
CBMS Conference on Fast Direct Solvers

Dartmouth College

June 23 – June 27, 2014

Lecture 5: Randomized methods for low-rank approximation

Gunnar Martinsson
The University of Colorado at Boulder

Research support by:

Goal: Given an m× n matrix A, we seek to compute a rank-k approximation, with k � n,

A ≈ U D V∗ =
k∑

j=1
σj uj v∗j ,

m× n m× k k × k k × n
where

σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0 are the (approximate) singular values of A
u1, u2, . . . , uk are orthonormal, the (approximate) left singular vectors of A, and
v1, v2, . . . , vk are orthonormal, the (approximate) right singular vectors of A.

The methods presented are capable of solving other closely related problems:

• Interpolative decompositions, A ≈ UA(row), where A(row) consists of k rows of A.

• Partial LU-factorization, A ≈ L(k) U(k).

• Eigenvalue decomposition A ≈ VDV∗ (when A is Hermitian).

• etc.

The randomized methods are particularly powerful when m and n are very large, the
matrix A may be stored on a distributed system, or “out-of-core.”

Excellent algorithms for computing SVDs exist, but many of them are not well suited for
an emerging computational environment where communication is the bottleneck.
Complications include:

•Multi-processor computing.
CPU speed is growing slowly, but processors get cheaper all the time.

• Communication speeds improve only slowly.
Communication between different levels in memory hierarchy, latency in hard drives,
inter-processor communication, etc.

• The size of data sets is growing very rapidly.
The cost of slow memory is falling rapidly, and information is gathered at an ever faster
pace — automatic DNA sequencing, sensor networks, etc.

• From a numerical linear algebra perspective, an additional problem resulting from increasing matrix
sizes is that noise in the data, and propagation of rounding errors, become increasingly problematic.

The power of randomization in the modern context has been observed before:

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)
A. Frieze, R. Kannan, and S. Vempala (1999, 2004)
D. Achlioptas and F. McSherry (2001)
P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b, 2006c,
2006d, etc)
S. Har-Peled (2006)
A. Deshpande and S. Vempala (2006)
S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)
T. Sarlós (2006a, 2006b, 2006c)
K. Clarkson, D. Woodruff (2009)

For details, see review (Halko/Martinsson/Tropp 2009)

Goal (restated):

Given an m× n matrix A we seek to compute a rank-k approximation

A ≈ U D V∗ =
k∑

j=1
σj uj v∗j ,

m× n m× k k × k k × n
where U and V are orthogonal matrices holding the left and right (approximate) singular
vectors of A, respectively, and where D is a diagonal matrix holding the (approximate)
singular values σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0.

Recall:

Once you have the SVD, “any” other standard factorization is easily obtained.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1.

2.

3.
4. Form the k × n matrix B = Q∗A.

5. Compute the SVD of the small matrix B: B = Û DV∗.

6. Form the matrix U = QÛ.

Find an m× k orthonormal matrix Q such that A ≈ QQ∗A.
(I.e., the columns of Q form an ON-basis for the range of A.)

Note: Steps 4 – 6 are exact; the error in the method is all in Q:

||A− U︸︷︷︸
=QÛ

DV∗|| = ||A−QÛDV∗︸ ︷︷ ︸
=B

|| = ||A−Q B︸︷︷︸
Q∗A
|| = ||A−QQ∗A||.

Note: The classical Golub-Businger algorithm follows this pattern. It finds Q in Step 3
via direct orthogonalization of the columns of A via, e.g., Gram-Schmidt.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1.

2.

3.
4. Form the k × n matrix B = Q∗A.

5. Compute the SVD of the small matrix B: B = Û DV∗.

6. Form the matrix U = QÛ.

Find an m× k orthonormal matrix Q such that A ≈ QQ∗A.
(I.e., the columns of Q form an ON-basis for the range of A.)

Note: Steps 4 – 6 are exact; the error in the method is all in Q:

||A− U︸︷︷︸
=QÛ

DV∗|| = ||A−QÛDV∗︸ ︷︷ ︸
=B

|| = ||A−Q B︸︷︷︸
Q∗A
|| = ||A−QQ∗A||.

Note: The classical Golub-Businger algorithm follows this pattern. It finds Q in Step 3
via direct orthogonalization of the columns of A via, e.g., Gram-Schmidt.

