
CHAPTER 2

Fast matrix algebra for dense matrices with rank-deficient
off-diagonal blocks

Chapter summary: The chapter describes techniques for rapidly performing algebraic operations
on dense matrices whose off diagonal blocks are of low (numerical) rank. The primary focus is
on matrix inversion, but algorithms for matrix-vector and matrix-matrix multiplication are also
described.

2.1. Introduction

All direct solvers described in this text make frequent use of matrix operations such as matrix-
matrix multiplications, matrix inversions, LU factorizations, etc. The matrices that are manipu-
lated are almost all dense, but fortunately, they will be either of small size, or will have internal
structure that allows the required operations to be performed rapidly even though the matrices
are dense. To be precise, the “internal structure” that is exploited is that off-diagonal blocks of
the matrices can be well approximated by matrices of low rank. The chapter will illustrate the
key ideas by introducing a very simple set of “compressible” matrices, and then showing how to
rapidly perform algebraic operations on such compressible matrices.

We note that there is in the literature a large amount of literature on “structured matrix compu-
tations.” The type of structure we discuss in this text is closely related to the well-established H
and H2 matrices of Hackbusch and co-workers [1, 2, 3, 4]. The format we discuss is much simpler
than the H-matrix framework. This means that it applies to fewer matrices, but it happens to be
sufficiently general for our purposes. One reason for restricting attention to a simpler format is
that it makes the text more accessible, but a much more important reason is that it leads (at least
in this case) to faster algorithms.

The chapter starts by describing a very simple format in Sections 2.2 and 2.3 to illustrate the key
ideas. Then in Sections 2.4 – 2.7, a more sophisticated format that leads to faster algorithms is
introduced.

Note: The more complex format introduced in Sections 2.4 – 2.7 is only needed for the direct
solvers for boundary integral equations described in Chapter 7. Sections 2.4 – 2.7 can safely be
postponed (or skipped) by a reader interested only in direct solvers for sparse matrices.

2.2. Simply compressible matrices (S-matrices)

Roughly speaking, we say that a matrix is “simply compressible”, or an “S-matrix,” if it can
be tessellated into submatrices in a pattern such as the one illustrated in Figure 2.1, and each
off-diagonal block in the tessellation can be approximated by a low-rank matrix.

1

(2,3)

(3,2)

(4,5)

(5,4)

(6,7)

(7,6)

(8,9)

(9,8)

(10,11)

(11,10)

(12,13)

(13,12)

(14,15)

(15,14)

(8,8)

(9,9)

(10,10)

(11,11)

(12,12)

(13,13)

(14,14)

(15,15)

Figure 2.1. Matrix tessellation. The diagonal blocks are dense submatrices, while
the off-diagonal blocks have rank at most p.

In order to give a precise definition of the term S-matrix, we let p denote the maximal rank allowed
for the off-diagonal blocks, and we then define the “compressibility” property recursively by saying
that a square matrix A is an S-matrix if, upon partitioning it into four pieces of equal size,

A =

[
A11 A12

A21 A22

]
,

it is the case that A12 and A21 have rank at most p, and A11 and A22 are “compressible”.

An S-matrix of size N ×N and (and compression rank p) can be stored using O(pN logN) real
numbers, and a matrix-vector product involving a compressible matrix can be evaluated using
O(pN logN) arithmetic operations, as shown in Algorithm I.

Remark 2.1. In practical applications, the off-diagonal blocks will almost never be exactly rank-
deficient. Instead, it will be the case that they can to high accuracy be approximated by a matrix
of low rank. To be precise, we say that a matrix B has ε-rank at most p is there exists a matrix
C of rank exactly p such that ||B − C|| ≤ ε. Technically, this means that the ε-rank of B is the
number of singular values of B larger than ε. As it happens, the off-diagonal blocks of the matrices
under consideration in this text have singular values that decay exponentially fast, so the cut-off
parameter ε can often be set to a very small number, say ε = 10−10. This means that in practice,
there is very little difference between a matrix of exact rank k, and of ε-rank k.

