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Abstract Surface registration, the task of aligning several multidimensional point
sets, is a necessary task in many scientific fields. In this work, a novel statistical
approach is developed to solve the problem of nonrigid registration. While the appli-
cation of an affine transformation results in rigid registration, using a general nonlinear
function to achieve nonrigid registration is necessarywhen the point sets require defor-
mations that change over space. The use of a local likelihood-based approach using
windowed Gaussian processes provides a flexible way to accurately estimate the non-
rigid deformation. This strategy also makes registration of massive data sets feasible
by splitting the data into many subsets. The estimation results yield spatially-varying
local rigid registration parameters. Gaussian process surface models are then fit to the
parameter fields, allowing prediction of the transformation parameters at unestimated
locations, specifically at observation locations in the unregistered data set. Applying
these transformations results in a global, nonrigid registration. A penalty on the trans-
formation parameters is included in the likelihood objective function. Combined with
smoothing of the local estimates from the surface models, the nonrigid registration
model can prevent the problem of overfitting. The efficacy of the nonrigid registra-
tion method is tested in two simulation studies, varying the number of windows and
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number of points, as well as the type of deformation. The nonrigid method is applied
to a pair of massive remote sensing elevation data sets exhibiting complex geological
terrain, with improved accuracy and uncertainty quantification in a cross validation
study versus two rigid registration methods.

Keywords Point cloud registration · Point cloud · Structure from motion · Digital
elevation model · Geomorphology · Uncertainty quantification

1 Introduction

Aligning or registering multidimensional point sets is a common problem arising in
remote sensing, image and video processing, computer graphics, and computer vision.
The goal in registration is to estimate a transformation which best aligns the moving
data set with the target data set based on a measure of closeness. Rigid registra-
tion refers to the estimation and application of a single affine transformation to the
coordinate system of the moving data set, whereas nonrigid registration involves a
transformation function more general than an affine transformation.

Classical approaches to registration rely on point or surface matching, or some
variant thereof. Iterative Closest Point (ICP) (Arthur and Vassilvitskii 2009; Besl and
McKay 1992; Ezra et al. 2008) and kernel correspondence methods (Tsin and Kanade
2004) are common and have been developed in both the rigid and nonrigid settings.
These algorithms iteratively assign correspondences between points (or surfaces) and
then estimate a transformation which minimizes some distance function between the
corresponding objects. Representing the point sets as mixtures of Gaussian densities is
another strategy for solving the registration problem which reduces the computational
complexity of the problem by avoiding discrete point matching, for example in Jian
and Vemuri (2005) and Zhou et al. (2018). The review articles by Maiseli et al. (2017)
and Tam et al. (2013) detail many popular registration methods. Tam et al. (2013)
discriminate among the algorithms based on their optimization constraints and also
how they assign correspondences; the majority of existing registration algorithms rely
on a closest point criterion in point matching.

Thin plate splines (TPS) and Gaussian processes (GP) play a prominent role in the
parameterization of nonrigid deformations (Zhu et al. 2009). Arad and Reisfeld (1995)
discuss two-dimensional radial basis function transformations, composed of an affine
part and a radial function part. Bookstein (1989) provides a similarmathematical devel-
opment, however in the context of the physics of TPS as solutions to the biharmonic
equation. Gilleland et al. (2010) combine these ideas with climatological forecast ver-
ification, and Chui and Rangarajan (2003) combine the TPS parameterization with the
robust point matching framework of Gold et al. (1998). Nonrigid registration methods
are often developed with an application to medical imaging, and most do not pro-
vide uncertainty quantification. Risholm et al. (2010) propose a Bayesian framework,
producing a posterior distribution of the deformation parameters. This is an attractive
feature, but the computational burden of a Bayesian analysis of a massive sensing
data set like the one analyzed in this work would be restrictive. Furthermore, many
algorithms are pixel-based and would need to be adapted to the irregular coordinates
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in the remote sensing application of this paper or else the irregularly-spaced data sum-
marized to an image. The authors are not aware of nonrigid registration algorithms
providing uncertainty quantification capable of analyzing massive data sets.

Motivated by the task of jointly registering and producing a surface estimate from
two geologic data sets, Wiens et al. (2020a) adapt methods from spatial statistics to
produce a novel registration method based on maximum likelihood estimation. The
algorithmembeds a rigid transformationwithin theGP regressionmaximum likelihood
framework. The statistical nature of this method has the advantage of providing uncer-
tainty measures about the estimated registration parameters. Although this method is
not as fast as some traditional methods, results indicate this method can potentially
provide a more accurate registration with uncertainty quantification, a feature not
available in more algorithmic approaches.

In this work, a novel nonrigid registration algorithm is developed based on a local
likelihood estimation approach, expanding on the rigid registration model fromWiens
et al. (2020a). The rigid registration likelihood procedure is applied using local win-
dows of data, which gives insight into how these parameters change over the domain.
Moreover, a surface model is fit to the estimated parameters, which allows the non-
rigid transformation to be predicted at arbitrary locations. What is new in this work
is the introduction of a global nonrigid deformation alignment model paired with an
estimation approach that is scalable to massive data sets.