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.
Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors ω1, ω2, . . . , ωk ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = Aω1, y2 = Aω2, . . . , yk = Aωk ∈ Rm.

3. Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that

Span(q1, q2, . . . , qk) = Span(y1, y2, . . . , yk).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then Span{qj}kj=1 = Ran(A) with probability 1.

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.
Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors ω1, ω2, . . . , ωk ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = Aω1, y2 = Aω2, . . . , yk = Aωk ∈ Rm.

3. Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that
Span(q1, q2, . . . , qk) = Span(y1, y2, . . . , yk).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then Span{qj}kj=1 = Ran(A) with probability 1.

What is perhaps surprising is that even in the general case, {qj}kj=1 often does almost
as good of a job as the theoretically optimal vectors (which happen to be the k leading
left singular vectors).

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.
Solving the primitive problem via randomized sampling — intuition:

1. Draw a random matrix G ∈ Rn×k.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form a “sample” matrix Y = AG ∈ Rm×k.

3. Form an orthonormal matrix Q ∈ Rm×k such that Y = QR.
For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then A = QQ∗A with probability 1.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix G. G = randn(n,k)

2. Form the m× k sample matrix Y = AG. Y = A * G

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of the small matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

6. Form the matrix U = QÛ. U = Q * Uhat

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix G. G = randn(n,k)

2. Form the m× k sample matrix Y = AG. Y = A * G

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of the small matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

6. Form the matrix U = QÛ. U = Q * Uhat

The randomized algorithm for computing an interpolative decomposition is even easier!

Goal: Given an m× n matrix A, compute an ID A ≈ UA(̃I, :).

Algorithm:

1. Draw an n× k Gaussian random matrix G. G = randn(n,k)

2. Form the m× k sample matrix Y = AG. Y = A * G

3. Compute an ID of Y: Y = UY(̃I, :). [U, J] = id_decomp(Y)

Note that the ID constructed in this way will necessarily work for A!

Single pass algorithms:

A is symmetric: A is not symmetric:

Generate a random matrix G. Generate random matrices G and H.

Compute a sample matrix Y. Compute sample matrices Y = AG and Z = A∗H.

Find an ON matrix Q Find ON matrices Q and W
such that Y = QQ∗Y. such that Y = QQ∗Y and Z = WW∗ Z.

Solve for T the linear system Solve for T the linear systems
Q∗Y = T (Q∗G). Q∗Y = T (W∗G) and W∗ Z = T∗ (Q∗H).

Factor T so that T = Û ˜ Û∗. Factor T so that T = Û D V̂∗.

Form U = QÛ. Form U = QÛ and V = WV̂.

Output: A ≈ U˜U∗ Output: A ≈ UDV∗

Note: With B as on the previous slide we have T ≈ BQ (sym. case) and T ≈ BW
(nonsym. case).

References: Woolfe, Liberty, Rokhlin, and Tygert (2008), Clarkson and Woodruff (2009),
Halko, Martinsson and Tropp (2009).

Question: What if the rank is not known in advance?

Answer: It is possible to incorporate error estimators.

• Almost free in terms of flop count.

• Use of an error estimator may increase the pass count.

• Even though they are barely mentioned in this presentation, error estimators are very
important! In addition to allowing adaptive rank determination, they greatly improve on
the robustness and reliability of randomized methods.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question:

How much does the computation above cost?

Answer:
Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

We will consider three proto-typical environments.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

Case 1: A is presented as an array of real numbers in RAM.

Cost is dominated by the 2mnk flops required for steps 2 and 4.

The O(mnk) flop count is the same as that of standard methods such as
Golub-Businger. However, the algorithm above requires no random access to the matrix
A — the data is retrieved in two passes. (One pass in the modified version.)

Remark 1: Improved data access leads to a moderate gain in execution time.

Remark 2: Using a special structured random sampling matrix (for instance, a
“subsampled random Fourier transform”), substantial gain in execution time, and
asymptotic complexity of O(mn log(k)) can be achieved.

To attain complexity O(mn log(k)), the scheme should be slightly modified so that
randomized sampling is used to determine both the column space and the row space:

Given an m× n matrix A, find U, V, D of rank k such that A ≈ UDV∗.

