avoid ambiguity, let HD be the anisotropy matrix encoded into the finite difference
stencil 4, the discretization defining the SAR model. Let the eigenvalues of HD be denoted 𝜁s1 and 𝜁s2 . In essence, in this
experiment we fix 𝜉s1 and 𝜉s2 in the anisotropic Matérn model and estimate the optimal 𝜁s1 and 𝜁s2 in the anisotropic SAR
model which best reproduces the correlations in the Matérn model. We do not optimize over the rotation 𝜃 and just use the
same orthogonal matrix. We follow the same optimization strategy for the isotropic case; noting that if the discretization
had no approximation error, we would expect (𝜁s1 , 𝜁s2 ) ≈ (𝜉s1 , 𝜉s2 ).

Specifically, we encode fixed values for 𝜉s1 and 𝜉s2 such that the length scale ratio is 𝜉s1 ∶ 𝜉s2 = 4 ∶ 1, which is consis-
tent with anisotropic estimates in the data analysis. In particular, we let 𝜉s1 = 1, … , 20 and 𝜉s2 = 4𝜉s1 . Then, the optimal
values of 𝜁s1 and 𝜁s2 are found. The experiment is repeated with fixed rotation angles 𝜃 = 0◦, 10◦, … , 90◦ in U, and the
rotation angle is assumed to be known and fixed in the eigendecomposition of the HD matrix. The anisotropic parameter
translation results for the optimal 𝜁s1 , 𝜁s2 values given 𝜉s1 , 𝜉s2 are shown in panels (a) and (b) of Figure 2, respectively. The
relative error of approximation ||𝝎𝜉 − 𝝎𝜁 ||2∕||𝝎𝜉||2 is shown in panel (c). Overall, the behavior of the approximation is
similar to the isotropic case: the optimized eigenvalues 𝜁s1 and 𝜁s2 of the SAR anisotropy matrix HD are smaller than the
eigenvalues 𝜉s1 and 𝜉s2 of the Matérn anisotropy matrix H.
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The approximation results may be slightly affected by the rotation angle and oblateness of the geometric anisotropy,
but the effect is negligible in practice. From these results, we have ascertained a numerical translation among the
anisotropy parameters. Overall, we see an error of 5% or less when using the optimized values of 𝜁s1 and 𝜁s2 for 𝜉s1 ≥ 3.

3.4 A nonstationary SAR model

A nonstationary SAR model can be constructed by allowing the parameters 𝜅,H, and 𝜎2 in the generating SPDE to vary
over space. Let

(s) = H1,1(s)
𝜕2

𝜕s2
1
+ 2H2,1(s)

𝜕2

𝜕s1𝜕s2
+ H2,2(s)

𝜕2

𝜕s2
2
.

The SPDE can then be written as

(𝜅2(s) − (s))𝛼∕2u(s) = (s),

where 𝜅(s) > 0, (s) ∼ WN(0, 𝜎2(s)), 𝜎2(s) > 0, and we assume H(s) is everywhere positive definite. Furthermore, we
specialize to a spatially varying linear transformation of the coordinates, A(s), and so H(s)=A−T(s)A−1(s). Note that A(s)
varying in space is equivalent to specifying spatial fields for 𝜃, 𝜉s1 and 𝜉s2 within U and D.

Discretizing this equation results in a valid GMRF that is nonstationary. In particular, the autoregressive B matrix
from Section 2.2 could have different elements in each row based on the variation in H(s) or 𝜅(s). However, B will still be
a sparse matrix and Q=BTB will always be positive-definite. The process variance can also be allowed to vary in the same
way as with the nonstationary Matérn model, but this must be done balancing the identifiability of 𝜅 and H and the fact
that edge effects may introduce spurious variation in the GMRF variance. Our approach is to first construct a normalized
precision matrix and then weight each row of B so that this new version gives a GMRF with constant marginal variance.
With this normalization of the SAR model 𝜎(s)2 can be introduced to capture explicit spatial variation in the process
marginal variance.

4 LOCAL MOVING WINDOW LIKELIHOOD ESTIMATION

4.1 Local estimation strategy

Estimating a nonstationary model can be challenging due to the increased number of covariance parameters. The model-
ing framework we develop in this work depends on spatial data with independent replicates, and we also work under this
assumption in the simulation study. We illustrate in the simulation study, however, that a modest number of replicated
fields result in stable local covariance estimates.