Both the rigid and nonrigid likelihood-based algorithms are fundamentally differ-
ent from point matching and correspondence algorithms, as the points from both data
sets are treated jointly as a realization from a stochastic process, so there is no point
matching involved. On the other hand, the local likelihood estimation framework does
share characteristics with some existing nonrigid registration methods. The methods
that can handle data sets containing millions of points, including the nonrigid method
developed here, often rely on downsampling the point clouds to reduce the computa-
tional burden (Huang et al. 2008).

Practical registration methods must be capable of handling noise and outliers in
the data sets. In point matching algorithms, it is common to prune correspondences
which seem inconsistent. The likelihood-based methods are able to account for noise
in the response variable within the statistical model, provided the parameters are
correctly specified. Note that spatial models have been developed with the ability
to account for location error (Cervone and Pillai 2015; Cressie and Kornak 2003;
Fanshawe and Diggle 2011; Fronterrè et al. 2018); however, the errors in location are
assumed to follow a distribution to be inferred, rather than viewing the problem as
an inconsistency in the coordinate systems of the data sets. Finally, it is common to
minimize a loss or energy function as the criterion used to estimate the deformation. In
the method developed here, transformation parameters are estimated by minimization
of a penalized likelihood function. The likelihood function follows from the standard
GP framework, and the inclusion of penalties on the transformation parameters can
prevent the intrinsic issue of overfitting when using nonrigid registration methods.

Local likelihood estimation for spatial data is not a new idea (Haas 1990a; Kuusela
and Stein 2018; Nychka et al. 2018; Wiens et al. 2020b). However, its application to
nonrigid registration provides a completely new approach to this problem. Using local
likelihood estimation for nonrigid registration has several advantages. It is amenable to
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the task of nonrigid registration because simpler local rigid registrations are estimated
and pieced together. Furthermore, it gives flexibility in the estimation of the nonrigid
transformation, being data driven and not constrained to the a priori choice of a non-
linear deformation function. Finally, local likelihood estimation also permits the use
of parallel computing, significantly accelerating the computation of the registration.
Parallelism, combined with subsampling, can allow massive data sets to be accurately
registered at tractable computational cost.

In this work, the proposed nonrigid registration method is applied to a geomorphic
data set collected via remote sensing.Thepair of elevationpoint sets could beprocessed
into a digital elevation model (DEM), but first require registration. The data were
collected by piecing together several hundred photographs taken with a drone using a
Structure fromMotion (SfM) algorithm (Fonstad et al. 2013; James and Robson 2012;
Westoby et al. 2012). With this form of processing, it is hypothesized that a nonrigid
deformation may be necessary to align the geologic features seen in the data set.

In Sect. 2, the statistical model for nonrigid registration is presented. In Sect. 3,
the estimation algorithm is outlined in the rigid and nonrigid cases, providing imple-
mentation guidelines. In Sect. 4, the efficacy of the nonrigid registration method is
investigated in two simulation studies, testing how the type and severity of deforma-
tion affect estimation accuracy. How accuracy is affected by the number of windows
used and the number of subsamples taken in each data window is also investigated.
In Sect. 5, the nonrigid registration method is applied to a set of remote sensing scans
with over sixty million points each, comparing to two rigid registration methods in a
cross validation study.

2 Statistical Model

The nonrigid approach developed in this work is a generalization of the rigid regis-
tration approach of Wiens et al. (2020a) to a nonlinear setting. To give visual context
to the registration problem, see the top left panel of Fig. 3 which illustrates two mis-
aligned spatial data sets; one of these data sets is shown in its entirety in Fig. 2. In
the following, the general registration model which encompasses both the rigid and
nonrigid registration cases is presented.

Let Y1(s) be the data from the fixed point cloud and Y2(s) be the moving point cloud
to be registered, where s ∈ R

2 contains the y- and y-positional coordinates and Yi (·)
denotes the measured z-coordinate. The statistical process model for these data is

Y1(s) = Z(s) + ε1(s)

Y2(s) = μz(s) + Z(T (s)) + ε2(T (s)),
(1)

where T is a transformation applied to the moving data set. Both datasets represent
the same underlying continuous surface, Z(·), which is modeled as a mean zero GP.
Specifically, a process model with a nonstationary Matérn covariance function as
in Paciorek and Schervish (2006) is adopted, with a smoothness fixed at unity. The
measurement error or microscale variation processes εi (·) for i = 1, 2 are assumed to
be independent mean zero Gaussian white noise with variances τ 2i (s).
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The model in Eq. 1 is quite general in allowing for a spatially-varying fixed mean
function, μz(s), white noise variance for each process, τ 2i (s), and spatial registration
function T (s). Some restrictions are required on the classes of functions entertained.
In particular, it is proposed that these functions fall into a class of continuous and
differentiable functions defined by realizations of a GP, specified below.