1. Choose an over-sampling parameter p and set ` = k + p. (Say p = k so ` = 2k.)

2. Generate SRFT’s G and H of sizes n× `, and m× `.

3. Form the sample matrices Y = AG and Z = A∗H.

4. Find ON matrices Q and W such that Y = QQ∗Y and Z = WW∗ Z.

5. Solve for the k × k matrix T the systems Q∗Y = T (W∗G) and W∗ Z = T∗ (Q∗H).

6. Compute the SVD of the small matrix T = Û D V̂∗ (and truncate if desired).

7. Form U = QÛ and V = WV̂.

Observation 1: Forming AG and A∗H in Step 2 has cost O(mn log(k)) since ` ∼ k.

Observation 2: All other steps cost at most O((m + n) k2).

Practical speed of O(mnk log(k)) complexity randomized

Consider the task of computing a rank-k SVD of a matrix A of size n× n.

t(direct) Time for classical (Golub-Businger) method — O(k n2)

t(srft) Time for randomized method with an SRFT — O(log(k)n2)

t(gauss) Time for randomized method with a Gaussian matrix — O(k n2)

t(svd) Time for a full SVD — O(n3)

We will show the

acceleration factors: t(direct)

t(srft)

t(direct)

t(gauss)

t(direct)

t(svd)

for different values of n and k.

10
1

10
2

10
3

0

1

2

3

4

5

6

7

10
1

10
2

10
3

0

1

2

3

4

5

6

7

10
1

10
2

10
3

0

1

2

3

4

5

6

7

k k k

n = 1 024 n = 2 048 n = 4 096

t(direct)/t(gauss)

t(direct)/t(srft)
t(direct)/t(svd)

SRFT speedup

Gauss speedup

Full SVD

Ac
ce

le
ra
tio

n
fa
ct
or

Observe: Large speedups (up to a factor 6!) for moderate size matrices.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

Case 2: A is presented as an array of real numbers in slow memory — on “disk”.

In this case, standard methods such as Golub-Businger become prohibitively slow due
to the random access requirements on the data.

However, the method described above works just fine.

Limitation 1: Matrices of size m× k and k × n must fit in RAM.

Limitation 2: For matrices whose singular values decay slowly (as is typical in the
data-analysis environment), the method above is typically not accurate enough.
We will shortly discuss the accuracy of the method in detail, and describe a much more
accurate variation.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

Case 3: A and A∗ admit fast matrix-vector multiplication.

In this case, the “standard” method is some variation of Krylov methods such as
Lanczos (or Arnoldi for non-symmetric matrices) whose cost TKrylov satisfy:

TKrylov ∼ k Tmat-vec-mult + O(k2 (m + n)).

The asymptotic cost of the randomized scheme is the same;
its advantage is again in how the data is accessed — the k matrix-vector multiplies can
be executed in parallel.

The method above is in important environments less accurate than Arnoldi,
but this can be fixed while compromising only slightly on the pass-efficiency.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

How accurate is the proposed method?

Let Acomputed
k denote the output of the method above,

Acomputed
k = UDV∗.

We are interested in the error

ek = ||A− Acomputed
k ||.

The error ek should be compared to the theoretically minimal error

σk+1 = min{||A− Ak|| : Ak has rank k},

where σk is the (exact) k’th singular value of A.

(We criminally switched notation here — σj used to be the j ’th computed approximate
singular value of A — now it is the exact singular value.)

Example 1: Laplace potential evaluation map: A(i, j) =
√
wi vj log |xi − yj|.

The geometry,

Example 1: Laplace potential evaluation map: A(i, j) =
√
wi vj log |xi − yj|.

0 10 20 30 40 50 60 70 80
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

||
A

 −
 A

k
||
/|
|A

||

svd

randomized

Example 1: Laplace potential evaluation map: A(i, j) =
√
wi vj log |xi − yj|.

0 10 20 30 40 50 60 70 80
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

||
A

 −
 A

k
||
/|
|A

||

svd

randomized

Another instantiation...

Example 1: Laplace potential evaluation map: A(i, j) =
√
wi vj log |xi − yj|.

0 10 20 30 40 50 60 70 80
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

||
A

 −
 A

k
||
/|
|A

||

svd

randomized

Yet another instantiation...

Example 1: Laplace potential evaluation map: A(i, j) =
√
wi vj log |xi − yj|.