Remark 2.2. For notational simplicity, we assume in this chapter that the ranks of all off-diagonal
blocks are the same. It is a simple matter to use adaptively tuned ranks when implementing the
algorithms.

2

Algorithm I: Matrix-vector multiplication for an S-matrix.

Given a vector q and an S-matrix A, form u = Aq.

(1) function u = matvec(A,q)
(2) if (A is “small”) then
(3) Evaluate by brute force: u = Aq
(4) else

(5) Split A =

[
A11 A12

A21 A22

]
.

(6) u1 = matvec(A11, q1) + A12q2

(7) u2 = matvec(A22, q2) + A21q1

(8) u =

[
u1

u2

]
(9) end if
(10) end function

2.3. Inversion of compressible matrices

A recursive fast inversion scheme for compressible matrices can easily be derived from the following
formula for the inverse of a 2× 2 block matrix:

(2.1)

[
A11 A12

A21 A22

]−1

=

[
X11 −X11A12A

−1
22

−A−1
22 A21X11 A−1

22 + A−1
22 A21X11A12A

−1
22

]
,

where

X11 =
(
A11 − A12A

−1
22 A21

)−1
.

From the formula (2.1), we immediately get the recursive inversion scheme for compressible ma-
trices shown in Algorithm II. The efficiency of the algorithm is a consequence of the fact that the
matrices A12 and A21 have low rank. As a result, the matrix-matrix multiplications that occur on
lines (7) and (8) in fact consist simply of a small number of multiplications between compressible
matrices and vectors. Moreover, the matrix additions in lines (7) and (8) are in fact low-rank
updates to compressible matrices.

The simple algorithm described in Algorithm II has a potentially fatal flaw in that the ranks of
the off-diagonal blocks could go from p to 2p in steps (7) and (8) since both of these involve
adding a matrix of rank p to the off-diagonal blocks of a compressible matrix. Since the function
invert matrix is called recursively, this successive doubling of the rank quickly becomes untenable.
What often saves us is that the matrices can often be re-compressed: every time we have performed
an operation that could potentially increase the rank of the off-diagonal blocks, we recompress these
blocks before proceeding.

When the recompression procedure succeeds in keeping the ranks of the off-diagonal blocks from
exceeding some fixed number p as the computation proceeds, the computational complexity of
the scheme described above is O(p2N log2N). This is the performance typically observed in the
context of direct solvers for elliptic PDEs.

In order to attain O(N) complexity, we will first “roll out” the recursive definition of a “com-
pressible” matrix in Section 2.4, and then introduce a more sophisticated way of representing the
off-diagonal blocks in the tessellation in Section 2.5. (Recall that the discussion in the remainder
of this chapter can be safely skipped for a while, since these techniques will not be used until we
reach the Chapter 7 on direct solvers for integral equations.)

3

Algorithm II: Inversion of an S-matrix

Given an S-matrix A, compute its inverse C in S-matrix format.

(1) function C = invert matrix(A)
(2) if (A is “small”) then
(3) Invert by brute force: C = A−1

(4) else

(5) Split A =

[
A11 A12

A21 A22

]
.

(6) X22 = invert matrix(A22)
(7) X11 = invert matrix(A11 − A12 X22 A21)

(8) C =

[
X11 −X11 A12 X22

−X22 A21 X11 X22 + X22 A21 X11 A12 X22

]
.

(9) end if
(10) end function

Note: After any matrix addition, recompression back to rank p should be performed.

Remark 2.3. Other matrix operations can be derived in a similar fashion. For instance, suppose
that we seek to compute an LU-factorization of a compressible matrix,[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
.

The computation can be done via the following steps:

• [L11,U11] = lu structured(A11)
• L21 = A21U

−1
11 (execute via triangular solve on one of the factors of A21)

• U12 = L−1
11 A12 (execute via triangular solve on one of the factors of A12)

• [L22,U22] = lu structured(A22 − L21U12)

Note that since A12 and A21 are of rank p, the matrices L21 and U12 will automatically be of
rank p as well. In the last step, recompression down to rank p is essential after forming the sum
A22 − L21U12. Next consider the multiplication of two compressible matrices[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
.

