
Fast Matrix Algorithms for Data Analytics: Problem Set 1 Solutions

1. Assume that for A ∈ Rm×n and Q ∈ Rm×k where Q has orthonormal columns,
range(Q) = range(A). Prove that A = QQ∗A.

Hint: A linear operator P : X → Y between two vector spaces X and Y is a
projection iff it satisfies P 2 = P. Projections satisfy the property that for all
x ∈ range(P ), Px = x. (this follows from the definition; if you don’t see why,
prove it!) If you don’t see how to proceed with the proof, try an approach that
takes advantage of this information.
Solution: First, observe that since (QQ∗)2 = Q(Q∗Q)Q∗ = QIQ∗ = QQ∗,
the matrix QQ∗ is a projection. Therefore, for all x ∈ ran(QQ∗),QQ∗x = x.

So, if ran(QQ∗) = ran(Q), we’re done, because then ran(QQ∗) = ran(A), so

ai is a column of A
=⇒ ai ∈ ran(A) = ran(QQ∗)
=⇒ QQ∗ai = ai
=⇒ QQ∗A = A.

We’ll now show that ran(QQ∗) = ran(Q). Assume UDV∗ is the SVD of Q.
Then

QQ∗ = UDV∗VDU∗ = UD2U∗.

Therefore UD2U∗ is the SVD of QQ∗, and in particular Q and QQ∗ have the
same left singular vectors. The left singular vectors of a matrix form a basis
for the range of the matrix, so since the ranges of Q and QQ∗ share the same
basis, they are in fact identical, i.e. ran(QQ∗) = ran(Q).

Alternate Solution: Let T = QQ∗A, and let ti be the column vectors of
T. Then by carrying out the matrix multiplication, we get

ti =
k∑
j=1

(q∗jai)qj,

where ai and qj are the column vectors of A and Q, respectively. Since
ran(Q) = ran(A), the columns of Q form an orthonormal basis for ran(A),
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so any vector x ∈ ran(A) can be written as x = ∑k
j=1(q∗jx)qj. In particular,

ai =
k∑
j=1

(q∗jai)qj = ti, 1 ≤ i ≤ n,

so T = QQ∗A = A.

2. (a) Let A be an m × n matrix, set p = min(m,n), and suppose that the
singular value decomposition of A takes the form

A = U D V∗
m× n m× p p× p p× n. (1)

Recall the definition of the spectral norm of A:

‖A‖ = sup
x 6=0

‖Ax‖2

‖x‖2
= sup
‖x‖2=1

‖Ax‖2.

Let k be an integer such that 1 ≤ k < p and let Ak denote the truncation
of the SVD to the first k terms:

Ak = U(:, 1 : k)D(1 : k, 1 : k)V(:, 1 : k)∗.

Prove directly from the definition of the spectral norm that

‖A−Ak‖ = σk+1. (2)

Solution: First, partition the factorization UDV∗ as

k
[

D1 0
]

k
[

V∗1
]

m [ U1 U2 ] p− k 0 D2 p− k V∗2
k p− k k p− k n

.

Then observe that U1 = U(:, 1 : k), D1 = D(1 : k, 1 : k), and V∗1 = V (:
, 1 : k)∗, so that Ak = U1D1V∗1. By carrying out block multiplication on
the partitioned factorization, we see that

A = U1D1V∗1 + U2D2V∗2 = Ak + U2D2V∗2,

so
A−Ak = U2D2V∗2. (3)
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Let x ∈ Rn be any vector such that ‖x‖ = 1. We will show that ‖(A −
Ak)x‖ ≤ σk+1. We establish the notation that vi and ui are the columns
of V and U, respectively. Since the columns of V are orthonormal we
can construct an orthonormal basis of Rn: {v1,v2, . . . ,vp,vp+1, . . . ,vn}
(note that vectors vp+1 through vn are not actually columns of V but are
simply used to construct the basis), and thus

x =
n∑
i=1

civn

for some ci, i = 1, . . . , n. Now, we have that

(A−Ak)x = U2D2V∗2x.

Since the i-th entry of V∗2x is 〈vi,x〉, and since x is a linear combination
of the orthonormal basis {vi}ni=1,

V∗2x =


ck+1
ck+2
...
cp

 ,
and so

U2D2V∗2x =
p∑

i=k+1
ciσiui

which implies

‖U2D2V∗2x‖ ≤ σk+1‖
p∑

i=k+1
ciui‖.

Finally, by the orthonormality of {ui}pi=1,

‖
p∑

i=k+1
ciui‖2 =

p∑
i=k+1

c2
i ,

and by the orthonormality of {vi}ni=1,

1 = ‖x‖2 = ‖
n∑
i=1

civn‖2 =
n∑
i=1

c2
i =⇒

p∑
i=k+1

c2
i ≤ 1,

and therefore

‖(A−Ak)x‖ ≤ σk+1‖
p∑

i=k+1
ciui‖ ≤ σk+1.
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Thus, we have shown that ‖A −Ak‖ ≤ σk+1. Next, we observe that for
x = vk+1,

‖(A−Ak)x‖ = ‖σk+1uk+1‖ = σk+1‖uk+1‖ = σk+1,

so since ‖vk+1‖ = 1, ‖A−Ak‖ ≥ σk+1. Therefore,

‖A−Ak‖ = σk+1.

(b) In phase A of the RSVD algorithm, we seek a matrix Q ∈ Rm×k with
orthonormal columns such that A ≈ QQ∗A. Since rank(QQ∗A) ≤ k, the
Eckart-Young Theorem assures us that

inf
Q∈Rm×k

‖A−QQ∗A‖ ≥ σk+1.