The full transformation is contained in the parameter functions μz : R2 → R and
T : R2 → R

2. μz represents the translation in the z-coordinate, and T consists of
a translation vector function r : R2 → R

2 and a 2 × 2 orthogonal rotation matrix
function R : R2 → M

2×2 parameterized by an angle φ : R2 → R as follows

T (s) = R(s)s + r(s)

=
[
cosφ(s) sin φ(s)

− sin φ(s) cosφ(s)

] [
sx
sy

]
+

[
rx (s)
ry(s)

]
,

(2)

where s = [sx , sy]T and r(·) = [rx (·), ry(·)]T.
Our specification is a nonrigid generalization of themodel inWiens et al. (2020a) in

whichμz , r and φ are assumed to be constant over the domain. From a practical stand-
point, the mean function μz(s) is included in the model to allow a spatially-varying
translation in the z-coordinate, as R(s) allows in the x- and y-coordinates and φ(s) in
the rotation angle. Furthermore, allowing τi (s) to vary locally adapts to potential mea-
surement error behavior in the drone in locations of differing topography, for each data
set. Overall, this parameterization produces a flexible nonrigid registration function.
The estimation of these spatially-varying functions is done using a local likelihood
approach in this work, detailed in Sect. 3; this model is also amenable to hierarchical
specification and Bayesian estimation.

3 Estimation

In the following, the estimation strategy is presented for both the rigid and nonrigid
cases. The full nonrigid registration estimation algorithm is presented, followed by
implementation details describing the options and tuning parameters available in the
method.

In either the proposed nonrigid registration approach, or the rigid registration
approach of Wiens et al. (2020a) (hereafter referred to as GP embedded rigid reg-
istration), the data under investigation are two point clouds whose spatial indices can
be distinct. Let U = {

(s1, j ,Y1(s1, j ))
}nu
j=1 and V = {

(s2, j ,Y2(s2, j ))
}nv

j=1 be points

sets whose elements are in R
3. U will be called the target or fixed frame and V the

moving frame; the choice of Y1 being the target frame and Y2 being the moving frame
is inconsequential as the model in Eq. 1 can be rewritten to accommodate the oppo-
site setup with an analogous parameterization. Let Y1 = (Y1(s1,1), . . . ,Y1(s1,nu )),
Y2 = (Y2(s2,1), . . . ,Y2(s2,nv )), and Y = (YT

1 ,YT
2 )T. Analogously define the contin-

uous GP components as Z1,Z2 and Z.
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3.1 Rigid Registration Estimation

In the rigid registration algorithm, global estimation is performed to infer all mean
and covariance parameters, including transformation parameters, using all available
data Y simultaneously. Concatenating all parameters to be estimated into a vector θ ,
our estimator is θ̂ = argminθ f (Y, θ), where

f (Y, θ) = L(Y, θ) + P(θ). (3)

Here, L(Y, θ) is a negative log likelihood, while P(θ) is an optional penalty term that
serves to regularize estimates of θ .

Assuming Y is a realization from a stationary GP with Matérn covariance, L is
a multivariate normal negative log likelihood with mean m and covariance matrix
� + τ 2 I , where I is an identity matrix of dimension nu + nv . For reference, the
Matérn covariance function is parameterized in this work as Cov(Z(s), Z(s′)) =
σ 2 · 21−ν

�(ν)

( d
a

)ν
Kν

( d
a

)
, where d = ‖s − s′‖ is the Euclidean distance between points,

σ 2 is themarginal variance, a > 0 a spatial range parameter and ν > 0 the smoothness.
� is the gamma function, and Kν is the modified Bessel function of the second kind
of order ν. Given the model in Eq. 1, the mean of Y ism = (0Tnu , μ1Tnv

)T, where 0nu
and 1nv are zero and unit vectors of lengths nu and nv , respectively. The covariance
matrix for Y is

� + τ 2 I =
[
Cov(Z1,Z1) Cov(Z1,Z2)

Cov(Z2,Z1) Cov(Z2,Z2)

]
+ τ 2 I.

One key insight is that only the cross covariances Cov(Z1,Z2),Cov(Z2,Z1) and the
covariance matrix of the second data set Cov(Z2,Z2) involve the rigid transformation
function T , see Wiens et al. (2020a) for details.

The motivation for including a penalty component arises because, during initial
experimentation using the method, the optimization sometimes allows for the trans-
lation and rotation parameters to take on very large values, effectively making the
supports ofY1 andY2 disjoint, while it is expected that their optimal values for align-
ment are smaller. Thus, a penalty term of the form

P(θ) = 0.5λ(r2x + r2y + μ2
z ) + log(I0(κ)) − κ cosφ (4)

is used,where I0 is themodifiedBessel function of order 0,λ is the tuning parameter for
the penalty on the translation parameters and κ is the tuning parameter for the penalty
on the rotation parameter φ. In the Bayesian context, these penalties are equivalent
to placing Gaussian and von Mises distribution priors on the translation and rotation
parameters, respectively. The penalty terms keep the magnitude of the registration
parameters small, and additional box constraints can be placed on these parameters in
the optimization.

Minimizing the objective function f (Y, θ) results in estimates for the transforma-
tion parameters θ , which include rx , ry, μz , and φ, as well as τ and the covariance
parameters specifying � (e.g., the process variance and correlation range).
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3.2 Nonrigid Registration Estimation

Estimation of the nonrigid registration model in Eq. 1 can be envisioned in many
ways: one possibility would be to take a Bayesian approach, putting, say, GP priors on
the parameter functions, followed by sampling their posterior distributions. Another
approach would be to explicitly parameterize these surfaces as a linear combination
of spatial basis functions. However, neither of these approaches is feasible for our
setup with tens of millions of data points per point cloud. Some recent advances
in spatial statistics have made modeling massive data sets feasible (Datta et al. 2016;
Katzfuss 2017), andone could envision embedding the registration part of the statistical
model into one of the former modeling frameworks. Instead, in this work a local
likelihood approach to estimation is introduced that allows for computation on very
high dimensional data sets.