0 10 20 30 40 50 60 70 80
10

−20

10
−15

10
−10

10
−5

10
0

k

||
A

 −
 A

k
||
/|
|A

||

svd

randomized

20 different instantiations.

Example 2: Helmholtz potential map (side=8λ): A(i, j) =
√

wi vj H0(κ|xi − yj|).

0 50 100 150
10

−15

10
−10

10
−5

10
0

k

||
A

 −
 A

k
||
/|
|A

||

svd

randomized

Example 2: Helmholtz potential map (side=8λ): A(i, j) =
√

wi vj H0(κ|xi − yj|).

0 50 100 150
10

−15

10
−10

10
−5

10
0

k

||
A

 −
 A

k
||
/|
|A

||

svd

randomized

Another instantiation...

Example 2: Helmholtz potential map (side=8λ): A(i, j) =
√

wi vj H0(κ|xi − yj|).

0 50 100 150
10

−15

10
−10

10
−5

10
0

k

||
A

 −
 A

k
||
/|
|A

||

svd

randomized

Yet another instantiation...

Example 2: Helmholtz potential map (side=8λ): A(i, j) =
√

wi vj H0(κ|xi − yj|).

0 50 100 150
10

−15

10
−10

10
−5

10
0

k

||
A

 −
 A

k
||
/|
|A

||

svd

randomized

20 different instantiations.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A− UDV∗||? (Recall ek = ||A−QQ∗A||.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A− UDV∗||? (Recall ek = ||A−QQ∗A||.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A− UDV∗||? (Recall ek = ||A−QQ∗A||.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A− UDV∗||? (Recall ek = ||A−QQ∗A||.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A− UDV∗||? (Recall ek = ||A−QQ∗A||.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× (k + p) sample matrix Y = AG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Bound on the expectation of the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.

Let G denote an n× (k + p) Gaussian matrix.

Let Q denote the m× (k + p) matrix Q = orth(AG).

If p ≥ 2, then

E||A−QQ∗A||Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E||A−QQ∗A|| ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Ref: Halko, Martinsson, Tropp, 2009 & 2011

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let G denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AG).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

||A−QQ∗A|| ≤

1 + t

√
3k

p + 1 + u t e
√

k + p
p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

||A−QQ∗A|| ≤

1 + 16

√
1 +

k
p + 1

σk+1 + 8
√

k + p
p + 1

∑
j>k

σ2j

1/2

,

except with probability at most 3e−p.

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let G denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AG).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

||A−QQ∗A|| ≤

1 + t

√
3k

p + 1 + u t e
√

k + p
p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

||A−QQ∗A|| ≤
(
1 + 6

√
(k + p) · p logp

)
σk+1 + 3

√
k + p

∑
j>k

σ2j

1/2

,

except with probability at most 3p−p.

Let us look at the error bound a little closer:

E||A− Acomputed
k+p || ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

 n∑
j=k+1

σ2j

1/2

.

Case 1 — the singular values decay rapidly: If (σj) decays sufficiently rapidly that(∑
j>k σ

2
j

)1/2
≈ σk+, then we are fine — a minimal amount of over-sampling (say p = 5

or p = k) drives the error down close to the theoretically minimal value.

This is precisely our situation when building direct solvers!

Case 2 — the singular values do not decay rapidly: In the worst case, we have∑
j>k

σ2j

1/2

∼
√

n− k σk+1.

If n is large, and σk+1/σ1 is not that small, we could lose all accuracy.

Let us look at the error bound a little closer:

E||A− Acomputed
k+p || ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

 n∑
j=k+1

σ2j

1/2

.

Case 1 — the singular values decay rapidly: If (σj) decays sufficiently rapidly that(∑
j>k σ

2
j

)1/2
≈ σk+, then we are fine — a minimal amount of over-sampling (say p = 5

or p = k) drives the error down close to the theoretically minimal value.

This is precisely our situation when building direct solvers!

Case 2 — the singular values do not decay rapidly: In the worst case, we have∑
j>k

σ2j

1/2

∼
√
n− k σk+1.

If n is large, and σk+1/σ1 is not that small, we could lose all accuracy.

Let us look at the error bound a little closer:

E||A− Acomputed
k+p || ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

 n∑
j=k+1

σ2j

1/2

.

