
CBMS Conference on Fast Direct Solvers

Dartmouth College

June 23 – June 27, 2014

Lecture 1: Introduction

Gunnar Martinsson
The University of Colorado at Boulder

Research support by:



Many thanks to everyone who made these lectures possible!

The organizers:

• Alexander Barnett (Dartmouth College)
• Min Hyung Cho (Dartmouth College)
• Adrianna Gillman (Dartmouth College)

• Leslie Greengard (NYU and Simons Foundation)

Financial and logistic support:

Dartmouth College CBMS NSF



For bibliographic notes, see: amath.colorado.edu/faculty/martinss/2014_CBMS

Contributors to the work presented:

Direct solvers: Tracy Babb, Alex Barnett, James Bremer, Eduardo Corona, Adrianna
Gillman, Leslie Greengard, Sijia Hao, Terry Haut, Eric Michielssen, Vladimir Rokhlin,
Mark Tygert, Patrick Young, Denis Zorin, etc

Randomized methods in matrix algebra: Nathan Halko, Edo Liberty, Vladimir Rokhlin,
Joel Shkolnisky, Arthur Szlam, Joel Tropp, Mark Tygert, Sergey Voronin, etc

High-accuracy discretizations: Alex Barnett, James Bremer, Adrianna Gillman, Leslie
Greengard, Sijia Hao, Patrick Young, etc

Coarse graining and model reduction: Ivo Babuška, Alexander Movchan, Greg
Rodin, etc

While not formally collaborators, very useful discussions and suggestions from:
Greg Beylkin, Laurent Demanet, Ming Gu, Johan Helsing, Mauro Maggioni, François
Meyer, Michael O’Neil, Lexing Ying, Jianlin Xia, etc

Legend: green for students and postdocs, red for advisers and mentors.



These 10 lectures will address a central question in computational mathematics:
How to efficiently compute approximate solutions to linear boundary value problems
(BVPs) of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

B u(x) = f (x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ, and where A is an elliptic differential
operator (constant coefficient, or not). Examples include:
• The Laplace equation.
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

Bonus question: How to efficiently construct factorizations of (large!) matrices whose
singular values decay.



Discretization of linear Boundary Value Problems
↙

Direct discretization of the differential op-
erator via Finite Elements, Finite Differ-
ences, spectral composite methods, . . .

↓
N × N discrete linear system.
Very large, sparse, ill-conditioned.

↓
Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection), O(N3/2).

↘
Conversion of the BVP to a Boundary In-
tegral Equation (BIE).

↓
Discretization of (BIE) using Nyström,
collocation, BEM, . . . .

↓
N × N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓
Iterative solver accelerated by fast
matrix-vector multiplier, O(N).
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What does a “direct” solver mean in this context?

Basically, it is a solver that is not “iterative” . . .

Given a computational tolerance ε, and a linear system

(2) Au = b,

(where the system matrix A is often defined implicitly), a direct solver constructs an
operator S such that

||A−1 − S|| ≤ ε.

Then an approximate solution to (2) is obtained by simply evaluating

uapprox = Sb.

The matrix S is typically constructed in a data-sparse format (e.g. H-matrix, HSS, etc)
that allows the matrix-vector product Sb to be evaluated rapidly.

Variation: Find factors B and C such that ||A− BC|| ≤ ε, and linear solves involving the
matrices B and C are fast. (LU-decomposition, Cholesky, etc.)



“Iterative” versus ”direct” solvers

Two classes of methods for solving an N × N linear algebraic system

Au = b.
Iterative methods:

Examples: GMRES, conjugate gradients,
Gauss-Seidel, etc.

Construct a sequence of vectors
u1, u2, u3, . . . that (hopefully!) con-
verge to the exact solution.

Many iterative methods access A only via
its action on vectors.

Often require problem specific pre-
conditioners.

High performance when they work well.
O(N) solvers.

Direct methods:

Examples: Gaussian elimination,
LU factorizations, matrix inversion, etc.

Always give an answer. Deterministic.

Robust. No convergence analysis.

Great for multiple right hand sides.

Have often been considered too slow for
high performance computing.

(Directly access elements or blocks of A.)

(Exact except for rounding errors.)



Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves for a fixed operator:
• Molecular dynamics.
• Scattering problems.
• Optimal design. (Local updates to the system matrix are cheap.)

A couple of orders of magnitude speed-up is often possible.

2. Solving problems intractable to iterative methods (singular values do not “cluster”):
• Scattering problems near resonant frequencies.
• Ill-conditioning due to geometry (elongated domains, percolation, etc).
• Ill-conditioning due to lazy handling of corners, cusps, etc.
• Finite element and finite difference discretizations.

Scattering problems intractable to existing methods can (sometimes) be solved.

3. Direct solvers can be adapted to construct spectral decompositions:
• Analysis of vibrating structures. Acoustics.
• Buckling of mechanical structures.
•Wave guides, bandgap materials, etc.

Work in progress . . .



Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers
whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers aims to help in the development of general purpose
software packages solving the basic linear boundary value problems of mathematical
physics.



Numerical model reduction.

Advantages of direct solvers over iterative solvers, subtleties:
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There are fundamental reasons why we would expect direct solvers to be better

Consider the task of solving a classical boundary value problem such as

(3)

−∆u(x) = g(x) x ∈ Ω,

u(x) = h(x) x ∈ Γ.

The explicit solution formula takes the form

(4) u(x) =

∫
Ω
G(x,y)g(y)dy +

∫
Γ
H(x,y)h(y)dS(y).

The functions G and H depend on Ω and are known analytically only for trivial domains.
A direct solver for (3) “numerically” constructs approximations to G and/or H.

Key point: The mathematical operator in (4) is much nicer than the operator in (3):

• The operator in (4) is a smoothing operator.

• The operator in (4) is bounded.

• The operator in (4) is in many ways stable — small changes in g and h often lead to
small changes in u.

Approximating (4) is inherently more tractable.
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Example — Poisson equation on R2

Consider the Poisson equation

(5) −∆u(x) = g(x) x ∈ R2,

coupled with suitable boundary conditions at infinity to ensure uniqueness.

We can solve (5) analytically. For instance, use a Fourier transform,

[Fu](t) = û(t) =
1
2π

∫
R2

e−i x·t u(x)dx.

The Laplace operator in Fourier space becomes a simple multiplication operator,

[F(−∆u)](t) = |t|2 û(t),

so equation (5) in Fourier space becomes diagonal

(6) |t|2 û(t) = ĝ(t), t ∈ R2.

Solving (6) is easy:
û(t) =

1
|t|2

ĝ(t),

and then we map back to physical space to obtain

u(x) = [F−1û](x) =
1
2π

∫
R2

ei x·t 1
|t|2

ĝ(t)dt.



Example — Poisson equation on R2

Consider the Poisson equation

(7) −∆u(x) = g(x) x ∈ R2,

coupled with suitable boundary conditions at infinity to ensure uniqueness. Recall that

u(x) = [F−1û](x) =
1
2π

∫
R2

ei x·t 1
|t|2

ĝ(t)dt.

We can write the solution operator as an operator in physical space by observing that
multiplication in Fourier space corresponds to convolution in physical space.

Setting ψ(t) = |t|−2, we find

u = F−1(ψ ĝ) =
(
F−1ψ

)
∗
(
F−1ĝ

)
=
(
F−1ψ

)
∗ g.

Introduce the fundamental solution φ = F−1ψ. It can be shown that

φ(x) = [F−1ψ](x) = − 1
2π log |x|.

Then we obtain

(8) u(x) =

∫
R2
φ(x − y) f (x)dx, x ∈ R2.



Properties of the solution operator G.
Recall the Poisson equation

(9) −∆u(x) = g(x) x ∈ R2.

Let φ(x) = − 1
2π log |x| denote the fundamental solution, and let G denote the solution

operator,

u(x) = [Gg](x) = [φ ∗ g](x) =

∫
R2
φ(x − y)g(x)dx, x ∈ R2

Observation 1 (nice): Viewed as an operator on R2, G is nicely smoothing, u has two
more derivatives than g.

Observation 2 (extremely nice!): Let Ω1 and Ω2 denote two subsets of R2 that are
“well-separated” (to be defined!). Then the restriction of G, to say

G1,2 : L2(Ω2)→ L2(Ω1),

is very strongly smoothing. In fact, G1,2g ∈ C∞(Ω2). The singular values of G1,2 decay
exponentially fast.