To briefly outline the estimation approach, the spatial domain is divided using
a moving window, the parameters are locally estimated using the rigid registration
estimation strategy given in Sect. 3.1 within that window using a subset of the data, and
finally local estimates are aggregated using a spatial surfacemodel.More concretely, at
any given moving window center, the data are subsampled and then used to fit the rigid
registration model given in Sect. 3.1, essentially assuming the registration parameters
are locally constant, and the process covariance function is locally stationary. The same
isotropicMatérn covariancemodel is used as in the rigid setting during local estimation
and prediction. These local estimates are then used as samples of the parameters θ ,
to which independent spatial surface models are fit. The full approach is described in
Algorithm 1.

Algorithm 1 Gaussian Process Nonrigid Registration

1: Set up grid G = {gk }ngk=1 to locate the centers of overlapping windows {Bk }ngk=1, and partition the data

using these windows yielding DU =
{
DU
k

}ng
k=1

, where each DU
k contains the observations in U that lie

within Bk . Define DV and DV
k similarly.

2: For the data set U, subsample N points from each window DU
k , resulting in D̃U

k (and similarly for V).
3: Perform GP embedded rigid registration using data D̃U

k ∪ D̃V
k for each window Bk , yielding local

estimates for θ̂k ⊇ {r̂x,k , r̂y,k , μ̂z,k , φ̂k , τ̂k , �k (η̂k )} for k = 1, . . . , ng , where η̂k are the covariance
parameters defining �k . Assign the estimated parameters to the centers of the estimation windows gk
for k = 1, . . . , ng .

4: For each univariate parameter in the vector θ̂k , independently fit a predictive spatial surface model using
the estimated spatially varying transformation parameters θ̂k as observations.

5: Using these fitted models, predict the transformation parameters at all of the observation locations
in the moving data set {s2, j }nv

j=1. Denote the predictions {θ∗(s2, j )}nv
j=1, which is a set of vec-

tors of parameters, each vector of length nv . In particular, predict the transformation parameters
r∗
x (s2, j ), r∗

y (s2, j ), μ∗
z (s2, j ), and φ∗(s2, j ), (thus implying r∗(s2, j ) and R∗(s2, j )), for j = 1, . . . , nv .

6: Apply the predicted transformation parameters to the moving data set, resulting in a set V̄ ={
(s∗2, j , Y ∗

2, j )|s∗2, j = R∗(s2, j )s2, j + r∗(s2, j ) and Y ∗
2, j = Y2, j + μ∗

z (s2, j )
}nv

j=1
, which is registered to

the coordinate system of U.
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The computational cost of the algorithm can be broken down by step. Setting up
the grid is trivial. Partitioning the data set into local windows can be done efficiently
using a k-d tree, but this step overall is negligible to the total cost of the algorithm
also, as is subsampling points in each window. The main computational cost of the
algorithm is in performing the ng local estimation tasks, which areO(N 3) each under
the standard GP maximum likelihood estimation framework, where N is the number
of subsamples in each window. Fitting the GP spatial surface models to the locally
estimated parameters is O(n3g), but ng is typically small (≤ 1, 000) so this task is not
computationally expensive. Finally, predicting the transformation parameters at the
observation locations of the moving data set is O(nvn3g) for each parameter.

As long as enough data are used in each local estimation, one would expect the
spatially-varying parameters to be identifiable. This can be seen by observing that local
estimation reduces to the rigid registration model of Wiens et al. (2020a). This sample
size requirement is easily met when analyzing data collected via remote sensing, as is
done in this work.

3.3 Implementation Details

Algorithm 1 will now be discussed in more detail, explaining the modeling choices
involved in each step. Some choices track this paper’s applications, but might be
modified for other registration problems. Five of the most important parameters that
need to be chosen are the number of estimation locations ng , the size of windows, and
the overlap amongwindows; the number of subsamples N used in eachwindow for the
local estimation; the penalty type and magnitude of the tuning parameters (e.g., λ and
κ), and optimization parameter constraints; the covariance function for the GP Z(·)
in which the rigid transformation is embedded, defining �k ; and finally the predictive
spatial surface model to fit to the locally estimated parameters.

Many windows can be used to assure the signal is captured in the spatially-varying
rigid registration parameters. However, using toomanywindows increases the compu-
tational burden. The authors are unaware of theoretical results concerning the selection
of local window size, though numerical studies regarding the accuracy of Matérn
parameter estimation using a local likelihood approach have been conducted under
the assumption of available spatial replicates (Wiens et al. 2020b). Most importantly,
the window size in the local estimation procedure must be chosen to contain features
present in both data sets and so allow the local rigid registration GP model to identify
and estimate the rigid registration. A simulation study is conducted in the following
section to investigate this issue. Overall, one should choose the number of windows
and overlap so that the signal of the deformation is observed in the raw estimates
before a spatial model is fit. In this work, local windows overlap significantly (50–
75% overlap between adjacent windows) so that the estimated parameters result in
smoothly varying spatial fields.