We see that all terms in the product involves at least one factor that is a low-rank matrix, except
for the two terms A11B11 and A22B22. Again the pattern repeats itself that the task of performing
one operation on a matrix of size N ×N gets reduced to the task of performing two operations on
matrices of size N/2×N/2.

2.4. Hierarchical partitions of the index vector

In Section 2.2, we the definition of an S-matrix was recursive. To do away with this (for efficiency),
we need to introduce a partition of the index vector I = [1, 2, . . . , N] into a binary tree structure.
For simplicity, we limit attention to binary tree structures in which every level is fully populated.
We let I form the root of the tree, and give it the index 1, I1 = I. We next split the root into two
roughly equi-sized vectors I2 and I3 so that I1 = I2∪I3. The full tree is then formed by continuing
to subdivide any interval that holds more than some preset fixed number n of indices. We use the
integers ℓ = 0, 1, . . . , L to label the different levels, with 0 denoting the coarsest level. A leaf is
a node corresponding to a vector that never got split. For a non-leaf node τ , its children are the
two boxes σ1 and σ2 such that Iτ = Iσ1 ∪ Iσ2 , and τ is then the parent of σ1 and σ2. Two boxes
with the same parent are called siblings. These definitions are illustrated in Figure 2.2

4

Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 2.2. Numbering of nodes in a fully populated binary tree with L = 3 levels.
The root is the original index vector I = I1 = [1, 2, . . . , 400].

We now say that an N × N matrix A is an S-matrix of rank p if for every sibling pair {σ, τ} of
nodes in the tree the corresponding off-diagonal block of A admits a low-rank factorization

(2.2)
A(Iτ , Iσ) = Xτ Ãτ,σ Y∗

σ,
Nτ ×Nσ Nτ × p p× p p×Nσ

where Nτ and Nσ denote the number of elements in Iτ and Iσ, respectively.

2.5. Nested basis matrices

The S-matrix format has the virtue of simplicity, but it is not very efficient. It requires O(Np logN)
real numbers for storage, the matrix-vector product has complexity O(Np logN), and higher level
operations such as matrix inversion or the matrix-matrix product involve higher powers of the
logN factor. We will next develop a more efficient format that eliminates these logN factors. Our
first step in this direction is to develop a more efficient way of storing the basis matrices (we must
clearly get storage from O(N logN) down to O(N) if there is to be any hope for O(N) arithmetic!).

The general idea is to express the basis matrices for the off-diagonal blocks hierarchically. In other
words, we will express the basis vectors used at one level in terms of the basis vectors used at the
next finer level. Using the matrix illustrated in Figure 2.1 as an example, a basis for the column
space of the block labelled (4, 5) is constructed from the bases for the column spaces of the blocks
(8, 9) and (9, 8). To formalize this notion, let τ be a node in the tree with sibling σ, and children
β1 and β2. Then we require that the basis matrix Xτ that spans the column space of A(Iτ , Iσ)
can be expressed in terms of the corresponding basis matrices Xβ1 and Xβ2 associated with its
children,

(2.3)
Xτ =

[
Xβ1 0
0 Xβ2

]
Uτ

Nτ × k Nτ × 2k 2k × k

Observe that when (2.3) holds, the matrix Xτ (which is potentially very tall) need not be stored —
it can when needed be constructed from Xβ1 and Xβ2 using the information in the small matrix Uτ .
The process can then be continued down the tree to eliminate the need for storing the matrices
Xβ1 and Xβ2 . Let ν1 and ν2 denote the children of β1 and let ν3 and ν4 be the children of β2. Then
we impose conditions, cf. (2.3),

(2.4) Xβ1 =

[
Xν1 0
0 Xν2

]
Uβ1 and Xβ2 =

[
Xν3 0
0 Xν4

]
Uβ2

5

Combining (2.3) and (2.4) we then find

Xτ =


Xν1 0 0 0
0 Xν2 0 0
0 0 Xν3 0
0 0 0 Xν4

 [
Uβ1 0
0 Uβ2

]
Uτ .