Observation 3 (not so nice): The operator G is global — every part of the domain
“talks to” every other part.
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Example of solution of Laplace’s equation −∆u = g
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Example of solution of Laplace’s equation −∆u = g
Now showing derivatives of solution from previous slide.
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Example of solution of Laplace’s equation −∆u = g

Recall that in the example we showed, g is piecewise continuous, and u is C1.

Note however, that away from the lines of discontinuity of g, the function u is C∞.

We can formalize this statement by splitting the fundamental solution

φ = φfar + φnear
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and then writing the solution operator as

[Gg](x) = [Gnearg](x) + [Gfarg](x) = [φnear ∗ g](x) + [φfar ∗ g](x).



Example of solution of Laplace’s equation −∆u = g
Suppose we are given point charges {qj}5j=1 in a “source domain” Ωs.

We are interested in the potential in a “target domain” Ωt.
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The source domain Ωs (red) and the target domain Ωt (blue).
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Example of solution of Laplace’s equation −∆u = g
Suppose we are given point charges {qj}5j=1 in a “source domain” Ωs.
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Example of solution of Laplace’s equation −∆u = g
Suppose we are given point charges {qj}5j=1 in a “source domain” Ωs.

We are interested in the potential in a “target domain” Ωt.
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Example of solution of Laplace’s equation −∆u = g
Suppose we are given point charges {qj}50j=1 in a “source domain” Ωs.

We are interested in the potential in a “target domain” Ωt.
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Example of solution of Laplace’s equation −∆u = g
Suppose we are given point charges {qj}50j=1 in a “source domain” Ωs.

We are interested in the potential in a “target domain” Ωt.
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Example of solution of Laplace’s equation −∆u = g
Suppose we are given point charges {qj}50j=1 in a “source domain” Ωs.

We are interested in the potential in a “target domain” Ωt.
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Kernel expansions — proof that the “rank of interaction” is low

Ωs

c

Ωt

Let u denote the potential in Ωt induced by charges g in Ωs (without factor −1/2π):

u(x) =

∫
Ωs

log |x − y |g(y)dy , x ∈ Ωt.

For convenience of notation, we will switch to complex variables. Observe that for
x = (x1, x2) = x1 + i x2 = r eit, we have

log(x) = log |x| + i arg(x) = log r + i t.

We can therefore consider the problem of evaluating the complex valued integral

u(x) =

∫
Ωs

log(x − y)g(y)dy , x ∈ Ωt.

When g is real, the “real-valued” u is simply the real part of the integral.



Let u denote the potential in Ωt induced by sources g in Ωs:

(10) u(x) =

∫
Ωs

log(x − y)g(y)dy , x ∈ Ωt.

We will use the McLaurin expansion

log(1− z) = −
∞∑
p=1

1
pz

p, valid for |z| < 1.

Let c denote the center of Ωs. Then

(11) log
(
x − y

)
= log

(
(x − c)− (y − c)

)
= log

(
x − c

)
+ log

(
1− y − c

x − c

)
= log

(
x − c

)
−
∞∑
p=1

1
p

(y − c)p

(x − c)p
.

Let rs denote the radius of Ωs. Combining (10) and (11), we get

u(x) = log
(
x − c

)∫
Ωs

g(y)dy +
∞∑
p=1

rps
−p
(
x − c)p

∫
Ωs

(
y − c
rs

)p
g(y)dy .

Set ĝ0 =
∫

Ωs
g(y)dy and ĝp =

∫
Ωs

(
y−c
rs

)p
g(y)dy and observe that |ĝp| ≤ ||g||L1(Ωs)

.
It follows that we can write the potential u as a sum

u(x) = log
(
x − c

)
ĝ0 +

∞∑
p=1

rps
−p
(
x − c)p

ĝp.

The sum converges exponentially fast whenever |x − c| > rs.



