
BIT manuscript No.
(will be inserted by the editor)

A fast direct solver for elliptic problems on Cartesian meshes in 3D

Phillip G. Schmitz · Lexing Ying

Received: date / Accepted: date

Abstract We present a fast direct algorithm for solutions to linear systems arising from three dimensional elliptic equations.
We follow the approach of Xia et al. (2009) on combining the multifrontal method with hierarchical matrices in two
dimensions and extend it to three dimensional case. Linear time complexity is shown and a more practical variant with
worse scaling is demonstrated.

Keywords elliptic equations · fast algorithms · multifrontal methods · hierarchical matrices · sparse matrix

Mathematics Subject Classification (2000) MSC 65F05 · MSC 65F30 · MSC 65F50

1 Introduction

In this paper we will consider the solution of an elliptic problem of form

−div(a(x)∇u(x)) + V (x)u(x) = f(x) on Ω, u = 0 on ∂Ω (1.1)

on a Cartesian domain Ω in R3.

There are two main classes of solvers for sparse linear systems: direct [4] and iterative [20] methods. We will only be
concerned with direct methods in this paper. Clearly a sparse Cholesky decomposition should be used instead of the näıve
inversion of the sparse matrix. In order to do so efficiently one has to choose a reordering that reduces fill-in of non-zeros
in the factors. Finding the optimal ordering (especially for matrices arising from problems in three dimensions) in general
is difficult although various graph-theoretic approaches such as the (approximate) minimum degree algorithm [1] or nested
dissection [13] can be used to determine a reasonably good reordering.

In three dimensions direct methods such as the multifrontal method [4, 6, 7, 17] have a computational cost that scales like
O(N2) where N is the number of degrees of freedom, much slower than in two dimensions. Iterative methods are therefore
more competitive but sometimes encounter difficulties for problems where a(x) exhibits large contrast (large variations
in magnitude for different areas of the domain). However, it has been observed in [18, 23] that fill-in blocks of the LDLt

factorization are highly compressible using the H-matrix [11] or hierarchical semiseparable matrix frameworks [22] and thus
the calculations can be done much more efficiently. In two dimensions Xia et al. [23] showed how to combine the multifrontal
method with hierarchical matrices and we extended this approach in [21] to unstructured and adaptive meshes. This paper
will show how to extend this line of work to three dimensional problems while maintaining linear O(N) complexity.

Phillip G. Schmitz
Department of Mathematics
University of Texas at Austin E-mail: pschmitz@math.utexas.edu

Lexing Ying
Department of Mathematics and ICES
University of Texas at Austin E-mail: lexing@math.utexas.edu

2 Phillip G. Schmitz, Lexing Ying

Recently, direct solvers of this type have also been developed for linear systems for boundary integral equations. To name a
few examples, in [19] an essentially linear complexity algorithm is presented for the 2D non-oscillatory integral equations,
while an O(N1.5) algorithm has appeared recently in [10] for the 3D non-oscillatory case. Fast direct solvers for oscillatory
kernels are still unavailable both in 2D and 3D.

The rest of the paper is organized as follows. Section 2 shows the geometric domain decomposition used in this paper. We
describe in Section 3 the multifrontal method in three dimensions and in Section 4 the hierarchical matrix algebra that we
adopt. The combination of hierarchical matrices and the multifrontal method leads to the algorithm detailed in Section 5.
The complexity of our algorithm is discussed in Section 6 for two different approaches to determining the structure of the
hierarchical matrices used.

2 Domain Decomposition

Consider the domain Ω = [0, 1]3. We introduce a uniform (P2Q+ 1)× (P2Q+ 1)× (P2Q+ 1) Cartesian grid covering [0, 1]3,
where P is a positive integer of O(1) and Q will turn out to be the depth of the hierarchical decomposition. Out of the
(P2Q + 1)3 nodes in total, some lie on the boundary of the domain and there are N = (P2Q − 1)3 nodes in the interior.

The equation (1.1) is often discretized with a finite difference or a finite element scheme. In the finite element case, each
cell of our Cartesian is subdivided into 6 tetrahedra. Based on this tetrahedron mesh, we can define piecewise linear basis
functions {φκ(x)}, one for each interior node κ. Each basis function takes value 1 at the node κ and zero at the rest. The
discrete version of of (1.1) under this discretization is given by

Mu = f,

where u and f are vectors formed by the combination of all the uκ and fκ, and M is a sparse matrix with values given by

(M)κλ =

∫
[0,1]3

∇φκ(x) · a(x)∇φλ(x) + V (x)φκ(x)φλ(x)dx.

Due to the locality of the piecewise linear finite element functions, (M)κλ is non-zero only if the nodes κ and λ are adjacent
to each other.

Now divide the domain at level Q into 23Q subcubes, labelled by

DQ;i,j,k =

[
i

2Q
,
i+ 1

2Q

]
×
[

j

2Q
,
j + 1

2Q

]
×
[

k

2Q
,
k + 1

2Q

]
.

for 0 ≤ i, j, k < 2Q using 2Q + 1 equally spaced planes at 0
2Q
, 1
2Q
, 2
2Q
, . . . , 2

Q

2Q
in each dimension. Some nodes will lie on the

boundary of the subcubes and will be shared with their neighbors. The overlapping set of (P + 1)× (P + 1)× (P + 1) nodes
(at the domain boundary cubes may however contain fewer nodes) in each subcube will be called

VQ;i,j,k where 0 ≤ i, j, k < 2Q.

Some nodes will be contained solely within one subcube and will be in the subcube’s interior while those shared with other
cubes (or on the boundary of [0, 1]3) will be on the subcube’s boundary. If a node’s position is divisible by P in some
direction it will be on a subcube boundary otherwise it will be in a subcube interior.

The nodes in the interior of one subcube do not contribute via M to the values in the interior of another subcube. Since
the entry Mκλ is non-zero only when κ and λ are adjacent to each other, the boundary layer between cubes is sufficient to
decouple the nodes in the interior of each subcube at level Q from those in another subcube at the same level.

Another way of looking at the set of nodes that make up each subcube can be obtained if we divide the P2Q + 1 nodes
0, 1, 2, . . . , P2Q in the x-direction into 2Q+1 + 1 groups of alternating sizes 1 and P − 1, that is node 0 in group 0, nodes
1, . . . , P − 1 in group 1, node P in group 2, nodes P + 1, . . . , 2P − 1 in group 3, until eventually node 2QP is in group 2Q+1.
That is, all the nodes whose position X is a multiple of P are in the even groups and the other nodes in between are in the
odd groups. Now perform the same division into these alternating groups in the y- and z-directions.

