Fast Matrix Algorithms for Data Analytics: Problem Set 1

1. Assume that for $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{Q} \in \mathbb{R}^{m \times k}$ where \mathbf{Q} has orthonormal columns, range(\mathbf{Q}) = range(\mathbf{A}). Prove that $\mathbf{A} = \mathbf{Q}\mathbf{Q}^*\mathbf{A}$.

Hint: A linear operator $P: X \to Y$ between two vector spaces X and Y is a projection iff it satisfies $P^2 = P$. Projections satisfy the property that for all $x \in \operatorname{range}(P)$, Px = x. (this follows from the definition; if you don't see why, prove it!) If you don't see how to proceed with the proof, try an approach that takes advantage of this information.

2. (a) Let **A** be an $m \times n$ matrix, set $p = \min(m, n)$, and suppose that the singular value decomposition of **A** takes the form

$$\begin{array}{rcl}
\mathbf{A} &= & \mathbf{U} & \mathbf{D} & \mathbf{V}^* \\
m \times n & & m \times p & p \times p & p \times n.
\end{array}$$
(1)

Recall the definition of the spectral norm of A:

$$\|\mathbf{A}\| = \sup_{\mathbf{x}\neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2} = \sup_{\|\mathbf{x}\|_2=1} \|\mathbf{A}\mathbf{x}\|_2.$$

Let k be an integer such that $1 \le k < p$ and let \mathbf{A}_k denote the truncation of the SVD to the first k terms:

$$\mathbf{A}_k = \mathbf{U}(:, 1:k)\mathbf{D}(1:k, 1:k)\mathbf{V}(:, 1:k)^*.$$

Prove directly from the definition of the spectral norm that

$$\|\mathbf{A} - \mathbf{A}_k\| = \sigma_{k+1}.\tag{2}$$

(b) In phase A of the RSVD algorithm, we seek a matrix $\mathbf{Q} \in \mathbb{R}^{m \times k}$ with orthonormal columns such that $\mathbf{A} \approx \mathbf{Q}\mathbf{Q}^*\mathbf{A}$. Since rank $(\mathbf{Q}\mathbf{Q}^*\mathbf{A}) \leq k$, the Eckart-Young Theorem assures us that

$$\inf_{\mathbf{Q}\in\mathbb{R}^{m\times k}}\|\mathbf{A}-\mathbf{Q}\mathbf{Q}^*\mathbf{A}\|\geq\sigma_{k+1}.$$

Show that we can achieve this bound by choosing $\mathbf{Q} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}$, where $\{\mathbf{u}_i\}_{i=1}^k$ are the k leading left singular vectors of **A**. That is, show that for such a **Q**, we have

$$\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^*\mathbf{A}\| = \sigma_{k+1}.$$

- 3. Suppose **A** is a real symmetric $n \times n$ matrix with eigenpairs $\{\lambda_j, \mathbf{v}_j\}_{j=1}^n$, ordered so that $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. Define a sequence of vectors $\mathbf{x}_p = \mathbf{A}^p \mathbf{v}_0$, where \mathbf{v}_0 is an $n \times 1$ random vector whose entries are drawn independently from a standard Gaussian distribution.
 - (a) Set $\beta = |\lambda_2|/|\lambda_1|$ and $\mathbf{y}_p = (1/\|\mathbf{x}_p\|)\mathbf{x}_p$. Assume $\lambda_1 = 1$ and $\beta < 1$. Prove that as $p \to \infty$, the vectors $\{\mathbf{y}_p\}$ converge either to \mathbf{v}_1 or $-\mathbf{v}_1$.
 - (b) What is the speed of convergence of $\{\mathbf{y}_p\}$?
 - (c) Assume again that $\beta < 1$, but now drop the assumption that $\lambda_1 = 1$. Prove that your answers in (a) and (b) are still correct, with the exception that if $\lambda_1 < 0$, then it is the vector $(-1)^p \mathbf{y}_p$ that converges instead.
- 4. Consider the "single pass algorithm" for a non-Hermitian $m \times n$ matrix \mathbf{A} , the essentials of which are reiterated below. Suppose our matrix \mathbf{T} is such that $\mathbf{Q}^*\mathbf{Y} = \mathbf{T}(\mathbf{W}^*\mathbf{G})$ and $\mathbf{W}^*\mathbf{Z} = \mathbf{T}^*(\mathbf{Q}^*\mathbf{H})$ hold *exactly* (this is not usually the case in practice!). Show that in this case, the output of the algorithm is exact, *i.e.* $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^*$.

"Single Pass" RSVD

- Generate random matrices $\mathbf{G} \in \mathbb{R}^{n \times \ell}$ and $\mathbf{H} \in \mathbb{R}^{m \times \ell}$. For this problem, choose $\ell = \min(m, n)$, though in practice we choose $\ell < \min(m, n)$.
- Compute sample matrices $\mathbf{Y} = \mathbf{A}\mathbf{G}$ and $\mathbf{Z} = \mathbf{A}^*\mathbf{H}$.
- Find ON matrices \mathbf{Q} and \mathbf{W} such that $\mathbf{Y} = \mathbf{Q}\mathbf{Q}^*\mathbf{Y}$ and $\mathbf{Z} = \mathbf{W}\mathbf{W}^*\mathbf{Z}$.
- Solve for **T** the linear systems $\mathbf{Q}^*\mathbf{Y} = \mathbf{T}(\mathbf{W}^*\mathbf{G})$ and $\mathbf{W}^*\mathbf{Z} = \mathbf{T}^*(\mathbf{Q}^*\mathbf{H})$.
- Factor **T** so that $\mathbf{T} = \mathbf{\hat{U}}\mathbf{D}\mathbf{\hat{V}}^*$.
- Form $\mathbf{U} = \mathbf{Q}\mathbf{\hat{U}}$ and $\mathbf{V} = \mathbf{W}\mathbf{\hat{V}}$.