For spatially dense point clouds, the number of points in each window may still be
too large to make fitting a GP quickly feasible. Therefore, one can subsample points
from both data sets in each window to decrease the computational burden and still
end up with accurate results. Some windows that include near-vertical terrain (e.g., a
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cliff in observations of terrain) will contain many more points overall than the average
window. In this case, a lower sampling proportion of points can be taken for the
likelihood estimation, or more windows can be used in this region (i.e., windows are
more closely spaced). This adaptive strategy is not explored further in this work.

Some device must be used in order to force overlap between the two subsets of data
within each window; otherwise, there is no incentive for the algorithm to intersect
the two data sets during alignment. Tight constraints on the translation parameters
are used in Wiens et al. (2020a) based on empirical observation of the magnitude
of the transformation that was needed. In this work, the use of a penalty term on
the transformation parameters is utilized. The penalty incentivizes the two subsets of
data in each window to overlap without tight box constraints on the transformation
parameters. If the penalty is too large, the transformation parameters will be estimated
near zero. One can gain insight by carrying out the local likelihood estimation proce-
dure without the penalty parameter. The magnitudes of the estimated transformation
parameters combined with the value of the likelihood function at a minimum with the
penalty parameter set at 0 can inform how to choose the size of the penalty parameter
in subsequent application of the method, this time including a penalty.

In each local rigid registration, the data sets are modeled using a GP with Matérn
covariance, following Wiens et al. (2020a), due to its flexibility. However, the rigid
registration could be embedded in another covariance model with ease if the data were
assumed to follow a specific distribution.

Finally, to piece together the local rigid registration parameters into a surface, either
a GP or TPS is used. Both choices provide flexible spatial models allowing for predic-
tion of the parameters at unobserved locations. The nonrigid method produces stable
local estimates that vary smoothly over space, if one includes some thought in deter-
mining subsample size and penalties on parameters. Either model is able to separate
the signal and noise components in these estimates and predict accurately at unes-
timated locations. TPS are used in the simulation studies. On the other hand, in the
data analysis a GP with nonstationary covariance structure is used, provided in the
LatticeKrig package (Nychka et al. 2016) in R (R Core Team 2018). The default
settings for this GP model approximate a TPS but scale to large data sets. Addition-
ally, this model is capable of providing uncertainty estimates about predictions and
produce conditional simulations, which enable us to calculate forecast scores such as
the continuous rank probability score (CRPS).

Note that local estimation of positive parameters (e.g. τ and other covariance param-
eters) is performed on a log scale, which would be equivalent to modeling these
parameters as locally log-normal random variables. Additionally, the spatial surface
models used to piece together the local estimates are fitted to the estimates on the log
scale, forcing kriging predictions from these models to also be positive after exponen-
tiating them back to their original scale.
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4 Simulation Studies

4.1 Types of Deformations

To test the efficacy of the proposed nonlinear registration algorithm, two simulation
studies are implemented showing which conditions cause the method to succeed and
fail. The first simulation study investigates how the choice of deformation and the
parameters to which the deformation is applied affects the estimation accuracy. The
second study explores the interplay between the number of estimation locations and
the number of subsamples used for each local estimation.

For both studies, the same general setup is used. A spatial data set is simulated
using a GP with zero mean and Matérn covariance function with parameters a =
3, ν = 1, σ 2 = 2.5, τ 2 = 0.0001. The observation locations for both data sets are
uniformly sampled within a [0, 6] × [0, 6] square. The data set is split in half, and
one half is de-registered with a known deformation. Then, the nonrigid registration
algorithm is used to recover the spatially-varying registration parameters. In all cases,
10,000 spatial points are generated, split in half so each data set contains 5000 points.
Note that the process used to generate the data set and the process used to generate
the deformation are independent.

The first simulation study attempts to answer what kind of deformations themethod
is capable of estimating. Two different strategies are used to generate the true defor-
mations that de-register the second data set: a simple quadratic field, and a random
realization from a Matérn GP. The Matérn deformations are drawn from a GP with
zero mean and Matérn covariance with parameters a = 6, ν = 2, σ 2 = 0.01, τ 2 =
0.00001. One Matérn field is drawn for each translation and rotation parameter, and
then applied to the moving data set based on the design of the study. The quadratic
deformation for the x-coordinate, for example, is defined as follows

mx = α1s
2
x + α2s

2
y + β1sx + β2sy,

where α1,2 are drawn from a uniform distribution U (− 0.002, 0.002), and β1,2 are
drawn from a uniform distribution U (− 0.04, 0.04). The transformation mx is then
applied to the x-coordinate in the moving data set. The same equation governs how
the translations in the y- and z-coordinate my and mz are generated, as well as the
rotation mφ , with different draws for α1,2 and β1,2 for each parameter.