A node is in even or odd groups for a particular direction depending on the divisibility of that node’s position by P . Thus
every node will be in a group (i, j, k) for 0 ≤ i, j, k ≤ 2Q+1 where i is the group from the x-direction grouping, j the group

Fast direct solver for elliptic problems 3

from the y-direction and k the group from the z-direction. These different sets of nodes on the last level Q are called leaf
elements and labelled by

EQ;i,j,k where 0 ≤ i, j, k ≤ 2Q+1.

Now, depending on the number of even or odd i, j, k in the element’s label, we call it a corner, segment, facet or volume
element. Thus a element can be

– Corner element, which consists of a single node and is of size 1 by 1 by 1.
– Segment element, which extends in 1 basis direction and is of size 1 by 1 by P − 1 (or permutation).
– Facet element, which extends in 2 basis directions and is of size 1 by P − 1 by P − 1 (or permutation).
– Volume element, which extends in all 3 basis directions, and is of size P − 1 by P − 1 by P − 1.

These names have geometric significance because one can also think of the various ways the planes parallel to the axes can
intersect.

If we consider the parity of each of the group numbers in turn there are 23 = 8 different types of nodes.

Element i (mod 2) j (mod 2) k (mod 2)

Corner 0 0 0

x-direction segment 1 0 0

y-direction segment 0 1 0

z-direction segment 0 0 1

x-parallel facet 0 1 1

y-parallel facet 1 0 1

z-parallel facet 1 1 0

Volume 1 1 1

Each subcube at level Q is made up of a 3× 3× 3 = 27 elements

VQ;i,j,k =
⋃
+

0≤i′,j′,k′≤2

EQ;2i+i′,2j+j′,2k+k′ ,

where we have used the symbol] to indicate a disjoint union so as to distinguish it from the more general union. These
elements can be further classified as interior and boundary ones as follows:

– IQ;i,j,k: the interior that contains 1 volume element.
– BQ;i,j,k: the boundary that contains 6 facet elements (2 parallel to each axis), 12 segment elements (4 parallel to each

axis), and 8 corner elements.

More precisely, we have VQ;i,j,k = IQ;i,j,k] BQ;i,j,k with

IQ;i,j,k := EQ;2i+1,2j+1,2k+1

for the interior and
BQ;i,j,k :=

⋃
+

0≤ i′, j′, k′≤ 2
(i′,j′,k′) 6=(1,1,1)

EQ;2i+i′,2j+j′,2k+k′

for the boundary of the subcube. In Figure 2.1 we illustrate an example of 8 overlapping leaf cubes distinguishing between
the different kinds of elements and showing how the cubes meet. Notice that each node (which is indeed a point) is plotted
as a small cube in Figure 2.1 in order to be able to show corner and segment elements more clearly. It shall not be confused
with the actual subcube that contains these nodes.

Based on what we introduced so far, we can define the vertex sets and elements for all other levels from bottom up. Suppose
that Vq+1;i,j,k, Iq+1;i,j,k, Bq+1;i,j,k, and Eq+1;i,j,k are already defined for subcubes Dq+1;i,j,k on level q + 1. For a subcube
Dq;i,j,k on level q, the vertex set is

Vq;i,j,k :=
⋃

0≤ i′, j′, k′≤ 1

Bq+1;2i+i′,2j+j′,2k+k′ .

4 Phillip G. Schmitz, Lexing Ying

Fig. 2.1: 8 overlapping leaf subcubes of size 93. The four types of node sets are shown as well as
the interior planes.

This set is further partitioned into two parts: Iq;i,j,k, the interior and Bq;i,j,k, the boundary. In terms of the elements defined
on level q + 1, the sets Iq;i,j,k and Bq;i,j,k can be written as

Iq;i,j,k :=
⋃
+

1≤ i′, j′, k′≤ 3
at least one 2

Eq+1;4i+i′,4j+j′,4k+k′

and

Bq;i,j,k :=
⋃
+

0≤ i′, j′, k′≤ 4
at least one 0 or 4

Eq+1;4i+i′,4j+j′,4k+k′ ,

respectively. A simple counting shows that Vq;i,j,k consists of 117 elements from level q + 1: 36 facets, 54 segments and 27
corners. They are allocated into Iq;i,j,k and Bq;i,j,k as follows:

– Interior Iq;i,j,k consists of 19 elements: 12 facets, 6 segments, and 1 corner unique to the 8 siblings.
– Boundary Bq;i,j,k consists of 98 elements: 24 facets, 48 segments, and 26 corners which are shared with other subcubes.

To give an example, the elements of Bq;i,j,k on a slice parallel to the z-axis are displayed in the following table.

Fast direct solver for elliptic problems 5

Eq+1;4i,4j+4,4k Eq+1;4i+1,4j+4,4k Eq+1;4i+2,4j+4,4k Eq+1;4i+3,4j+4,4k Eq+1;4i+4,4j+4,4k

Eq+1;4i,4j+3,4k Eq+1;4i+1,4j+3,4k Eq+1;4i+2,4j+3,4k Eq+1;4i+3,4j+3,4k Eq+1;4i+4,4j+3,4k

Eq+1;4i,4j+2,4k Eq+1;4i+1,4j+2,4k Eq+1;4i+2,4j+2,4k Eq+1;4i+3,4j+2,4k Eq+1;4i+4,4j+2,4k

Eq+1;4i,4j+1,4k Eq+1;4i+1,4j+1,4k Eq+1;4i+2,4j+1,4k Eq+1;4i+3,4j+1,4k Eq+1;4i+4,4j+1,4k

Eq+1;4i,4j,4k Eq+1;4i+1,4j,4k Eq+1;4i+2,4j,4k Eq+1;4i+3,4j,4k Eq+1;4i+4,4j,4k

In order to support the algorithms to be described below, one needs to introduce a decomposition of Bq;i,j,k in terms of
elements on its own level (level q), instead of the child level (level q + 1). We define parent elements Eq;i,j,k on level q as
follows. Each parent corner consists of a single corner from level q + 1, for example

Eq;2i,2j,2k := Eq+1;4i,4j,4k.

