Fast Matrix Algorithms for Data Analytics: Problem Set 1

1. Assume that for $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{Q} \in \mathbb{R}^{m \times k}$ where \mathbf{Q} has orthonormal columns, range $(\mathbf{Q})=\operatorname{range}(\mathbf{A})$. Prove that $\mathbf{A}=\mathbf{Q Q}^{*} \mathbf{A}$.

Hint: A linear operator $P: X \rightarrow Y$ between two vector spaces X and Y is a projection iff it satisfies $P^{2}=P$. Projections satisfy the property that for all $x \in \operatorname{range}(P), P x=x$. (this follows from the definition; if you don't see why, prove it!) If you don't see how to proceed with the proof, try an approach that takes advantage of this information.
2. (a) Let \mathbf{A} be an $m \times n$ matrix, set $p=\min (m, n)$, and suppose that the singular value decomposition of \mathbf{A} takes the form

$$
\begin{gather*}
\mathbf{A} \tag{1}\\
m \times n
\end{gather*}=\begin{array}{ccc}
\mathbf{U} & \mathbf{D} & \mathbf{V}^{*} \\
m \times p & p \times p & p \times n .
\end{array}
$$

Recall the definition of the spectral norm of \mathbf{A} :

$$
\|\mathbf{A}\|=\sup _{\mathbf{x} \neq 0} \frac{\|\mathbf{A} \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\sup _{\|\mathbf{x}\|_{2}=1}\|\mathbf{A} \mathbf{x}\|_{2}
$$

Let k be an integer such that $1 \leq k<p$ and let \mathbf{A}_{k} denote the truncation of the SVD to the first k terms:

$$
\mathbf{A}_{k}=\mathbf{U}(:, 1: k) \mathbf{D}(1: k, 1: k) \mathbf{V}(:, 1: k)^{*}
$$

Prove directly from the definition of the spectral norm that

$$
\begin{equation*}
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|=\sigma_{k+1} . \tag{2}
\end{equation*}
$$

(b) In phase A of the RSVD algorithm, we seek a matrix $\mathbf{Q} \in \mathbb{R}^{m \times k}$ with orthonormal columns such that $\mathbf{A} \approx \mathbf{Q Q}^{*} \mathbf{A}$. Since $\operatorname{rank}\left(\mathbf{Q Q}^{*} \mathbf{A}\right) \leq k$, the Eckart-Young Theorem assures us that

$$
\inf _{\mathbf{Q} \in \mathbb{R}^{m \times k}}\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \geq \sigma_{k+1}
$$

Show that we can achieve this bound by choosing $\mathbf{Q}=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k}\end{array}\right]$, where $\left\{\mathbf{u}_{i}\right\}_{i=1}^{k}$ are the k leading left singular vectors of \mathbf{A}. That is, show that for such a \mathbf{Q}, we have

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\|=\sigma_{k+1}
$$

3. Suppose \mathbf{A} is a real symmetric $n \times n$ matrix with eigenpairs $\left\{\lambda_{j}, \mathbf{v}_{j}\right\}_{j=1}^{n}$, ordered so that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$. Define a sequence of vectors $\mathbf{x}_{p}=\mathbf{A}^{p} \mathbf{v}_{0}$, where \mathbf{v}_{0} is an $n \times 1$ random vector whose entries are drawn independently from a standard Gaussian distribution.
(a) Set $\beta=\left|\lambda_{2}\right| /\left|\lambda_{1}\right|$ and $\mathbf{y}_{p}=\left(1 /\left\|\mathbf{x}_{p}\right\|\right) \mathbf{x}_{p}$. Assume $\lambda_{1}=1$ and $\beta<1$. Prove that as $p \rightarrow \infty$, the vectors $\left\{\mathbf{y}_{p}\right\}$ converge either to \mathbf{v}_{1} or $-\mathbf{v}_{1}$.
(b) What is the speed of convergence of $\left\{\mathbf{y}_{p}\right\}$?
(c) Assume again that $\beta<1$, but now drop the assumption that $\lambda_{1}=1$. Prove that your answers in (a) and (b) are still correct, with the exception that if $\lambda_{1}<0$, then it is the vector $(-1)^{p} \mathbf{y}_{p}$ that converges instead.
4. Consider the "single pass algorithm" for a non-Hermitian $m \times n$ matrix \mathbf{A}, the essentials of which are reiterated below. Suppose our matrix \mathbf{T} is such that $\mathbf{Q}^{*} \mathbf{Y}=\mathbf{T}\left(\mathbf{W}^{*} \mathbf{G}\right)$ and $\mathbf{W}^{*} \mathbf{Z}=\mathbf{T}^{*}\left(\mathbf{Q}^{*} \mathbf{H}\right)$ hold exactly (this is not usually the case in practice!). Show that in this case, the output of the algorithm is exact, i.e. $\mathbf{A}=\mathbf{U D V}^{*}$.

"Single Pass" RSVD

- Generate random matrices $\mathbf{G} \in \mathbb{R}^{n \times \ell}$ and $\mathbf{H} \in \mathbb{R}^{m \times \ell}$. For this problem, choose $\ell=\min (m, n)$, though in practice we choose $\ell<\min (m, n)$.
- Compute sample matrices $\mathbf{Y}=\mathbf{A G}$ and $\mathbf{Z}=\mathbf{A}^{*} \mathbf{H}$.
- Find ON matrices \mathbf{Q} and \mathbf{W} such that $\mathbf{Y}=\mathbf{Q Q}^{*} \mathbf{Y}$ and $\mathbf{Z}=\mathbf{W} \mathbf{W}^{*} \mathbf{Z}$.
- Solve for \mathbf{T} the linear systems $\mathbf{Q}^{*} \mathbf{Y}=\mathbf{T}\left(\mathbf{W}^{*} \mathbf{G}\right)$ and $\mathbf{W}^{*} \mathbf{Z}=\mathbf{T}^{*}\left(\mathbf{Q}^{*} \mathbf{H}\right)$.
- Factor \mathbf{T} so that $\mathbf{T}=\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{V}}^{*}$.
- Form $\mathbf{U}=\mathbf{Q} \hat{\mathbf{U}}$ and $\mathbf{V}=\mathbf{W} \hat{\mathbf{V}}$.