To investigate how the complexity of the deformation affects estimation accuracy,
the Matérn and quadratic deformations are applied to just single parameters as well
as groups of parameters. There are five cases: the deformation is applied to the x-
coordinate, the z-coordinate, the rotation angle φ, the three translation coordinates (x,
y, and z), and all four parameters (x, y, z, and rotation angle φ).

To estimate the registration parameters, a 4× 4 grid of windows with 50% overlap
between adjacent windows is used. The 4 × 4 grid is shown in the first column of
Fig. 1. 100 data points are subsampled within each window, and the penalty tuning
parameters on the translation parameters and rotation parameter are set at 5 and 100,
respectively. Box constraints are set on the translation parameters of (−1, 1) and on
the rotation parameter of (−π/4 + 0.1, π/4) in the optimization. These settings reflect
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Fig. 1 The first column shows the estimated transformation parameters, the second column shows the
thin plate spline surface predictions fitted to these data, and the third column shows the true deformation
parameters which are applied to de-register the moving data set

those used in the data analysis example. Finally, a TPS is fit with default settings using
the TPS function in the fields package (Nychka et al. 2017) inR (R Core Team 2018).

In all cases, to quantify the recovery of the nonlinear registration, the estimated
registration parameters, denoted with a hat as in m̂x , are compared to the true regis-
tration parameters, for example mx . Figure 1 shows an example simulation: the true
quadratic deformations are shown in the third column and the raw estimates and fitted
surfaces are shown in the first and second columns, respectively.

The results of the simulation study are summarized in Table 1. The experiment is
executed n = 30 times and the average normalized root mean squared error (NRMSE)
is computed for each cell in the table. The root mean squared error (RMSE) is nor-
malized by the mean deformation over all coordinates with nonzero deformation. For
example, when the deformation is applied only to the x-coordinate, the NRMSE for
the x-coordinate is calculated as follows. Let rx = (mx −m̂x )

2 be the vector of squared
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Table 1 NRMSE of estimating each deformation parameter for varying deformation types, normalized by
the mean deformation of all coordinates with nonzero deformation

Deformation type Applied to NRMSEx NRMSEy NRMSEz NRMSEφ

Quadratic x 0.114 0.069 0.076 0.169

Quadratic z 0.109 0.102 0.105 0.124

Quadratic φ 3.956 3.951 0.421 0.711

Quadratic xyz 0.132 0.119 0.105 0.196

Quadratic xyzφ 3.620 3.253 0.343 0.670

Matern x 0.121 0.080 0.075 0.108

Matern z 0.083 0.080 0.135 0.074

Matern φ 3.618 3.634 0.206 0.571

Matern xyz 0.129 0.118 0.131 0.142

Matern xyzφ 3.150 3.091 0.264 0.479

errors in the x-coordinate. Then

NRMSEx = √
r̄x/m̄x , (5)

where the bar denotes the sample mean of a vector. When the deformation is applied
to all coordinates, the NRMSE for the x-coordinate is

NRMSEx = √
r̄x/m̄,

where the vector m = (mx ,my,mz,mφ) is the concatenation of the deformations
applied to each data point for all coordinates. In this way, the RMSE is normalized
using the mean of all deformations that are actually applied.

These results indicate that deformations of both types are recovered effectively.
Interestingly, a quadratic deformation of the type that is applied here could possibly
be estimated using a rigid registration with a scaling/stretch parameter. However, this
study indicates that this deformation can also be effectively estimated using piecewise
rigid transformations.

It appears that the nonlinear registration algorithm is able to well-estimate defor-
mations applied to the x-, y-, and z-coordinates, but has more trouble recovering
deformations involving a rotation. However, the rotation angle is only inaccurately
estimated if an angular deformation is introduced. If a deformation is applied to the
rotation angle, this also introduces error in estimating the x-, y-, and z-coordinates.
Another insight from Table 1 is that when the true parameters are zero (i.e., no trans-
lational or rotational misalignment), then the estimated parameters are particularly
accurate, suggesting that the approach tends to not introduce deformations when they
are not needed.
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Table 2 NRMSE of estimating
the x-coordinate deformation for
varying number of windows and
number of subsamples,
normalized by the mean
deformation of the x-coordinate

NRMSEx Subsamples

Grid size 25 50 100 200

3 × 3 0.612 0.430 0.279 0.112

4 × 4 0.417 0.285 0.146 0.092

5 × 5 0.341 0.203 0.139 0.074

4.2 Windowing and Subsampling

In the second simulation study, the effect of the number of estimation locations and
the number of subsamples of the estimators is investigated.

Grids of sizes 3× 3, 4× 4, and 5× 5 are used to locate the centers for overlapping
windows. Subsamples are taken within each window of size 25, 50, 100, and 200.
These experimental settings kept the computation reasonable by limiting both the
number of local estimation tasks and also the total number of observations in each GP
estimation.

The moving data set is deformed using a realization from a GP with Matérn covari-
ance, as in the first simulation study. The covariance parameters used to generate the
deformation are known and fixed in the estimation. Furthermore, only the x-coordinate
is deformed and estimated,meaning there is only one registration parameter to estimate
(φ and the y- and z-coordinate translation parameters are fixed at 0). The box constraint
on the x-coordinate is set at (− 1, 1) in the optimization. The overlap between adja-
cent windows and the regularization tuning parameters are identical to the previous
simulation study, as well as the TPS surface fits with default settings.