Nτ × k Nτ × 4k 4k × 2k 2k × k

This process can be continued all the way down to the leaves. The end result is that we only need
to store the full basis matrices for the leaf nodes (which is fine since these are small), and the small
matrices Uτ for all parent nodes.

Of course, we also assume that the basis matrices {Yτ}τ∈T for the row spaces satisfy an analogous
hierarchical property. In other words, for any parent node τ with children β1 and β2, we require
that there exist a 2k × k matrix Vτ such that

(2.5)
Yτ =

[
Yβ1 0
0 Yβ2

]
Vτ

Nτ × k Nτ × 2k 2k × k

Remark 2.4. It is in practice a simple matter to construct basis matrices that satisfy (2.3) and
(2.5). What we need to do is to make sure that for every leaf τ , the columns of the basis matrix
Xτ span the column space of A(Iτ , Icτ) where Icτ is the complement of Iτ within the vector I.
Analogously, the columns of Yτ must span the row space of A(Icτ , Iτ). Note that these are quite
strict requirements since A(Iτ , Icτ) is a much larger matrix than the matrix A(Iτ , Iσ) in (2.2)
(since Iσ is a (potentially very small) subset of Icτ). Note also that while conceptually simple, the
factorizations of matrices like A(Iτ , Icτ) would be very expensive is performed by brute force. In the
direct solvers described in this text, there are usually short-cuts that make these computations very
inexpensive, see, e.g., Sections 7.8.3 and 8.5

2.6. The hierarchically block separable (HBS) sparse matrix format

We are now prepared to rigorously define what it means for an N×N matrix A to be hierarchically
block seperable (HBS) with respect to a given binary tree T that partitions the index vector
I = [1, 2, . . . , N]. For simplicity, we suppose that the tree has L fully populated levels, and that
for every leaf node τ , the index vector Iτ holds precisely n points, so that N = n 2L. Then A is
HBS with block rank k if the following two conditions hold:

(1) Assumption on ranks of off-diagonal blocks at the finest level: For any two distinct leaf nodes
τ and τ ′, define the n× n matrix

(2.6) Aτ,τ ′ = A(Iτ , Iτ ′).

Then there must exist matrices Uτ , Vτ ′ , and Ãτ,τ ′ such that

(2.7)
Aτ,τ ′ = Uτ Ãτ,τ ′ V∗

τ ′ .
n× n n× k k × k k × n

(2) Assumption on ranks of off-diagonal blocks on level ℓ = L−1, L−2, . . . , 1: The rank assump-
tion at level ℓ is defined in terms of the blocks constructed on the next finer level ℓ + 1: For any
distinct nodes τ and τ ′ on level ℓ with children σ1, σ2 and σ′

1, σ
′
2, respectively, define

(2.8) Aτ,τ ′ =

[
Ãσ1,σ′

1
Ãσ1,σ′

2

Ãσ2,σ′
1

Ãσ2,σ′
2

]
.

6

Name: Size: Function:
For each leaf Dτ n× n The diagonal block A(Iτ , Iτ).
node τ : Uτ n× k Basis for the columns in the blocks in row τ .

Vτ n× k Basis for the rows in the blocks in column τ .
For each parent Bτ 2k × 2k Interactions between the children of τ .
node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .

Figure 2.3. An HBS matrix A associated with a tree T is fully specified if the
factors listed above are provided.

Then there must exist matrices Uτ , Vτ ′ , and Ãτ,τ ′ such that

(2.9)
Aτ,τ ′ = Uτ Ãτ,τ ′ V∗

τ ′ .
2k × 2k 2k × k k × k k × 2k

The two points above complete the definition. An HBS matrix is now fully described if the basis
matrices Uτ and Vτ are provided for each node τ , and in addition, we are for each leaf τ given the
n× n matrix

(2.10) Dτ = A(Iτ , Iτ),

and for each parent node τ with children σ1 and σ2 we are given the 2k × 2k matrix

(2.11) Bτ =

[
0 Ãσ1,σ2

Ãσ2,σ1 0

]
.