We can write the series expansion without complex variables by taking the real part, and
find that, with x − c = r eit and y − c = r ′ eit′,

u(x) = log r
∫

Ωs
g(r ′, t′)dA(r ′, t′)+

∞∑
p=1

[
−1
p

(rs
r

)p
cos(pt)

∫
Ωs

(
(r ′)
rs

)p
cos(pt′)g(r ′, t′)dA(r ′, t′)+

−1
p

(rs
r

)p
sin(pt)

∫
Ωs

(
(r ′)
rs

)p
sin(pt′)g(r ′, t′)dA(r ′, t′)

]
.

Note that we expand the field in a rapidly converging sum of the simple functions

C0(r, t) = log(r)

Cp(r, t) =
1
rp cos(pt)

Sp(r, t) =
1
rp sin(pt).



Example — the Laplace equation with Dirichlet data on a circle.
Set

Ω = {x ∈ R2 : |x| ≤ R},

and consider the equation −∆u(x) = 0, x ∈ Ω,

u(x) = h(x), x ∈ Γ.

It is convenient to work with polar coordinates (r, t) so that x1 = r cos t and x2 = r sin t.
Then g is a periodic function of t. We write its Fourier expansion as

h(t) =
∞∑

n=−∞
hn eint

where
hn =

1
2π

∫ π

−π
e−ins h(s)ds.

Now consider the function

u(r, t) =
∞∑

n=−∞
hn
( r
R

)|n|
eint.

Then u obviously satisfies the boundary condition, and it is easily verified that −∆u = 0.
Due to uniqueness, we must have found the correct solution.



Recall that the solution to the Dirichlet problem can be written

u(r, t) =
∞∑

n=−∞
hn
( r
R

)|n|
eint.

where hn =
1
2π

∫ π

−π
e−ins h(s)ds. By combining the two expressions, we find that

u(r, t) =

∫ π

−π
G(r, t − s)h(s)ds

where G is the Green’s function of the problem

G(r, t − s) =
1
2π

∞∑
n=−∞

( r
R

)|n|
ein(t−s).

Observe smoothing: away from Γ, the solution is analytic.



Green’s function for a circle

Let Ω = {x ∈ R2 : |x| ≤ R} denote the unit
circle, and consider the equation−∆u(x) = 0, x ∈ Ω,

u(x) = h(x), x ∈ Γ.

Recall that the solution can be written

u(r, t) =

∫ π

−π
G(r, t − s)h(s)ds

where G is the Green’s function of the problem

G(r, t − s) =
1
2π

∞∑
n=−∞

( r
R

)|n|
ein(t−s).
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The Green’s function.



Now consider a Dirichlet problem on a general domain:

(12)

−∆u(x) = 0, x ∈ Ω,

u(x) = h(x), x ∈ Γ.

We know, in principle, that there exists a “Green’s function” H such that

(13) u(x) =

∫
Γ
H(x,y)h(y)ds(y).

H is known analytically only for trivial domains (rectangles, spheres, half-planes, etc).

However, under very mild conditions, there exists a function q on Γ such that

(14) u(x) =

∫
Γ
φ(x − y)q(y)ds(y).

We now use a known kernel function — the free space fundamental solution
φ(x − y) = − 1

2π log |x − y |. The techniques already described now apply, and show that
the solution is smooth on any domain that is sufficiently removed from the boundary.

Note: We can obtain an equation for q by inserting the boundary condition u|Γ = h from (12) into (13),

g(x) =

∫
Γ

φ(x − y)q(y)ds(y), x ∈ Γ.

This equation can be solved to obtain q. More on this later ...



Summary:

• Solution operators of elliptic PDEs are exceptionally benign mathematical objects:
• Behave like integration operators.
• Typically bounded.
• Typically very stable in many ways.
• Extreme information loss over distance.

One could say that the objective of the “direct solver” research effort is to numerically
build approximations to the analytic solution operators.

• Advantages of building solution operators:
• Very fast when the same equation is to be solved multiple times.
• Capable of solving problems for which iterative solvers may not converge.
• They parallelize very well.
• They enable operator algebra.

• The principal difficulty we will need to wrestle with is that the solution operators are
global (as opposed to differential operators which are local).

We can attain algorithms with very good scaling (often O(N)) despite the fact that the
matrices are dense by exploiting that the dense matrices are rank structured.

However, direct solvers typically do require more memory than iterative solvers.