Show that we can achieve this bound by choosing Q =
[
u1 u2 · · · uk

]
,

where {ui}ki=1 are the k leading left singular vectors of A. That is, show
that for such a Q, we have

‖A−QQ∗A‖ = σk+1.

Solution: Let p = min(m,n) and assume UDV∗ is the SVD of A. We
have that Q = Uk = U(:, 1 : k) = UP, where P is a p× k matrix defined
by

P =
[
Ik
0

]
.

Then we have that

A−QQ∗A = UDV∗ −UPP∗U∗UDV∗ = U(D−PP∗D)V∗.

Carrying out the matrix multiplication, we see that

PP∗D =
[
Dk 0
0 0

]
=: D̂k.

Thus, since the spectral norm is invariant under multiplication by matrices
with orthonormal columns or rows, we have

‖A−QQ∗A‖ = ‖U(D− D̂k)V∗‖ = ‖D− D̂k‖ = σk+1.
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3. Suppose A is a real symmetric n×n matrix with eigenpairs {λj,vj}nj=1, ordered
so that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Define a sequence of vectors xp = Apv0, where
v0 is an n × 1 random vector whose entries are drawn independently from a
standard Gaussian distribution.

(a) Set β = |λ2|/|λ1| and yp = (1/‖xp‖)xp. Assume λ1 = 1 and β < 1. Prove
that as p→∞, the vectors {yp} converge either to v1 or −v1.

Solution: Since A is symmetric, we may assume without loss of general-
ity that the eigenvectors {vi}ni=1 of A form an orthonormal basis for Rn.
Thus, we can write

x0 =
n∑
i=1

civi,

for some ci ∈ R, i = 1, 2, . . . , n, which implies

xp =
n∑
i=1

ciλ
p
ivi = c1v1 +

n∑
i=2

ciλ
p
ivi

and since x0 is chosen from an i.i.d. Gaussian distribution, each ci is
nonzero with probability 1. Next, after observing β < 1 implies that
|λi| < 1 for i > 1, we have that

lim
p→∞

ciλ
p
ivi = 0, i = 2, 3, . . . , n.

Therefore,

lim
p→∞

yp = limp→∞ xp
‖ limp→∞ xp‖

= c1v1 + limp→∞
∑n
i=2 ciλ

p
ivi

‖c1v1 + limp→∞
∑n
i=2 ciλ

p
ivi‖

= c1v1

|c1|‖v1‖
= sign(c1)v1 = ±v1.

(b) What is the speed of convergence of {yp}?
Solution: Since the convergence of {yp} is controlled by how quickly the
ciλ

p
ivi terms go to zero as p increases, the convergence will be geometric,

with the largest |λi|, i = 2, 3, . . . , n controlling the speed. Therefore, the
error is reduced by roughly |λ2| each iteration.
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(c) Assume again that β < 1, but now drop the assumption that λ1 = 1. Prove
that your answers in (a) and (b) are still correct, with the exception that
if λ1 < 0, then it is the vector (−1)pyp that converges instead.
Solution: As before, note that we can write

xp =
n∑
i=1

ciλ
p
ivi.

Then β < 1 implies that

lim
p→∞

ci

(
λi
|λ1|

)p
vi = 0, i = 2, 3, . . . , n.

Therefore, we have that

lim
p→∞

(−1)pyp =
limp→∞(−1)p xp

|λ1|p

‖ limp→∞
xp

|λ1|p‖

=
∑n
i=1 limp→∞(−1)pci

(
λi

|λ1|

)p
vi

‖∑n
i=1 limp→∞ ci

(
λi

|λ1|

)p
vi‖

=
limp→∞(−1)pc1

(
λ1
|λ1|

)p
v1

‖ limp→∞ c1
(
λ1
|λ1|

)p
v1‖

= limp→∞(−1)2pc1v1

|c1|‖v1‖
= sign(c1)v1 = ±v1.

If β > 1, then we similarly have

lim
p→∞

yp = ±v1.

Furthermore, the convergence will again be geometric with rate β since
the term that controls the rate of the convergence is |λ2|

|λ1| , so the error is
reduced by roughly |λ2|

|λ1| each iteration.

4. Consider the “single pass algorithm” for a non-Hermitian m×n matrix A, the
essentials of which are reiterated below. Suppose our matrix T is such that
Q∗Y = T(W∗G) and W∗Z = T∗(Q∗H) hold exactly (this is not usually the
case in practice!). Show that in this case, the output of the algorithm is exact,
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i.e. A = UDV∗.

“Single Pass” RSVD

• Generate random matrices G ∈ Rn×` and H ∈ Rm×`. For this problem, choose
` = min(m,n), though in practice we choose ` < min(m,n).

• Compute sample matrices Y = AG and Z = A∗H.

• Find ON matrices Q and W such that Y = QQ∗Y and Z = WW∗Z.

• Solve for T the linear systems Q∗Y = T(W∗G) and W∗Z = T∗(Q∗H).

• Factor T so that T = ÛDV̂∗.

• Form U = QÛ and V = WV̂.
Solution: For now, assume n ≤ m so that G ∈ Rn×n. From the various matrix
definitions in the algorithm, we have that

AG = Y = QQ∗Y = QTQ∗G = UDV∗G.

G is n × n and as discussed in lecture, its columns are therefore linearly in-
dependent with probability 1. So G−1 exists and therefore A = UDV∗. If
instead m ≤ n, then we simply follow an analogous path using H, W, etc.
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