Local estimation is usually accompanied by the assumption of approximate local stationarity. For this work, we define
local stationarity and the local likelihood estimation technique for a Gaussian process with stationary Matérn covariance
as follows. First, divide the region of interest  into M possibly overlapping subregions, or windows, 1,2, … ,M .
Then the assumption of approximate local stationarity is that we can model the data yi within the subregion i using a
stationary Gaussian process Y i defined using the following specification:

Yi(s) = 𝜇i(s) + Zi(s) + 𝜀i(s), (5)

where 𝜀i is mean zero spatial white noise with variance 𝜏2
i , and Zi is a mean zero Gaussian process with anisotropic but

stationary Matérn covariance function, and 𝜇i(s) is a fixed mean function. Let Gi =Var yi be the spatial covariance matrix
of yi for the ith region. Then the local log likelihood based on p independent replicates {yij}

p
j=1 for the ith region is, up to

a constant,

p
2

log |Gi|−1 −
p∑

j=1

1
2
(yij − 𝝁i)TG−1

i (yij − 𝝁i), (6)
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where𝝁i is the mean function𝜇i(s) evaluated at the locations of yi. The likelihood is approximate because we are assuming
stationarity within each data window.

After partitioning the data, finding each local likelihood estimate is an embarrassingly parallel task, which makes it
a practical strategy for large datasets using many computational cores. In our application the parallelization is efficient
to the point that we take the subregions to be an exhaustive set of moving windows centered at every grid point. We
assign these estimated parameters to the location of the center of the subregion i, and after translating into the SAR
parameterization these parameters specify the row of B, the SAR matrix, at this location. This assignment is, of course,
predicated on the assumption that over the region there is little variation in these parameters. This issue will be discussed
in more detail in the last section.

Given that the SAR model also gives a specification of the covariance it may seem indirect that the local estimates
focus on the Matérn model, and then the estimates are transformed into the SAR representation. An alternative would
be to estimate the SAR version directly from local likelihood windowing. There are several reasons for the two-step
procedure. Fitting the covariance model directly avoids any boundary effects that would come about by applying the
SAR to a small window. Furthermore, the Matérn parameters are easier to interpret and will be simpler to model in a
hierarchical statistical framework.

4.2 A numerical study of local Matérn estimation

A practical issue for a local approach, especially in the context of determining covariance parameters, is whether the
number of replicates and the size of the window are adequate for robust estimation of parameters. Although choosing a
data adaptive window is beyond the scope of this work, it is important to identify the conditions under which parameter
estimates will be accurate. To our knowledge there are no results in the literature that give simple rules-of-thumb for
window size. Moreover, it is also useful to understand the extent that replication makes it possible to estimate correlation
ranges that are much larger than the window size.

We perform a Monte Carlo experiment with four factors: window size ranging between a 5× 5 grid and a 33× 33 grid,
the Matérn range parameter being multiples of one, two, three, and four times the window size, the Matérn smoothness
parameter taking on values 1 and 2, and the number of replicates ranging between 5 and 60. Thus the full factorial design
is 11× 4× 2× 9 (window size × range parameter × smoothness parameter × replicates). For each combination, replicates
with given range and smoothness were simulated with given window size, and the Matérn range was estimated using
maximum likelihood. This was done 100 times for each combination, and statistics were assembled from the 100 inde-
pendent maximum likelihood estimates (MLEs) for the range parameter. The main quantity of interest is the percent
error of the estimate, and so percent error surfaces as a function of replicate number and window size are summarized in
Figure 3. This design may seem unusual because the range parameter is varied based on the window size. However, the
motivation was to address the computational requirements of the problem: given a computational budget to accommo-
date windows of a specific size, what size range parameter can be accurately estimated? Note that with constraints on the
window size, accuracy can also be improved by increasing the number of replicates.

The contours in Figure 3 can be used as guidelines to decide how many replicates are necessary and what window size
should be used to achieve a specific estimation error tolerance. The results are encouraging. For example, for a Matern
covariance with smoothness equal to 1 and with only 10 replicates one can estimate the range parameter to 10% accuracy
provided it is no larger than the window size. In a more extreme the extreme case, a Matérn range four times the size of
the window can be estimated to within 10% error if 30 replicates are available and provide the window size is 10 or greater.
However, substantially larger window sizes are required, greater than 25 units in width, to achieve a 5% error with 30
replicated fields. Using these guidelines, we can be more confident that local moving window likelihood estimation is a
viable technique if enough data is used and if we expect an accuracy of about 10% in estimating the range parameter. Such
results give confidence to analyze the 30 member (replicate) ensemble from the LENS experiment in the next section.