The child segment, corner and segment combine into a parent segment

Eq;2i+1,2j,2k := Eq+1;4i+1,4j,4k] Eq+1;4i+2,4j,4k] Eq+1;4i+3,4j,4k

and similarly for segments in the other directions, while the parent facet consists of 4 facets, 4 segments, and 1 corner:

Eq;2i,2j+1,2k+1 :=
Eq+1;4i,4j+1,4k+1] Eq+1;4i,4j+2,4k+1] Eq+1;4i,4j+3,4k+1]
Eq+1;4i,4j+1,4k+2] Eq+1;4i,4j+2,4k+2] Eq+1;4i,4j+3,4k+2]
Eq+1;4i,4j+1,4k+3] Eq+1;4i,4j+2,4k+3] Eq+1;4i,4j+3,4k+3

.

The parent facets parallel to the other axes are defined similarly. This combination is trickier than in two dimensions (see
[21]), because there many more pieces to consider and there are more ways to order the combination of child elements in
a parent facet. In Figure 2.2 we show exactly how the boundary elements of one level (level q + 1) are combined to form
larger elements one level higher (level q).

In terms of the new elements introduced on level q, the slice parallel to the z-axis that we showed earlier can be now
represented as follows.

Eq;2i,2j+2,2k Eq;2i+1,2j+2,2k Eq;2i+2,2j+2,2k

Eq;2i,2j+1,2k Eq;2i+1,2j+1,2k Eq;2i+2,2j+1,2k

Eq;2i,2j,2k Eq;2i+1,2j,2k Eq;2i+2,2j,2k

Thus we can rewrite

Bq;i,j,k :=
⋃
+

0≤i′,j′,k′≤2
at least one 0 or 2

Eq;2i+i′,2j+j′,2k+k′ .

In this way, the 98 elements of Bq;i,j,k on level q + 1 are combined into 26 combined elements on level q as follows.

6 Phillip G. Schmitz, Lexing Ying

98 Divided −→ 26 Combined

26 Corners 48 Segments 24 Facets

8 × 1 8 Corners

12 × 1 2 12 Segments

6 × 1 4 4 6 Facets

Fig. 2.2: Hierarchical division of the cube: 6 combined facets, 8 combined segments and 8 corners.

3 Multifrontal Method

The multifrontal method essentially constructs and stores a block LDLt transform of M in an efficient way. The basic tool
of this process is Schur complement. For a matrix (

A Bt

B C

)
,

Fast direct solver for elliptic problems 7

this would be (
A Bt

B C

)
=

(
I

BA−1 I

)(
A
S

)(
I A−1Bt

I

)
,

where S = C −BA−1Bt. For each cube DQ;i,j,k, we can then consider the small matrix MQ;i,j,k, which is the restriction of
M to the cube DQ;i,j,k) formed via

(MQ;i,j,k)κλ =

∫
DQ;i,j,k

∇φκ(x) · a(x)∇φλ(x) + V (x)φκ(x)φλ(x)dx, (3.1)

where κ and λ are restricted to the vertices in DQ;i,j,k since all basis functions centered on vertices outside DQ;i,j,k are zero
inside DQ;i,j,k. These matrices MQ;i,j,k sum (after suitable injection) to the full matrix M .

Start from level Q and fix a leaf cube DQ;i,j,k and its matrix MQ;i,j,k. The decomposition of the nodes VQ;i,j,k = IQ;i,j,k]
BQ;i,j,k leads to a 2× 2 block matrix decomposition of MQ;i,j,k:

MQ;i,j,k =

(
AQ;i,j,k B

t
Q;i,j,k

BQ;i,j,k CQ;i,j,k

)
= LQ;i,j,k

(
AQ;i,j,k

SQ;i,j,k

)
LtQ;i,j,k, (3.2)

where AQ;i,j,k : IQ;i,j,k → IQ;i,j,k, BQ;i,j,k : IQ;i,j,k → BQ;i,j,k, CQ;i,j,k : BQ;i,j,k → BQ;i,j,k, and

LQ;i,j,k =

(
IIQ;i,j,k

BQ;i,j,kA
−1
Q;i,j,k IBQ;i,j,k

)
We can extend LQ;i,j,k to the whole vertex set by setting it to be identity on the complement of VQ;i,j,k. Since the interior
vertex sets IQ;i,j,k are disjoint for different blocks DQ;i,j,k, each one of LQ;i,j,k commutes with another distinct LQ;i′,j′,k′

and as a result LQ :=
∏
i,j,k

LQ;i,j,k is well defined.

We will develop a suitable ordering for the rows and columns of M as we proceed. Let us define

IQ :=
⋃
+
i,j,k

IQ;i,j,k and BQ :=
⋃
i,j,k

BQ;i,j,k.

Since the union of the two is the entire set of nodes for which we constructed M , we have the following 2 × 2 block form
for M

M =

(
AQ BtQ
BQ CQ

)
= LQ

(
AQ

SQ

)
LtQ,

where AQ : IQ → IQ, BQ : IQ → BQ, CQ : BQ → BQ, and SQ = CQ − BQA−1Q BtQ. For each subcube DQ−1;i,j,k at level
Q− 1, let us define MQ−1;i,j,k to be the sum of the Schur complement matrices SQ;i′,j′,k′ over DQ−1;i,j,k’s 8 children. Then
it is not difficult to see that SQ is in fact equal to the sum of all MQ−1;i,j,k (if we extend MQ−1;i,j,k by setting it to be zero
outside VQ−1;i,j,k).

Now recall that each VQ−1;i,j,k decomposes into IQ−1;i,j,k and BQ−1;i,j,k. It leads to a 2× 2 block form for MQ−1;i,j

MQ−1;i,j,k :=

(
AQ−1;i,j,k B

t
Q−1;i,j,k

BQ−1;i,j,k CQ−1;i,j,k

)
where AQ−1;i,j : IQ−1;i,j,k → IQ−1;i,j,k, BQ−1;i,j : IQ−1;i,j,k → BQ−1;i,j,k, and CQ−1;i,j : BQ−1;i,j,k → BQ−1;i,j,k. We can
perform a Schur complement on this 2× 2 block matrix at this level to obtain

LQ−1;i,j,k

(
AQ−1;i,j,k

SQ−1;i,j,k

)
LtQ−1;i,j,k.

By introducing the decomposition of BQ into the union of

IQ−1 :=
⋃
+
i,j

IQ−1;i,j,k and BQ−1 :=
⋃
i,j

BQ−1;i,j,k.

and defining

LQ−1 :=
∏
i,j,k

LQ−1;i,j,k,

8 Phillip G. Schmitz, Lexing Ying

we can rewrite the above computation as factoring SQ into

LQ−1

(
AQ−1

SQ−1

)
LtQ−1.