Observe in particular that the matrices Ãσ1,σ2 are only required when {σ1, σ2} forms a sibling
pair. Figure 2.3 summarizes the required matrices, and Algorithm III shows how to evaluate the
product x 7→ Ax using these factors.

Remark 2.5. The definition of the HBS property given in this section is flexible in the sense that we
do not enforce any conditions on the factors Uτ , Vτ , and Ãτ,τ ′ other than that (2.7) and (2.9) must
hold. For purposes of numerical stability, further conditions are sometimes imposed. The perhaps
strongest such condition is to require the matrices Uτ and Vτ ′ in (2.7) and (2.9) be orthonormal,

see e.g. [5] (one can in this case require that the matrices Ãτ,τ ′ be diagonal, so that (2.7) and
(2.9) become singular value decompositions) . A choice that we have found highly convenient is
to require (2.7) and (2.9) to be so called interpolatory decompositions (see Section 7.2.2). Then
every Uτ and Vτ ′ contains a k × k identity matrix (which greatly accelerates computations), and

each Ãτ,τ ′ is a submatrix of the original matrix A.

2.7. Inversion of an HBS matrix

An important advantage of the HBS matrix format is that it allows a very easy and fast inversion
algorithm. It is given here as Algorithm IV; it takes as input the matrices {Dτ ,Bτ ,Uτ ,Vτ}τ∈T in an
HBS representation of a matrix A and provides as output corresponding factors {Gτ ,Eτ ,Fτ}τ∈T in
a representation of A−1. Once these factors are available, the product x 7→ A−1x can be constructed
via Algorithm V.

The derivation of the factorization algorithm is given in Chapter 7, here we merely list the inversion
algorithm to highlight the fact that the HBS format is not only faster than the S-matrix format,

7

Algorithm III (HBS matrix-vector multiply)

Given a vector q and a matrix A in HBS format, compute u = Aq.

loop over all leaf boxes τ
q̂τ = V∗

τ q(Iτ).
end loop

loop over levels, finer to coarser, ℓ = L− 1, L− 2, . . . , 1
loop over all parent boxes τ on level ℓ,

Let σ1 and σ2 denote the children of τ .

q̂τ = V∗
τ

[
q̂σ1

q̂σ2

]
.

end loop
end loop

û1 = 0
loop over all levels, coarser to finer, ℓ = 1, 2, . . . , L− 1

loop over all parent boxes τ on level ℓ
Let σ1 and σ2 denote the children of τ .[

ûσ1

ûσ2

]
= Uτ ûτ +

[
0 Bσ1,σ2

Bσ2,σ1 0

] [
q̂σ1

q̂σ2

]
.

end loop
end loop

loop over all leaf boxes τ
u(Iτ) = Uτ ûτ +Dτ q(Iτ).

end loop

Algorithm IV (inversion of an HBS matrix)

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all boxes τ on level ℓ,

if τ is a leaf node

D̃τ = Dτ

else
Let σ1 and σ2 denote the children of τ .

D̃τ =

[
D̂σ1 Bσ1,σ2

Bσ2,σ1 D̂σ2

]
end if

D̂τ =
(
V∗

τ D̃
−1

τ Uτ

)−1
.

Eτ = D̃
−1

τ Uτ D̂τ .

F∗
τ = D̂τ V

∗
τ D̃

−1

τ .

Gτ = D̂τ − D̃
−1

τ Uτ D̂τ V
∗
τ D̃

−1

τ .
end loop

end loop

G1 =

[
D̂2 B2,3

B3,2 D̂3

]−1

.

but is also in fact easier to use. Observe that since the inversion is exact, there is no need for
re-compression in Algorithm III.