This experiment is repeated n = 30 times to compute average NRMSE, which is
shown in Table 2. In this case, the deformation is applied only to the x-coordinate,
so the RMSE is normalized as in Eq. 5. The trend is clear from these results: the
nonlinear registration algorithm is more accurate when using more windows and more
subsamples. However, since the task becomes much more computationally expensive
when using more subsamples and more windows, a balance must be found based on
how the registration parameters vary over space. If there is not much variance in the
registration parameters over space based on exploratory analysis, few windows and
subsamples are needed, such as in this example. If the point clouds exhibit highly
complex variation in the response variable, more subsamples and windows may be
required to obtain accurate results.

5 Drone-Based Point Clouds from the Chalk Cliffs

The proposed nonrigid Gaussian process registration method is applied to a pair of
geomorphic elevation data sets with over 100 million points. The data are point sets
processed from drone-based remote sensing scans of the Chalk Cliffs debris flow basin
in Colorado. The Chalk Cliffs receives debris from a 0.37 km2 watershed at the base
of Mount Princeton in the Arkansas River Valley. The considered data set results from
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Fig. 2 One scan showing the full data set. This is the target data set containing 6,775,704 points in total.
The units displayed in the scales are meters

two flyovers of the fan during the same day, 10/16/2017, at 40 m flight altitude. No
large scale erosion or deposition occurred between flights. Barnhart et al. (2019) and
Wiens et al. (2020a) provide details about the geologic motivation. It is hypothesized
that due to the SfM algorithm, a nonrigid registration may be necessary for proper
alignment.

To streamline the application for this work, an area is identified using similar geo-
graphic features in both scenes, and then the data are cropped manually, resulting in
areas whose spatial boundaries are close but not identical. In total, there are around 60
million data locations in each cropped scan of the region; one scan is shown in Fig. 2.

The nonrigid registration method developed in this paper is compared with the
likelihood-based rigid registration method, as well as with the ICP algorithm. The
predictive quality of each method is assessed in a cross validation study, holding
out 0.1% of the points from the fixed data set to be used as the testing set, and the
remaining observations in the fixed data set and the entire moving data set are used to
estimate the registration parameters. ICP is performed in the open source CloudCom-
pare software, version 2.9.1, which is also used to generate Figs. 2 and 3. To match
the registration capabilities of the rigid and nonrigid likelihood-based algorithms, the
rotation is restricted to the xy-plane when using ICP.

For the nonrigid registration, a 4×12 grid ofwindows is usedwith 66%overlap. 250
subsamples from each data set are used in each local estimation, and the regularization
tuning parameters are fixed at λ = 5 and κ = 100. The box constraints in the opti-
mization are set at (−1.2, 1.2) on the translation parameters and (−π/4 + 0.1, π/4)
on the rotation parameter. The rotation angle constraints are unrestrictive, and the
translation parameter constraints encompass the true values, so in this case are also
unrestrictive, but help reduce the parameter search space and prevent complete non-
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Fig. 3 The top row shows both data sets before and after the nonrigid registration is applied, zoomed in
centered on a ravine. The bottom row shows two sample registrations based on conditional simulations of
the registration parameters. The colorbar scale is identical to Fig. 2

overlap between the data sets. The locally estimated rigid registration parameters are
fit with LatticeKrig GP models.

Since the data sets are too large to perform standard kriging, a local kriging pro-
cedure is used (Haas 1990a, b, 1995) to predict the response at the locations of the
held-out observations for all registrationmethods. In particular, the 1,000 closest points
to the observation location to be predicted are used, and with these points standard
kriging is performed using the stationary Matérn covariance function. The covariance
parameters used in the kriging prediction are either constant for the two rigid regis-
tration methods, or spatially varying as estimated in the nonrigid registration case,
detailed below.

The covariance parameters for the rigid registration method are estimated as part
of the rigid likelihood-based procedure. Since the full data sets cannot be used, 500
observations from each data set are subsampled and used to fit the rigid registration
model. The transformation parameters are applied to the moving data set, and the
covariance parameters are used to perform the local kriging. Similarly, for ICP, after the
rigid registration parameters are applied to the moving data, the covariance parameters
are estimated using 500 observations from both data sets, then used in the local kriging
procedure.

For the nonrigid registration, spatially varying covariance parameters are estimated
alongwith the transformationparameters. Similar to the transformationparameters, the
estimated covariance parameter fields are smoothed using LatticeKrig GP models,
and then used to predict the covariance parameters at the locations of the observations
in the testing set. The LatticeKrig model makes prediction at the large number of
locations in the testing set tractable.
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Table 3 RMSE and CRPS for
the held-out testing set,
comparing three registration
methods

ICP Rigid likelihood Nonrigid likelihood

RMSE 0.086 0.118 0.080

CRPS 0.044 0.027 0.021

The locally estimated values of τ 2 range between a minimum of 5.5 × 10−7 and
a maximum of 0.0513, with the median over all 48 local estimates equaling 0.002
(units are in meters). Similarly, the range for σ 2 is 0.41 to 13.67 with median 1.06,
and the range of a is 2.21 to 28.13 with median 4.18. These results are close to those
estimated in the rigid registration case (Wiens et al. 2020a), and the values of τ 2 are
consistent with the expected measurement error from a data set constructed via SfM
(Harwin and Lucieer 2012).