As a result we get

M = LQ

(
AQ

SQ

)
LtQ = LQLQ−1

AQ AQ−1
SQ−1

LtQ−1L
t
Q.

Continuing in this fashion over all levels from bottom up, we eventually reach level 0 with B1 = I0, B0 = ∅ (due to the zero
Dirichlet boundary condition), and

M = LQLQ−1 · · ·L1


AQ

AQ−1
. . .

A1

A0

Lt1 · · ·LtQ−1LtQ,

where Aq : Iq → Iq. Each of the Aq, q = 0, . . . , Q will, in fact, be block diagonal if we treat

Iq :=
⋃
+

0≤i<2q

⋃
+

0≤j<2q

⋃
+

0≤k<2q

Iq;i,j,k

taking each of the sets Iq;i,j,k in turn for our ordering.

The solution to (1.1) can then be found by applying

M−1 = L−tQ L−tQ−1 · · ·L
−t
1


A−1Q

A−1Q−1
. . .

A−11

A−10

L−11 · · ·L
−1
Q−1L

−1
Q . (3.3)

In terms of computational complexity, the multifrontal factorization of M can be constructed in O(N2) steps and solving
Mu = f by applying (3.3) to f takes O(N4/3) steps. To see this, first notice that the number of levels is Q+1 and the total
number of unknowns is N ' (P2Q)3 = P 323Q. For each level q, let us use s(q) ' P2Q−q to denote the sidelength of the
subcube at this level. Since each facet has size s(q)2, the largest matrices appearing at level q in the multifrontal algorithm
have size O(s(q)2). Thus the cost of multiplying and inverting matrices for each subcube will be O((s(q)2)3), while the cost
of a matrix-vector multiply will be O((s(q)2)2). Thus the total cost, suppressing constants, for setting up the factorization
for M and M−1 is

Q∑
q=0

s(q)623q =

Q∑
q=0

(P2Q−q)623q = O(N2)

and that for applying M−1 to a vector is

Q∑
q=0

s(q)423q =

Q∑
q=0

(P2Q−q)423q = O(N4/3)

as claimed.

As mentioned in [21] in two dimensions Xia et al. [23] suggested using hierarchical semiseparable matrices [22] or hierarchical
matrices [11] to represent the matrices that appeared in their decomposition. This allows the Schur complements at all levels
to be performed in almost linear time. Extending the approach of [23] to the three dimensional case is not straightforward.

Our recapitulation of their ideas in [21] can however be more easily extended to three dimensional problems. Once we have
established the hierarchical structure of elements and the relationships between boundary and interior elements of cubes
on various levels the general approach is similar to the one elucidated before. In three dimensions the structure of the
hierarchical matrices is harder to determine as the ways different interacting pieces in the domain can relate to one another
are much more complex than in two dimensions.

Fast direct solver for elliptic problems 9

6 meet 1 in a line 5 meet 1 at a point

Self-interaction of a facet

2 meet 1 in a line

1 meets 1 at a point

Fig. 4.1: Left: Examples of facets meeting in a line or at a point for the facets in Iq;i,j,k. Right:
self-interaction of a facet

4 Hierarchical Matrix Decomposition

For each subcube, the decomposition of Vq;i,j,k in terms of elements at level q+1 provides a block structure for the matrices
in the Schur complement computation. For example, Aq;,i,j,k is of size 19×19, Bq;,i,j,k of size 98×19, and Cq;i,j,k and Sq;i,j,k
of size 98× 98. When written using the elements on level q, Sq;i,j,k is of size 26× 26. The hierarchical matrix decomposition
for these matrices depends on the choices made as to which submatrices are represented by hierarchical matrices and which
are represented by factorized low rank matrices. The choice of which submatrices can be represented by low rank matrices
depends on the admissibility criteria [11, 12] used. In our case this reveals itself in the choice to represent the interaction
between different facets larger than a chosen size as one factorized matrix instead of the hierarchical matrix required by
the lack of separation between the facets.

Well separated facets, such as those on the top and bottom of a cube, will always have their interaction represented in
factorized form. For nearby facets, such as the 12 facet elements in the interior Iq;i,j,k of Dq;i,j,k, we distinguish between two
different settings (as illustrated in Figure 4.1), depending on whether the minimum distance between two facets is achieved

– At a point, or
– On a line.

Those facets achieving minimum distance at a point will always have a low rank interaction and be represented in factorized
form. On the other hand, those facets achieving minimum distance in a line will be represented in two different ways

– Type I: by a hierarchical matrix,
– Type II: in a factorized form.

The advantage of Type I is that the growth of the maximum rank is better controlled, but at the cost of a deeper and more
complex hierarchical decomposition.

In Figure 4.2, we illustrate a possible Type I hierarchical division of two adjacent facets of a subcube. This situation appears
between two level q + 1 facets in Aq;i,j,k or two level q facets in Sq;i,j,k. The main pieces of the subdivision of a facet are
the 4 sub-facets labelled 1, 3, 7, 9 for one facet and a, c, g, i for the other. The interactions of the adjacent sub-facets (for
example between 1 and a and between 7 and c) are represented hierarchically while the rest are low-rank. Considering the
further subdivisions of 1 and a the sub-sub-facets show the same pattern of interaction with 1̃ & ã and 7̃ & c̃ represented
densely while the others are low-rank. Depending on the sizes of the remaining sub-sub-facets one might continue further
subdivision and hierarchical representation over the dense one. For Type II we would have one big factorized matrix as the
two large adjacent (undivided) facets meet in a line.

10 Phillip G. Schmitz, Lexing Ying

a

1

b
d

f

c

i
h

e

g

7

8
9

6
3

2
5

4

3

1

7

9

c

a
b

f~
e~

d

4

2 6
5

g

~ 8

i
~ h~

~

~
~ ~

~
~
~

~

~~

~

~
~

Type I

Fig. 4.2: Type I hierarchical division of adjacent Facets of the cube and associated interaction
matrix with factorized matrices represented by the symbol or

For the case of facet self-interaction let us consider a facet that has been divided into the 9 child elements as shown in
Figure 4.3 (dominated by the 4 sub-facets labeled 1,3,7 and 9) with subfacet 1 further divided into 1̃ to 9̃. If we only look
at the interaction of 4 subfacets of a facet we would see the following patterns.