5 CLIMATE DATA APPLICATION

The data set from the CESM LENS project (Kay et al., 2015) is comprised of 30 spatial fields that can be assumed to be
independent replicates from the same distribution. This well-known feature is based on the highly nonlinear properties
of a global climate model run over a long period and started with different initial conditions. This feature is also termed
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F I G U R E 3 Both panels show estimated contours indicating the 5% and 10% absolute percent error from estimating the Matérn range
parameter given a certain number of replicates and a window size (size of grid). Note that the number of spatial observations used is the
square of the window size multiplied by the number of replicates. To obtain these curves 100 Monte Carlo simulations were done on a grid of
different replicate and window sizes and Matérn range parameters one, two, three, and four times the size of the window. The left panel
corresponds to 𝜈 = 1 and the right to 𝜈 = 2 for the Matern smoothness parameters

sensitive dependence on initial conditions and is a hallmark of chaotic dynamical systems. Nychka et al. (2018) first
analyzed these data using the LatticeKrig model, and this article details the climate science application. The data locations
are on a 288× 192 grid with approximately one degree resolution, covering the entire globe. The specific dataset used
in this application is publically available in R binary format from the LatticeKrig github repository 1 Details about the
pattern scaling approach to statistical emulation can also be found in Alexeeff, Nychka, Sain, and Tebaldi (2018). Briefly,
each field is a measure of how the local temperature average is affected by a global temperature average increase of 1◦C.
Generating this ensemble of only 30 members was an expensive computational campaign, requiring dedicated super
computing resources over a period of months. The statistical task is to represent these spatial fields with a probability
distribution where it is more efficient to generate additional fields (e.g., several hundred or thousands) that track the
original 30 member model results.

We focus on the subregion including the Americas and surrounding oceans containing 13,052 spatial locations on a
102× 128 grid. The top row of Figure 5 shows the first four sample fields from the data. The one data modification from
Nychka et al. (2018) is that, in addition to subtracting the ensemble mean from each grid box, we have also standardized
the fields by dividing by the ensemble SD of each grid box.

5.1 Covariance parameter estimates

We experiment with moving window local MLEs using window sizes between 8× 8 and 15× 15. Among these choices
there was little change in the estimates and subsequent analysis uses a 9× 9 window. The estimation was performed on the
NCAR Cheyenne supercomputer (Computational and Information Systems Laboratory, 2019) using the R programming
language (R Core Team, 2018) with the Rmpi (Yu, 2002) and fields packages (Nychka, Furrer, Paige, & Sain, 2017).
The details of the parallel implementation are the same as in Nychka et al. (2018). Since the fields were standardized, the
constraint 𝜎2 = 1 − 𝜏2 was included in this model.

The estimates for the spatially varying parameters are shown in Figure 4. The process variance is shown in panel (a)
and the nugget variance 𝜏2 is 1 − 𝜎2. Panel (b) shows the geometric mean of 𝜉s1 and 𝜉s2 as a measure of the average cor-
relation range, and this also agrees with the range in the isotropic case. Finally in panel (c), the estimated anisotropy
matrix A(si) is depicted by glyphs indicating the range and departure from isotropy. The evident transition in the covari-
ance structure between land and ocean suggests that the nonstationarity in the second-order structure of the data is being

1See github.com/NCAR/LatticeKrig/Datasets/LENS/BRACEUfields.rda but also refer to the README file in this folder for more
background in using these data.
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F I G U R E 4 Fitted parameter fields based on the moving window likelihood estimation. The first panel shows the process variance 𝜎2(s).
The middle panel shows the geometric average range

√
𝜉s1

(s)𝜉s2
(s), and the right panel shows the anisotropy ellipses, defined by AT(s)A(s)

F I G U R E 5 The top row consists of the first four ensemble members from the NCAR CESM dataset. The bottom row shows four
unconditional simulations from the estimated nonstationary spatial autoregressive model

accurately estimated. There is a larger nugget variance over the land compared to the ocean, which is expected and adds
to the nonstationarity. Based on the coastlines in some regions, we hypothesize that the addition of a land/ocean covari-
ate may also be useful. However, using just this covariate would not be sufficient to model these boundary regions. See
Figure 6.

5.2 Model checking

5.2.1 A visual comparison

The nonstationary SAR model is convenient for simulating high-dimensional fields using plug-in estimates of locally
varying parameters. For this reason, we translate the local Matérn parameters into their approximate SAR parameter
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F I G U R E 6 Estimated correlation functions centered at three locations along the same latitude implied by the nonstationary spatial
autoregressive model

F I G U R E 7 Panel (a) shows the a data replicate y,
the fourth in the ensemble, and panel (b) shows the
symmetric square root of the precision matrix B applied
to the data replicate yielding w=By

equivalents. The translation is done using the numerical relationship derived in Section 2.4. Then, the local SAR parame-
ters are encoded into the nonstationary global SAR model. Simulations from this covariance are shown in the bottom row
of Figure 5. Exploiting sparse linear algebra, a field can be simulated on the order of tens of seconds using R on a stan-
dard notebook computer. The simulations do a reasonable job emulating the data, but are lacking some of the long-range
anisotropy over the ocean.