Case 1 — the singular values decay rapidly: If (σj) decays sufficiently rapidly that(∑
j>k σ

2
j

)1/2
≈ σk+, then we are fine — a minimal amount of over-sampling (say p = 5

or p = k) drives the error down close to the theoretically minimal value.

This is precisely our situation when building direct solvers!

Case 2 — the singular values do not decay rapidly: In the worst case, we have∑
j>k

σ2j

1/2

∼
√
n− k σk+1.

If n is large, and σk+1/σ1 is not that small, we could lose all accuracy.

Power method for improving accuracy:

The error depends on how quickly the singular values decay.

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (AA∗)qA has the same left singular vectors as A, and its singular
values are

σj((AA∗)qA) = (σj(A))2q+1.

Much faster decay — so let us use the sample matrix

Y = (AA∗)qAG

instead of
Y = AG.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also
similar to “block power method,” and “block Lanczos.”

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix G. (4) Form the small matrix B = Q∗A.
(2) Form the n× k sample matrix Y = (AA∗)qAG. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Theorem: E||A− Acomputed
k+p || converges exponentially fast to the optimal value of σk+1

as q increases.

The theorem assumes exact arithmetic — in real life some complications arise.
These can be handled by careful implementation.

The modified scheme obviously comes at a substantial cost;
2q + 1 passes over the matrix are required instead of 1.
However, q can often be chosen quite small in practice, q = 2 or q = 3, say.

Proofs of probabilistic error bounds

Let us first recall the two theorems we flashed earlier.

Bound on the expectation of the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let G denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AG).
If p ≥ 2, then

E||A−QQ∗A||Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E||A−QQ∗A|| ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Ref: Halko, Martinsson, Tropp, 2009 & 2011

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let G denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AG).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

||A−QQ∗A|| ≤

1 + t

√
3k

p + 1 + u t e
√

k + p
p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

||A−QQ∗A|| ≤

1 + 16

√
1 +

k
p + 1

σk+1 + 8
√

k + p
p + 1

∑
j>k

σ2j

1/2

,

except with probability at most 3e−p.

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let G denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AG).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

||A−QQ∗A|| ≤

1 + t

√
3k

p + 1 + u t e
√

k + p
p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

||A−QQ∗A|| ≤
(
1 + 6

√
(k + p) · p logp

)
σk+1 + 3

√
k + p

∑
j>k

σ2j

1/2

,

except with probability at most 3p−p.

Proofs — Overview:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let G denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AG).

We seek to bound the error ek = ek(A,G) = ||A−QQ∗A||, which is a random variable.

1. Make no assumption on G. Construct a deterministic bound of the form

||A−QQ∗A|| ≤ · · ·A · · ·G · · ·

2. Assume that G is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E
[
||A−QQ∗A||

]
≤ · · ·A · · ·

3. Assume that G is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in G to get

||A−QQ∗A|| ≤ · · ·A · · ·

that hold with probability at least · · · .

Part 1 (out of 3) — deterministic bound:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let G denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AG).

Partition the SVD of A as follows:
k n− k

A = U
[
D1

D2

][
V∗1
V∗2

]
k

n− k
Define G1 and G2 via

G1 = V∗1G and G2 = V∗2G.

Theorem: [HMT2009,HMT2011] Assuming that G1 is not singular, it holds that

|||A−QQ∗A|||2 ≤ |||D2|||
2︸ ︷︷ ︸

theoretically minimal error
+ |||D2G2G

†
1|||

2.

Here, ||| · ||| represents either `2-operator norm, or the Frobenius norm.
Note: A similar (but weaker) result appears in Boutsidis, Mahoney, Drineas (2009).

Recall: A = U
[
D1 0
0 D2

][
V∗1
V∗2

]
,
[
G1
G2

]
=

[
V∗1G
V∗2G

]
, Y = AG, P projn onto Ran(Y).

Thm: Suppose D1G1 has full rank. Then ||A− PA||2 ≤ ||D2||
2 + ||D2G2G

†
1||

2.

Proof: The problem is rotationally invariant⇒We can assume U = I and so A = DV∗.
Simple calculation: ||(I− P)A||2 = ||A∗(I− P)2A|| = ||D(I− P)D||.

Ran(Y) = Ran
([

D1G1
D2G2

])
= Ran

([
I

D2G2G
†
1D1

]
D1G1

)
= Ran

([
I

D2G2G
†
1D1

])

Set F = D2G2G
†
1D
−1
1 . Then P =

[
I
F

]
(I + F∗F)−1[I F∗]. (Compare to Pideal =

[
I 0
0 0

]
.)