Facet

3 4

1 2

Type I
H H H F
H H F H
H F H H
F H H H

or

Type II
H F F F
F H F F
F F H F
F F F H

In Type I only the interaction between facets diagonally opposite each other is represented in factorized form, while in Type
II only the self-interaction is represented in hierarchical form.

5 Algorithm

By incorporating the hierarchical matrix algebra into the framework of the multifrontal method, we see that creating the
factorized form of M happens in two stages

1. At the leaf level we calculate MQ;i,j,k which is the restriction M to DQ;i,j,k,
2. Move up level by level combining the 8 child Sq+1;i′,j′,k′ matrices into the parent Mq;i,j,k.

This is detailed in Algorithm 1. In the description, we use the MATLAB notation for referring to submatrices. For example,
if G ∈ R|J |×|J | is a matrix whose rows and columns are labelled by the index set J then for X ⊂ J we write G(X ,X) ∈
R|X |×|X| for the submatrix of G consisting of the rows and columns in X . Manipulating this matrix affects the underlying
values in G.

Algorithm 1 (Setup the factorization of M)

1: for i = 0 to 2Q − 1 do
2: for j = 0 to 2Q − 1 do
3: for k = 0 to 2Q − 1 do
4: Calculate the matrix MQ;i,j,k.
5: Invert AQ;i,j,k using dense matrix methods.

Fast direct solver for elliptic problems 11

1

7

8

9
6

3

2

5

4
8

5

7

9
4

1

2
3

6~
~

~
~

~
~

~
~

~

Type I
Type II

Fig. 4.3: Hierarchical division of self-interaction of a facet of the cube in Type I and Type II matrix
decompositions. This would correspond to one part on the block diagonal of the full interaction
matrix for the 6 facets (and the rest of the cube) shown in Figure 6.1 and Figure 6.2

.

6: SQ;i,j,k ← CQ;i,j,k −BQ;i,j,kA
−1
Q;i,j,kB

t
Q;i,j,k

7: Store A−1Q;i,j,k, BQ;i,j,k and SQ;i,j,k

8: end for
9: end for

10: end for
11: for q = Q− 1 to 1 do
12: for i = 0 to 2q − 1 do
13: for j = 0 to 2q − 1 do
14: for k = 0 to 2q − 1 do
15: Start with zero Mq;i,j,k

16: for i′ = 0, 1 do
17: for j′ = 0, 1 do
18: for k′ = 0, 1 do
19: Add Sq+1,2i+i′,2j+j′,2k+k′ to Mq;i,j,k(Bq+1;2i+i′,2j+j′,2k+k′ ,Bq+1;2i+i′,2j+j′,2k+k′)
20: end for
21: end for
22: end for

23: Decompose Mq;i,j,k into 2× 2 block structure Mq;i,j =

(
Aq;i,j B

t
q;i,j

Bq;i,j Cq;i,j

)
.

12 Phillip G. Schmitz, Lexing Ying

24: Invert Aq;i,j,k.
25: Sq;i,j,k ← Cq;i,j,k −Bq;i,j,kA−1q;i,j,kBtq;i,j,k
26: Store A−1q;i,j,k and Bq;i,j,k
27: Merge and Store Sq;i,j,k
28: end for
29: end for
30: end for
31: end for
32: Start with zero M0;0,0,0

33: for i′ = 0, 1 do
34: for j′ = 0, 1 do
35: for k′ = 0, 1 do
36: Add S1,i′,j′,k′ to M0;0,0,0(B1;i′,j′,k′ ,B1;i′,j′,k′)
37: end for
38: end for
39: end for
40: Invert A0;0,0,0.
41: Store A0;0,0,0.

The step Merge Sq;i,j,k in Algorithm 1 is required because we need to reinterpret the 98 × 98 submatrices corresponding
to the 98 boundary elements at level q + 1 as 26 × 26 submatrices corresponding to the 26 merged boundary elements at
level q. 8 corner nodes are unaffected. The segment-corner-segment merging into a parent segment is reflected in combining
3 × 3 = 9 submatrices into a new submatrix. Merging of 9 child elements in a plane into a parent facet corresponds to
9×9 = 81 submatrices being joined together. The vertex ordering we built up from the leaf level ensures that, in fact, these
9 submatrices form a contiguous 3×3 group and the 81 submatrices form a contiguous 9×9 group. Thus no rearrangement
of the rows and columns of S is required.

In terms of the hierarchical matrix representation, if the new submatrix should have a hierarchical representation this is
achieved by simply reinterpreting the 3 × 3 (in the case of a parent segment) or 9 × 9 (in the case of a parent facet)
submatrices as part of a new hierarchical matrix decomposition. On the other hand if the new submatrix should be
represented in factorized form, this conversion can be performed efficiently using standard QR and SVD [11].

This correspondence between the hierarchical decomposition of the geometric elements, segments and corners, on different
levels and the hierarchical matrix decomposition of the matrices for those sets of nodes means that the choice of hierarchical
structure for the matrices emerges naturally from our domain decomposition.

To solve the original Mu = f , we compute u = M−1f using the following formula

M−1f = L−tQ L−tQ−1 · · ·L
−t
1


A−1Q

A−1Q−1
. . .

A−11

A−10

L−11 · · ·L
−1
Q−1L

−1
Q f,

where L−1q =
∏
i,j,k L

−1
q;i,j,k. First we apply each L−1Q;i,j,k in L−1Q , then those from L−1Q−1 and so on. Once we have completed

all the L−1q;i,j,k, we apply the block diagonal A−1q;i,j,k, and then all the L−tq;i,j,k. If we write uIq;i,j,k for the (consecutive) group
of components of u corresponding to the set of nodes Iq;i,j,k, and similarly uBq;i,j,k

, then the solution can be calculated as

in Algorithm 2 where we combine the action of A−1q;i,j,k and L−1q;i,j,k since they are the only ones which affect uIq;i,j,k on the
first pass from the leaves to the root of the tree.