The overall elapsed time during the local estimation step of the algorthm took 1.51
h, and the mean time of local estimation was 113 s averaged over all 48 local windows.

The cross validation results are shown in Table 3. In addition to calculating RMSE
using the true and predicted values of the response for the testing set, CRPS is calcu-
lated to assess the accuracy of the uncertainty quantification. To calculate the variance
of the predictions, a simulative approach is used. For all three methods, CRPS is
calculated using 30 simulations.

For the nonrigid method, the locally-estimated rigid registration parameters have
uncertainties approximated in the optimization by the numerical Hessian. Using these
uncertainties, registration parameters are simulated at the locations of the centers of
the moving windows. A LatticeKrigmodel is fit to these simulated parameters, and
then a conditional simulation is produced at the observation locations of the moving
data set, and then applied. This technique propagates the two levels of uncertainty into
the registration, from the local estimation and the predictive surfacemodel fitting. This
procedure was repeated 30 times and these empirical simulations of the predictions at
the testing set locations were used to calculate the CRPS.

For the rigid likelihood-based method, the rigid registration parameters are simu-
lated using the uncertainties from the numerical approximation to the Hessian, and
then applied to the entire moving data set. Then local kriging is performed using sim-
ulations of the Matérn covariance parameters at the testing set locations, once again
from the approximate distribution given by the numerical Hessian. For ICP, only the
covariance parameters are simulated prior to local kriging as just described. Specifi-
cally, rigid registration using ICP produces no uncertainty measures, so the parameter
estimates are treated as fixed.

Overall, the nonrigid registration algorithm achieves lower RMSE and CRPS than
the two rigid registration methods, indicating superior accuracy of the registration and
also quantification of the uncertainty. Moreover, visually the two data sets are more
accurately aligned as seen in the top row of Fig. 3, which shows a close-up view of
both data sets before and after registration using the nonrigid registration method in
the left and right panels, respectively. There is still clear misalignment, albeit minor.
The fact that the approach is statistical is critical here. While there may be a best
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alignment, it is acknowledged that the estimated nonrigid registration is not perfect;
however, the uncertainty about the registration can be quantified.

The bottom row of Fig. 3 displays two registrations incorporating uncertainty using
the simulative technique used in calculating CRPS. The bottom right panel contrasts
a more accurate registration with a less accurate registration in the bottom left panel.
Visually this shows how the uncertainty estimates encompass the true nonrigid defor-
mation.

6 Conclusions

The nonrigid registration algorithm developed in this paper provides an extremely
flexible method for registering complex data sets. Moreover, the local likelihood esti-
mation within each window can be treated as an independent task, and can thus utilize
parallel processing. For these reasons, this method is capable of handling massive data
sets.

When using the nonrigid registration method, several modeling choices must be
leveraged to obtain accurate results. One must balance computational demands with
model flexibility. The choice of the number of windows and the number of subsamples
used in each window in the estimation procedure influences the degree to which the
registration parameters are allowed to vary over space, and also controls the compu-
tational burden of the algorithm. If a highly nonrigid deformation is required, many
windows should be used. If the surface is complex or noisy, many subsamples should
be used in each window to ensure proper local rigid registration.

Overfitting is intrinsically associated with nonrigid registration methods, and regu-
larization is essential to avoid this problem (Tam et al. 2013). Themethod developed in
this paper has the capability for accurate and flexible nonrigid registration, but it also
suffers from the possibility of overfitting. If toomanywindows are used in conjunction
with too small a penalty parameter, the data can be erroneously registered. However,
the inclusion of a penalty parameter and the smoothing of the spatial surface mod-
els help combat overfitting associated with nonrigid registration methods. While the
penalty parameter is advantageous in this regard, it can also influence the estimation
of the registration parameters if it is too large.

Experimentationwith different values of λ and κ was performed for the applications
in this paper, and the values used were chosen and fixed because they worked well at
producing realistic estimates of the deformation. The authors recommend using large
penalty parameters initially, causing the transformation parameters to be estimated
near 0, then reducing the penalty parameters until stable local estimates are obtained.
One could use generalized cross-validationor information criteria to choose the penalty
parameters, but this route was not pursued due to the computational demands of the
nonrigid algorithm proposed in this paper.

The choice of predictive spatial surface model can also affect the final results.
Both GP and TPS provide flexible models that allow for effective smoothing of the
locally estimated rigid registration fields. One could use a stationary or nonstationary
covariance function in the GP model based on the context, or a TPS is viable if
uncertainty quantification is not important in the analysis.

123



Math Geosci

The likelihood-based nonrigid registration method is a unique and novel statisti-
cal approach to solving this problem which can help further the field of registration.
Through two simulation studies, it has been shown that the method can effectively
recover deformations of different types, and the effect of using different tuning param-
eters in the method was explored. Finally, in the data analysis example, more accurate
predictions and uncertainties were achieved in a cross validation study using the non-
rigid method compared with two rigid registration approaches.
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