Use properties of psd matrices: I− P 4 · · · 4

[
F∗F −(I + F∗F)−1F∗

−F(I + F∗F)−1 I

]

Conjugate by D to get D(I− P)D 4

[
D1F∗FD1 −D1(I + F∗F)−1F∗D2

−D2F(I + F∗F)−1D1 D2
2

]
Diagonal dominance: ||D(I− P)D|| ≤ ||D1F∗FD1|| + ||D2

2|| = ||D2G2G
†
1||

2 + ||D2||2.

Part 2 (out of 3) — bound on expectation of error when G is Gaussian:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let G denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AG).

Recall: |||A−QQ∗A|||2 ≤ |||D2|||2 + |||D2G2G
†
1|||

2, where G1 = V∗1G and G2 = V∗2G.

Assumption: G is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices G1 and G2 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . .).)

What is the distribution of G†1 when G1 is a k × (k + p) Gaussian matrix?

If p = 0, then ||G†1|| is typically large, and is very unstable.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 0

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=0

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 2

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=2

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 5

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=5

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 10

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=10

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of k × (k + p) Gaussian matrices.

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p = 0
p = 2
p = 5
p = 10

k = 20 k = 40 k = 60

1/σmin is plotted against σmax.

Simplistic proof that a rectangular Gaussian matrix is well-conditioned:
Let G denote a k × ` Gaussian matrix where k < `.
Let “g” denote a generic N (0,1) variable and “r2j ” denote a generic χ2j variable. Then

G ∼



g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... · · ·


∼



r` 0 0 0 0 0 · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... · · ·



∼



r` 0 0 0 0 0 · · ·
rk−1 g g g g g · · ·
0 g g g g g · · ·
0 g g g g g · · ·
... · · ·


∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 g g g g · · ·
0 g g g g · · ·
... · · ·



∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 g g g · · ·
0 0 g g g · · ·
... · · ·


∼ · · · ∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 r`−2 0 0 · · ·
0 0 rk−3 r`−3 0 · · ·
... · · ·


Gershgorin’s circle theorem will now show that G is well-conditioned if, e.g., ` = 2k.
More sophisticated methods are required to get to ` = k + 2.

Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.
Proposition 1: Let G be a Gaussian matrix. Then(

E
[
||SGT||2F

])1/2 ≤||S||F ||T||F(1)
E
[
||SGT||

]
≤||S|| ||T||F + ||S||F ||T||(2)

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
||G†||2F

])1/2 ≤√ k
p− 1(3)

E
[
||G†||

]
≤e
√
k + p
p .(4)

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L||X − Y||F and G is Gaussian. Then

(5) P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
||G†||F ≥

√
3k

p + 1t
]
≤t−p(6)

P
[
||G†|| ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)(7)

Recall: ||A−QQ∗A||2 ≤ ||D2||2 + ||D2G2G
†
1||

2, where G1 and G2 are Gaussian and G1
is k × k + p.

Theorem: E
[
||A−QQ∗A||

]
≤
(
1 +

√
k

p−1

)
σk+1 +

e
√
k+p
p

(∑min(m,n)
j=k+1 σ2j

)1/2
.

Proof: First observe that

E||A−QQ∗A|| = E
(
||D2||

2 + ||D2G2G
†
1||

2)1/2 ≤ ||D2|| + E||D2G2G
†
1||.

Condition on G1 and use Proposition 1:

E||D2G2G
†
1|| ≤ E

[
||D2|| ||G

†
1||F + ||D2||F ||G

†
1||
]

≤ {Hölder} ≤ ||D2||
(
E||G†1||

2
F
)1/2

+ ||D2||FE||G†1||.

Proposition 2 now provides bounds for E||G†1||
2
F and E||G†1|| and we get

E||D2G2G
†
1|| ≤

√
k

p− 1||D2||+
e
√

k + p
p ||D2||F =

√
k

p− 1σk+1 +
e
√

k + p
p

∑
j>k

σ2j

1/2

.