Algorithm 2 (Solving Mu = f)

1: u← f
2: for q = Q to 1 do
3: for i = 0 to 2q − 1 do
4: for j = 0 to 2q − 1 do

Fast direct solver for elliptic problems 13

5: for k = 0 to 2q − 1 do
6: uIq;i,j,k ← A−1q;i,j,kuIq;i,j,k
7: uBq;i,j,k

← uBq;i,j,k
−Bq;i,j,kA−1q;i,j,kuIq;i,j,k

8: end for
9: end for

10: end for
11: end for
12: uI0;0,0,0 ← A−10;0,0,0uI0;0,0,0
13: for q = 1 to Q do
14: for i = 0 to 2q − 1 do
15: for j = 0 to 2q − 1 do
16: for k = 0 to 2q − 1 do
17: uIq;i,j,k ← uIq;i,j,k −A

−1
q;i,j,kB

t
q;i,j,kuBq;i,j,k

18: end for
19: end for
20: end for
21: end for

6 Complexity

Let us investigate the complexity of the algorithms presented in Section 5. We recall that a leaf node at level Q contains
(P + 1)× (P + 1)× (P + 1) nodes and N ' (P2Q)3 = P 323Q = O(23Q) since P = O(1). Here all logarithms are taken with
base 2.

The cost of the hierarchical levels depends on the depth of the decomposition tree and the ranks of the factorized approxi-
mations. Now the cost of these operations is given in [8] as O(r2(log n)2n) where r is the maximum rank of the factorized
parts, n×n is the full size of the matrix, and log n comes from the number of subdivision levels (depth of the decomposition
tree) in the hierarchical matrix representation.

The size of the matrices involved for a given subcube is dominated by the number of nodes in the covered facets. Fix a
cube at Dq;i,j,k at level q. For Aq;i,j,k, there are 12 facets and we have O(s(q)2) size. Similarly the corresponding Bq;i,j,k
and Sq;i,j,k will also have size n = O(s(q)2). The formation of the Schur complement for each subcube involves an inversion
of a hierarchical matrix, two multiplications of hierarchical matrices, and an addition of hierarchical matrices.

The difference in complexity for the Type I and Type II hierarchical matrix decompositions comes from the differing rank
r of the factorized parts. We have observed in numerical experiments that the rank of the factorized parts for the Type I
decomposition grows like O(log s(q)) while that for Type II grows like O(s(q)) as shown in Table 6.1.

6.1 Type I Hierarchical Matrices

In this subsection we consider the complexity when using matrices of Type I such as that illustrated in Figure 6.1. We
have seen numerically that the rank r of the factorized parts will be approximately O(log s(q)) at level q. Allowing slightly
stronger growth let us consider poly-logarithmic growth O(logρ s(q)) for some integer ρ ≥ 1. Consider first the complexity
of Algorithm 1. The cost for each subcube is, suppressing constants,

O(r2(log n)2n) = O((log s(q))2ρ · (log s(q))2 · s(q)2) = O((log s(q))2ρ+2 · s(q)2).

Summing over 23q Schur complements at each level and Q levels in total, we obtain

Q∑
q=0

(Q− q)2ρ+2 · 22(Q−q) · 23q = O(23Q) = O(N).

In Algorithm 2, the dominant cost is the matrix vector multiplication in the hierarchical matrix form and for each cube on
level q, it takes

O(r2(log n)n) = O((log s(q))2ρ · (log s(q)) · s(q)2) = O((log s(q))2ρ+1 · s(q)2)

14 Phillip G. Schmitz, Lexing Ying

Type I

s(q) 225 961 3969

A−1 20 27 29

B 25 33 26

S 25 33 41

s 15 31 63

Type II

s(q) 225 961 3969

A−1 63 122 234

B 75 161 -

S 75 161 331

s 15 31 63

Table 6.1: The maximum ranks observed for factorized submatrices using the Type I and Type II
hierarchical matrix decompositions for −∆u = f with εr = 10−6 and εa = 10−12. For Type I these
grow like O(log s(q)) while for type II they grow like O(s(q)).

steps. Therefore, the total cost over all subcubes and levels is equal to

Q∑
q=0

(Q− q)2ρ+1 · 22(Q−q) · 23q = O(23Q) = O(N)

again. In summary, both algorithms are of linear complexity.

6.2 Type II Hierarchical Matrices

In this subsection we consider the complexity when using matrices of Type II such as that illustrated in Figure 6.2. Consider
first the complexity of Algorithm 1. Since the observed ranks are proportional to the segment lengths (r ' s(q)), the cost
for each subcube will be

O(r2(log n)2n) = O(s(q)2 · (log s(q))2 · s(q)2) = O((log s(q))2 · s(q)4).

Summing over 23q Schur complements at each level and Q levels in total gives us

Q∑
q=0

(Q− q)2 · 24(Q−q) · 23q = O(Q224Q) = O(N4/3(logN)2).

Next let us consider the complexity of Algorithm 2. The matrix vector multiplication in the hierarchical matrix form for
each cube takes

O(r2(log n)n) = O(s(q)2 · (log s(q)) · s(q)2) = O(log s(q) · s(q)4)

steps. Therefore, the number of steps of Algorithm 2 in Type II case is equal to

Q∑
q=0

(Q− q) · 24(Q−q) · 23q = O(Q24Q) = O(N4/3 logN).

As we shall see in the numerical results displayed in the next section, although the first approach is asymptotically linear
and the second is worse by a factor O(N1/3 log2N), the second approach turns out to have better performance in the regime
we could test. Eventually the algorithm with better scaling will provide better results but that may be for very large N
(ignoring the log2N factor the growth rate of O(N4/3) means that if N increases by 8 then N4/3 increases by about 16.
Thus if the algorithm with worse scaling is C times faster for a particular N , it loses that advantage by the time N has
increased by a factor of about C3).

Fast direct solver for elliptic problems 15

Fig. 6.1: Type I hierarchical division of the interaction matrix of a cube boundary (merged S2;1,1,1)
with 31× 31 facets switching from hierarchical to dense matrices for size 7× 7 sub-facets.

7 Numerical Results

All numerical tests are performed on a 2.13GHz processor. Execution times were measured in seconds for the setup phase
(Algorithm 1) and the solve phase (Algorithm 2).

To test our algorithm, we setup the factorized form of M and use it to solve 100 random problems generated as follows:
Select x? ∈ RN as a random unit vector, and calculate f = Mx? using the sparse original M . Then solve Mx = f and
determine the worst relative L2 error

||x− x? ||2
||x? ||2

over the 100 samples.

Following [11] we construct the low rank approximations at the hierarchical levels using common matrix manipulations such
as QR and SVD. During these procedures we keep only (the part of the decomposition corresponding to) those singular
values

1. larger than the absolute cutoff εa and
2. within the relative cutoff εr of the largest singular value.

Addition and multiplication of hierarchical matrices also involves these kinds of truncated SVD. These two parameters, εa
and εr, can be varied depending on the specific problem and the desired accuracy of the output.