In practice, the off-diagonal blocks of a matrix A that we seek to invert are not exactly of rank p,
but can to some finite precision be approximated by low-rank matrices. Suppose that these errors

8

Algorithm V (application of inverse)

Given a vector u, compute q = A−1 u using the compressed representation of A−1 resulting from Algorithm
?.

loop over all leaf boxes τ
ûτ = F∗

τ u(Iτ).
end loop

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all parent boxes τ on level ℓ,

Let σ1 and σ2 denote the children of τ .

ûτ = F∗
τ

[
ûσ1

ûσ2

]
.

end loop
end loop[

q̂2

q̂3

]
= Ĝ1

[
û2

û3

]
.

loop over all levels, coarser to finer, ℓ = 1, 2, . . . , L− 1
loop over all parent boxes τ on level ℓ

Let σ1 and σ2 denote the children of τ .[
q̂σ1

q̂σ2

]
= Eτ ûτ + Gτ

[
ûσ1

ûσ2

]
.

end loop
end loop

loop over all leaf boxes τ
q(Iτ) = Eτ q̂τ + Gτ u(Iτ).

end loop

are apportioned among the blocks in such a way that the HBS approximant Aε satisfies

||A− Aε|| ≤ ε.

Then Algorithm IV computes an exact inverse A−1
ε . We find that

A−1 − A−1
ε = A−1

(
Aε − A

)
A−1

ε .

In consequence,
||A−1 − A−1

ε ||
||A−1||

≤ ||A−1
ε || ||Aε − A|| ≤ ||A−1

ε || ε.

We see that the error is magnified by a factor of ||A−1
ε ||, which is quite natural. Note that ||A−1

ε ||
can easily be estimated via a power iteration on

(
A−1

ε

)(
A−1

ε

)∗
executed using Algorithm V (and

its modified version for application of
(
A−1

ε

)∗
).

To be slightly more careful, let us next take into account rounding errors incurred when Algorithm
IV is executed in floating point arithmetic. It would be hard to construct an à priori estimate of
these errors, but that is not necessary. In practice, we rely instead on an à posteriori estimate as
follows: Suppose that we seek to solve the equation

Ax = f.

We approximate A by an HBS matrix Aε and then invert this matrix (in floating point arithmetic)
to construct the approximate inverse B. Finally, we form the approximate solution via

xapprox = Bf.

9

Then
||xapprox − x|| = ||Bf − x|| = ||BAx− x|| ≤ ||BA− I|| ||x||.

The relative error is therefore bounded by ||BA− I||. In any situation where we can evaluate the
product x 7→ Ax to very high accuracy (significantly smaller than ε, in other words), it is then an
easy matter to estimate ||BA− I|| via a power iteration on

(
BA− I

)(
BA− I

)∗
.

10

Bibliography

[1] Mario Bebendorf, Hierarchical matrices, Lecture Notes in Computational Science and Engineering, vol. 63,
Springer-Verlag, Berlin, 2008, A means to efficiently solve elliptic boundary value problems. MR 2451321
(2009k:15001)

[2] Steffen Börm, Efficient numerical methods for non-local operators, EMS Tracts in Mathematics, vol. 14, European
Mathematical Society (EMS), Zürich, 2010, H2-matrix compression, algorithms and analysis. MR 2767920

[3] Lars Grasedyck and Wolfgang Hackbusch, Construction and arithmetics of H-matrices, Computing 70 (2003),
no. 4, 295–334.

[4] Wolfgang Hackbusch, A sparse matrix arithmetic based on H-matrices; Part I: Introduction to H-matrices, Com-
puting 62 (1999), 89–108.

[5] Zhifeng Sheng, Patrick Dewilde, and Shivkumar Chandrasekaran, Algorithms to solve hierarchically semi-
separable systems, System theory, the Schur algorithm and multidimensional analysis, Oper. Theory Adv. Appl.,
vol. 176, Birkhäuser, Basel, 2007, pp. 255–294. MR MR2342902

11