Some results on Gaussian matrices. Adapted from HMT2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.
Proposition 1: Let G be a Gaussian matrix. Then(

E
[
||SGT||2F

])1/2 ≤||S||F ||T||F(8)
E
[
||SGT||

]
≤||S|| ||T||F + ||S||F ||T||(9)

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
||G†||2F

])1/2 ≤√ k
p− 1(10)

E
[
||G†||

]
≤e
√
k + p
p .(11)

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L||X − Y||F and G is Gaussian. Then

(12) P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
||G†||F ≥

√
3k

p + 1t
]
≤t−p(13)

P
[
||G†|| ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)(14)

Recall: ||A−QQ∗A||2 ≤ ||D2||2 + ||D2G2G†1||2, where G1 and G2 are Gaussian and G1 is k × k + p.

Theorem: With probability at least 1− 2 t−p − e−u2/2 it holds that

||A−QQ∗A|| ≤

1 + t

√
3k

p + 1 + u t e
√

k + p
p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

.

Proof: Set Et =

{
||G1|| ≤

e
√

k+p
p+1 t and ||G†1||F ≤

√
3k
p+1 t

}
. By Proposition 4: P(Ec

t) ≤ 2 t−p.

Set h(X) = ||D2XG†1||. A direct calculation shows

|h(X)− h(Y)| ≤ ||D2|| ||G†1|| ||X − y||F.

Hold Ω1 fixed and take the expectation on Ω2. Then Proposition 1 applies and so

E
[
h
(
G2
) ∣∣ G1

]
≤ ||D2|| ||G†1||F + ||D2||F ||G†1||.

Now use Proposition 3 (concentration of measure)

P
[
||D2G2G†1||︸ ︷︷ ︸

=h(G2)

> ||D2|| ||G†1||F + ||D2||F ||G†1||︸ ︷︷ ︸
=E[h(G2)]

+ ||D2|| ||G†1||︸ ︷︷ ︸
=L

u
∣∣ Et

]
< e−u2/2.

When Et holds true, we have bounds on the “badness” of Ω†1:

P
[
||D2G2G†1|| > ||D2||

√
3k

p + 1t + ||D2||F
e
√
k + p

p + 1 t + ||D2||
e
√

k + p
p + 1 ut

∣∣ Et

]
< e−u2/2.

The theorem is obtained by using P(Ec
t) ≤ 2 t−p to remove the conditioning of Et.

Bibliography:
•Original paper: P.G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm
for the decomposition of matrices”. Applied and Computational Harmonic Analysis,
30(1), pp. 47–68, 2011. (This is the published version of our 2006 tech report
YALEU/DCS/TR-1361 . . .)
• Acceleration from O(mnk) to O(mn log(k)): F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert
“A fast randomized algorithm for the approximation of matrices” Applied and
Computational Harmonic Analysis, 25, pp. 335–366, 2008.
•Out-of-core version: N. Halko, P.G. Martinsson, Y. Shkolnisky, M. Tygert, “An
Algorithm for the Principal Component Analysis of large Data Sets”. SIAM J. on
Scientific Computation, 33(5), pp. 2580–2594, 2011.
• Brief survey: E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert,
“Randomized algorithms for the low-rank approximation of matrices”. Proc. of the
National Academy of Sciences, 104(51), 2007.
• Long survey: N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions.” SIAM
Review, 53(2), pp. 217–288, 2011.
• A third survey: M. Mahoney, “Randomized algorithms for matrices and data”
Foundations and Trends in Machine Learning, 3(2), 2011.

Final remarks:

• For large scale SVD/PCA of dense matrices, these algorithms are highly
recommended; they compare favorably to existing methods in almost every regard.
Free software can be downloaded→ google Mark Tygert.

• The approximation error is a random variable, but its distribution is very narrowly
concentrated. Any preset accuracy can be met to within probability 1− η where η is a
user set “failure probability” (e.g. η = 10−10 or 10−20).

• This lecture mentioned error estimators only briefly, but they are important.
Can operate independently of the algorithm for improved robustness.
Typically cheap and easy to implement. Used to determine the actual rank.

• The theory can be hard, but experimentation is easy!
Concentration of measure makes the algorithms behave as if deterministic.

• To find out more:
• A tutorial long version of this talk is available on the NIPS 2009 website.
• Review: Finding structure with randomness: Stochastic algorithms for constructing approximate
matrix decompositions N. Halko, P.G. Martinsson, J. Tropp — SIAM Review, 53(2), 2011.