In the first test, we solve −∆u = f with zero Dirichlet boundary condition. In Table 7.1 we compare the runtimes obtained
using the Type I and Type II hierarchical matrix decompositions with εa = 10−12 and εr = 10−6 and leaf level P = 4.

16 Phillip G. Schmitz, Lexing Ying

Fig. 6.2: Type II hierarchical division of the interaction matrix of a cube boundary (merged S2;1,1,1)
with 31 × 31 facets where the factorized form is used for all facet-facet interactions except self-
interaction, switching from hierarchical to dense for 15× 15 sub-facets.

In the actual implementation, dense matrix computations are used for the leaf level and the one level above that since at
these two levels the matrix sizes are rather small so that dense linear algebra is more efficient than the hierarchical matrix
algebra.

Type I Type II

Q N Setup Solve Error Setup Solve Error

3 313 29791 50.13 0.138 2.35e-07 32.25 0.132 8.94e-07

4 633 250047 1132.54 1.736 1.35e-06 551.52 1.405 2.13e-06

5 1273 2048383 15777.77 17.471 4.03e-07 8315.93 13.719 9.75e-07

Table 7.1: A comparison of the Type I and Type II hierarchical matrix decomposition approach
to solving −∆u = f using εa = 10−12 and εr = 10−6 and P = 4 with dense matrices used for the
lowest 2 levels.

Now, the scaling observed in our experiments is close to the expected theoretical value for Type II but not for type I. This
is probably due to inefficiencies in our implementation but one clear reason is that the zero boundary conditions tend to
reduce the amount of work required and disrupt the expected scaling. If we consider the top level calculation with s = 63
when N = 633 we see that no calculation of S is actually required while in the corresponding level of N = 1273 there are

Fast direct solver for elliptic problems 17

8 calculations of S required. Even away from the top level we should not expect the runtime for each level to scale exactly
by 8 because the proportion of cubes touching the domain boundary (which induce fewer calculations because of the zero
boundary conditions) will not be the same when we double the number of cubes along each axis. The scaling observed for
an analogous calculation without the zero boundary condition is much closer to the expected value. In Table 7.2 we analyze
the scaling level by level for the Type I results of Table 7.1.

Ratios

Setup 313 → 633 633 → 1273

N 313 633 1273 8.4 8.2

Hierarchical - - 3767.21 - -

Hierarchical - 408.79 4752.30 - 11.63

Hierarchical 34.45 528.86 6071.92 16.92 10.42

Hierarchical 6.22 59.28 514.03 9.53 8.67

Dense 7.35 63.64 522.50 8.7 8.2

Dense 2.11 17.96 149.73 8.5 8.3

Table 7.2: A level by level breakdown of the runtime scaling for setup phase using the Type I
hierarchical matrix decomposition approach to solving −∆u = f using εa = 10−12 and εr = 10−6

and P = 4 with dense matrices used for the lowest 2 levels.

We see that the ratio for the dense levels is close to that for N . The ratio for the first hierarchical level, which is not the
top level for any of our sizes, is also reasonable. Once we move to the next hierarchical level which is the top level for
N = 313 (indicated in bold) but not for N = 633 we see the jump in scaling. The ratio for the same level for 633 → 1273 is
much closer to the theoretical value since then we are below the top level. Note that this top level anomaly was almost 17
for the 313 → 633 size change but decreases to less than 12 for 633 → 1273. Also, the new top level for each size increase
contributes to the observed runtime being more than 8 times the previous size – at size N = 633 it is 36% of the runtime
and at size N = 1273 it is 24% – as the top level contributes a smaller and smaller fraction of the runtime for larger and
larger N both these effects should diminish.

We can also use the approach of [15] to calculate the diagonal of the inverse of M , which we call diagonal extraction. In
Table 7.3 the error is given as the maximum difference between Mλλ as obtained via the diagonal extraction algorithm and
via the solution of Mu = eλ for the 100 choices of eλ made above.

Type I Type II

Q N Extract Error Extract Error

3 313 29791 35.20 1.43e-11 30.37 7.07e-11

4 633 250047 665.22 1.75e-09 680.85 5.08e-09

5 1273 2048383 10231.10 7.33e-10 11957.85 1.16e-08

Table 7.3: A comparison of diagonal extraction using the Type I and Type II hierarchical matrix
decomposition approach.

The additional error is almost 2 orders of magnitude smaller than that due to the usual setup and solve algorithms so that
the error of diagonal extraction is essentially the same as that for Algorithm 2. The scaling for Type II is as expected but
that for Type I is not. This is due to the same sorts of factors we discussed for the results of Algorithm 1 with the “top
level anomaly” playing an even larger role here. Because of the zero boundary conditions there is almost no work (≤ 1.2%
runtime for N = 633, ≤ 0.3% for N = 1273) done for the top level, while in the next larger calculation the corresponding
level is one below the top and is one of the two largest contributers to the runtime (≥ 30%). Again these effects should be
mitigated as problem size increases.

18 Phillip G. Schmitz, Lexing Ying

In the final test, we solve −div(a(x)∇u) = f with a random a(x), which is independently set at each node from a uniform
distribution on [10−3, 103]. In Table 7.4 we describe the results with again εa = 10−12 and εr = 10−6.

Type I Type II Type I RanMult

Q N Setup Solve Error Setup Solve Error Setup Solve Error

3 313 29791 27.24 0.111 5.97e-07 33.89 0.107 1.73e-06 27.23 0.109 5.97e-07

4 633 250047 691.41 1.412 4.52e-06 576.96 1.140 2.93e-06 629.19 1.308 4.94e-06

5 1273 2048383 13193.96 15.917 2.69e-05 9840.03 11.483 6.30e-06 10268.84 13.761 2.69e-05

Table 7.4: To illustrate how we can handle non-identity a(x) we use an a(x) which is independently
set at each node from a uniform distribution on [10−3, 103] with εa = 10−12 and εr = 10−6.

The block multiplications involved in the Schur complement computation S = C−BA−1Bt have many parts to the inner sum
(recall the boundary has 98 components, and the majority of entries in the full S matrix correspond to the 24 child facets)
for each entry in the final product. So for the entries in the hierarchical decomposition of S that are known to have factorized
form we can circumvent the usual matrix multiplication procedure and use the idea of a probabilistic low rank approximation
[14] to derive an approximation of certain blocks in the product without deriving any intermediate approximations. This
would require a good estimate of the expected rank but that can be derived from preliminary calculations using the existing
approach.