To illustrate how the nonstationarity estimated for this model is related to land/ocean boundaries, Figure 6 shows
several different locations in the spatial domain and plots the correlations implied by the estimated nonstationary model.
Both anisotropy and nonstationarity are evident in Figure 6.

5.2.2 Transformation to white noise

The SAR representation as a global model for the spatial field provides a convenient way to check the model fit. Under the
assumption that the nugget variance is small relative to the smooth Gaussian process, the linear transformation defined
by the SAR weight matrix should decorrelate the spatial field. In particular, let y be the observed field with covariance
matrix Σ. The simple idea is to factor Σ as Ω−1Ω−T and then check that Ωy is a white noise field, or at least a spatial process
with greatly reduced spatial dependence. Note that the choice of Ω is not unique, but it makes sense to choose a version
of the square root that has weights that are localized around each observation location.
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In this analysis,

Σ = 𝜎2B−1B−T + 𝜏2I = 𝜎B−1(I + 𝜏2Q)𝜎B−T .

If 𝜏 = 0 then the SAR matrix provides a transformation to white noise. If 𝜏2 is small relative to 𝜎2, then By will have covari-
ance (I + 𝜏2Q) and will approximate a white noise field. Small 𝜏2 is often a reasonable assumption in practice because
one is often interested in simulation and prediction of spatial data that has strong spatial coherence. Note that Q is sparse
and when viewed as a covariance matrix will have localized, finitely supported correlations.

Figure 7b shows the result of B applied to one of the replicates (shown in (a)) to which the model was fitted.
As a diagnostic tool one can visually assess the goodness-of-fit of the model covariance matrix to the spatial distribution

of the data using these techniques. If the spatial distribution of the data is fitted accurately, this process should result in a
decorrelated field of white noise. Excluding the slight heteroskedasticity present near coastal regions, Figure 7 indicates
that the vast majority of the correlation in the data has been captured in the model, and therefore suggests the model fit
is adequate. This success is encouraging given the long range correlations over the ocean that have been identified from
local estimation, and represented by only second-order neighbors. A formal test of independence could be implemented
on the decorrelated fields, and the model could be refined to eliminate residual dependence.

6 CONCLUSION

In this paper, we investigate a two-step framework of local estimation and global encoding to represent large and non-
stationary spatial datasets. We have shown that when independent replicates of spatial processes are available and
local stationarity holds, local maximum likelihood estimation is a robust technique for estimating spatially varying
covariance parameters. In particular, the Monte Carlo results indicate the climate model example falls within this
context.

We also explored the stationary Matérn-SAR covariance model approximation, conducting a numerical experiment
to compare against existing results. The analytic approximation between the models is not reliable for long correlation
ranges; however, we can use a numerical approximation to translate parameters between the Matérn and SAR mod-
els more accurately. To our knowledge this is the first time detailed numerical mappings have been made between the
anisotropic SAR model and an anisotropic Matérn covariance function.

A major contribution of this work is in connecting the local likelihood estimation techniques to a flexible and compu-
tationally efficient spatial statistical model. We focus on encoding the locally estimated parameters in the nonstationary
SAR model. In addition, the two-stage approach is computationally efficient and can be applied to very large spatial data
sets: local estimation avoids the big n problem of global estimation, and encoding local estimates in a SAR model allows
us to exploit sparse linear algebra for prediction and simulation. Although other methods such as Kang et al. (2012) can
be effective in representing a nonstationary spatial field, they are not as readily interpretable in terms of local covariance
functions.

Another advantage of this method is that it can be applied to both continuously indexed and lattice data. To reduce the
scope of this work, however, we have focused on lattice data. Although this restricted format will continue to be standard
for climate models, the SAR model can also be extended to irregularly spaced data. One approach for nonlattice spatial
data is the LatticeKrig model that imposes the SAR and lattice structure on coefficients in a basis function expansion
rather than directly on the field. The local estimation technique in the method developed here gives insight into the nature
of the nonstationarity present in the data, and the local estimates can suggest more restricted models as one level in a
hierarchical Bayesian model.

We believe the anisotropic models developed here will carry over for more general models such as basis
expansions, and the inverse square root transformation will be an important diagnostic tool for nonstationary
modeling.
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