In the last set of results in Table 7.4 we use the Type I decomposition but this modified multiplication algorithm where
block multiplication that results in a factorized result for the sum of products is computed using a randomized approach.
Notice that this makes the Type I approach more competitive with the Type II approach for our problem sizes.

8 Conclusion and Future Work

This approach can be extended to unstructured meshes of tetrahedra and more general discretization schemes as we detailed
for the two dimensional case in [21]. The correct generalizations of corners and segments are required because the subdomains
may not meet in precisely the same regular manner as in the Cartesian case. Not only will the lengths of segments vary on
the same level but some corners (analogous to the generalized corner of [21]) will need to be composed of multiple nodes to
recover the relationship between the leaf elements of the decomposition. Also, a generalized segment will be needed because
the pattern of 4 subdomains of tetrahedra meeting precisely along a segment will not hold for unstructured meshes – they
may meet at a vertex which is only in tetrahedra from 3 different subdomains.

The algorithm can be adjusted to improve performance in the situation where a(x) and/or V (x) is perturbed locally
and repeated calculations are required – a calculated factorization could be largely reused as only the parents of the
cubes containing the vertices with changed values would have to be recalculated. Similarly one could reduce the amount
of recalculation required in an h-adaptive mesh refinement system [5] as in [9] where new degrees of freedom could be
incorporated incrementally and only the parts of the mesh which have been refined (and their parents in the decomposition
tree) would require new calculations. The adaptive decomposition algorithm would have to be run alongside the h-refinement
to distribute the new degrees of freedom and form new leaf cubes as required. Extending this idea to the degrees of freedom
added and removed via a p-adaptive system one could eventually integrate with hp-adaptive systems.

We have not discussed parallelization of the calculations [16] but the hierarchical matrix algebra could be parallelized for the
individual multiplications and additions. Also since all of the calculations on the same level are independent they could be
performed in parallel. As long as there are more Dq;i,j,k per level than processors extensive inter-processor communication
would be avoided. Only the uppermost levels would not lead to close to maximum speedup from parallelization. The possible
gains of parallelization have been demonstrated by large scale parallel multifrontal solvers such as MUMPS [2].

We have only demonstrated the approach for piecewise linear elements but one could generalize the approach to work with
different discretizations such as spectral elements or different methods such as the discontinuous Galerkin [3] method. The
support of the bases could also be increased at the cost of thicker border elements between subcubes.

Fast direct solver for elliptic problems 19

References

1. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM Journal on Matrix Analysis and
Applications 17(4), 886–905 (1996). DOI 10.1137/S0895479894278952

2. Amestoy, P.R., Duff, I.S., Vömel, C.: Task scheduling in an asynchronous distributed memory multifrontal solver. SIAM J. Matrix Anal.
Appl. 26(2), 544–565 (2004/05). DOI 10.1137/S0895479802419877

3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal
on Numerical Analysis 39(5), 1749–1779 (2001/02). DOI 10.1137/S0036142901384162

4. Davis, T.A.: Direct methods for sparse linear systems. No. 2 in Fundamentals of algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (2006)

5. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with hp-adaptive finite elements. Vol. 2.
Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL (2008). Frontiers: three
dimensional elliptic and Maxwell problems with applications

6. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions on Mathematical Software
9(3), 302–325 (1983)

7. George, J.A.: Nested dissection of a regular finite element mesh. SIAM Journal on Numerical Analysis 10(2), 345–363 (1973). DOI
10.1137/0710032

8. Grasedyck, L., Hackbusch, W.: Construction and Arithmetics of H-matrices. Computing 70(4), 295–334 (2003). DOI 10.1007/s00607-003-
0019-1

9. Grasedyck, L., Hackbusch, W., Le Borne, S.: Adaptive geometrically balanced clustering of H-matrices. Computing 73(1), 1–23 (2004).
DOI 10.1007/s00607-003-0042-2

10. Greengard, L., Gueyffier, D., Martinsson, P.G., Rokhlin, V.: Fast direct solvers for integral equations in complex three-dimensional domains.
Acta Numerica 18, 243–275 (2009). DOI 10.1017/S0962492906410011

11. Hackbusch, W., Grasedyck, L., Börm, S.: An introduction to hierarchical matrices. Tech. Rep. 21, Max-Plank-Instituit für Mathematik in
den Naturwissenschaften, Leipzig (2001)

12. Hackbusch, W., Khoromskij, B.N., Kriemann, R.: Hierarchical matrices based on a weak admissibility criterion. Computing 73(3), 207–243
(2004). DOI 10.1007/s00607-004-0080-4

13. Hendrickson, B., Rothberg, E.: Improving the run time and quality of nested dissection ordering. SIAM Journal on Scientific Computing
20(2), 468–489 (1998). DOI 10.1137/S1064827596300656

14. Liberty, E., Woolfe, F., Martinsson, P.G., Rokhlin, V., Tygert, M.: Randomized algorithms for the low-rank approximation of matrices.
Proceedings of the National Academy of Sciences of the USA 104(51), 20,167–20,172 (2007). DOI 10.1073/pnas.07096-40104

15. Lin, L., Lu, J., Ying, L., Car, R., E, W.: Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic
structure analysis of metallic systems. Communications in Mathematical Sciences 7(3), 755–777 (2009)

16. Lin, L., Yang, C., Lu, J., Ying, L., E, W.: A fast parallel algorithm for selected inversion of structured sparse matrices with applications to
2D electronic structure calculations. Tech. Rep. LBNL-2677E, Lawrence Berkeley National Lab (2009)

17. Liu, J.W.H.: The multifrontal method for sparse matrix solution: Theory and practice. SIAM Review 34(1), 82–109 (1992)
18. Martinsson, P.G.: A fast direct solver for a class of elliptic partial differential equations. Journal of Scientific Computing 38(3), 316–330

(2009). DOI 10.1007/s10915-008-9240-6
19. Martinsson, P.G., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. Journal of Computational Physics

205(1), 1–23 (2005). DOI 10.1016/j.jcp.2004.10.033
20. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2 edn. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA

(2003)
21. Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. Preprint
22. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable matrices. Numerical Linear Algebra with

Applications (2009). DOI 10.1002/nla.691
23. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large structured linear systems of equations. SIAM Journal

on Matrix Analysis and Applications 31(3), 1382–1411 (2009). DOI 10.1137/09074543X

