Fast Matrix Algorithms for Data Analytics: Problem Set 1 Solutions

1. Assume that for $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{Q} \in \mathbb{R}^{m \times k}$ where \mathbf{Q} has orthonormal columns, $\operatorname{range}(\mathbf{Q})=\operatorname{range}(\mathbf{A})$. Prove that $\mathbf{A}=\mathbf{Q Q}^{*} \mathbf{A}$.

Hint: A linear operator $P: X \rightarrow Y$ between two vector spaces X and Y is a projection iff it satisfies $P^{2}=P$. Projections satisfy the property that for all $x \in \operatorname{range}(P), P x=x$. (this follows from the definition; if you don't see why, prove it!) If you don't see how to proceed with the proof, try an approach that takes advantage of this information.
Solution: First, observe that since $\left(\mathbf{Q Q}^{*}\right)^{2}=\mathbf{Q}\left(\mathbf{Q}^{*} \mathbf{Q}\right) \mathbf{Q}^{*}=\mathrm{QIQ}^{*}=\mathrm{QQ}^{*}$, the matrix $\mathbf{Q Q}^{*}$ is a projection. Therefore, for all $\mathbf{x} \in \operatorname{ran}\left(\mathbf{Q Q}^{*}\right), \mathbf{Q Q}^{*} \mathbf{x}=\mathbf{x}$.

So, if $\operatorname{ran}\left(\mathbf{Q Q}^{*}\right)=\operatorname{ran}(\mathbf{Q})$, we're done, because then $\operatorname{ran}\left(\mathbf{Q Q}^{*}\right)=\operatorname{ran}(\mathbf{A})$, so

$$
\begin{aligned}
& \mathbf{a}_{i} \text { is a column of } \mathbf{A} \\
& \quad \Longrightarrow \mathbf{a}_{i} \in \operatorname{ran}(\mathbf{A})=\operatorname{ran}\left(\mathbf{Q Q}^{*}\right) \\
& \Longrightarrow \mathbf{Q Q}^{*} \mathbf{a}_{i}=\mathbf{a}_{i} \\
& \Longrightarrow \mathbf{Q Q}^{*} \mathbf{A}=\mathbf{A}
\end{aligned}
$$

We'll now show that $\operatorname{ran}\left(\mathbf{Q Q}^{*}\right)=\operatorname{ran}(\mathbf{Q})$. Assume $\mathbf{U D V}^{*}$ is the SVD of \mathbf{Q}. Then

$$
\mathbf{Q Q}^{*}=\mathbf{U D V}^{*} \mathbf{V D U}^{*}=\mathbf{U D}^{2} \mathbf{U}^{*}
$$

Therefore $\mathbf{U D}^{2} \mathbf{U}^{*}$ is the SVD of $\mathbf{Q Q}^{*}$, and in particular \mathbf{Q} and $\mathbf{Q Q}^{*}$ have the same left singular vectors. The left singular vectors of a matrix form a basis for the range of the matrix, so since the ranges of \mathbf{Q} and $\mathbf{Q Q}^{*}$ share the same basis, they are in fact identical, i.e. $\operatorname{ran}\left(\mathbf{Q Q}^{*}\right)=\operatorname{ran}(\mathbf{Q})$.

Alternate Solution: Let $\mathbf{T}=\mathbf{Q Q}^{*} \mathbf{A}$, and let \mathbf{t}_{i} be the column vectors of \mathbf{T}. Then by carrying out the matrix multiplication, we get

$$
\mathbf{t}_{i}=\sum_{j=1}^{k}\left(\mathbf{q}_{j}^{*} \mathbf{a}_{i}\right) \mathbf{q}_{j}
$$

where \mathbf{a}_{i} and \mathbf{q}_{j} are the column vectors of \mathbf{A} and \mathbf{Q}, respectively. Since $\operatorname{ran}(\mathbf{Q})=\operatorname{ran}(\mathbf{A})$, the columns of \mathbf{Q} form an orthonormal basis for $\operatorname{ran}(\mathbf{A})$,
so any vector $\mathbf{x} \in \operatorname{ran}(\mathbf{A})$ can be written as $\mathbf{x}=\sum_{j=1}^{k}\left(\mathbf{q}_{j}^{*} \mathbf{x}\right) \mathbf{q}_{j}$. In particular,

$$
\mathbf{a}_{i}=\sum_{j=1}^{k}\left(\mathbf{q}_{j}^{*} \mathbf{a}_{i}\right) \mathbf{q}_{j}=\mathbf{t}_{i}, \quad 1 \leq i \leq n
$$

so $\mathbf{T}=\mathrm{QQ}^{*} \mathbf{A}=\mathbf{A}$.
2. (a) Let \mathbf{A} be an $m \times n$ matrix, set $p=\min (m, n)$, and suppose that the singular value decomposition of \mathbf{A} takes the form

$$
\underset{m \times n}{\mathbf{A}}=\begin{array}{ccc}
\mathbf{U} & \mathbf{D} & \mathbf{V}^{*} \tag{1}\\
m \times p & p \times p & p \times n
\end{array}
$$

Recall the definition of the spectral norm of \mathbf{A} :

$$
\|\mathbf{A}\|=\sup _{\mathbf{x} \neq 0} \frac{\|\mathbf{A} \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\sup _{\|\mathbf{x}\|_{2}=1}\|\mathbf{A} \mathbf{x}\|_{2}
$$

Let k be an integer such that $1 \leq k<p$ and let \mathbf{A}_{k} denote the truncation of the SVD to the first k terms:

$$
\mathbf{A}_{k}=\mathbf{U}(:, 1: k) \mathbf{D}(1: k, 1: k) \mathbf{V}(:, 1: k)^{*}
$$

Prove directly from the definition of the spectral norm that

$$
\begin{equation*}
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|=\sigma_{k+1} . \tag{2}
\end{equation*}
$$

Solution: First, partition the factorization UDV* as

$$
\left.m \begin{array}{ccc}
& & \\
\left.\begin{array}{cc}
\mathbf{U}_{1} & \mathbf{U}_{2} \\
k & p-k
\end{array}\right] & p-k
\end{array}\left[\begin{array}{cc}
\mathbf{D}_{1} & 0 \\
0 & \mathbf{D}_{2} \\
k & p-k
\end{array}\right] \underset{p-k}{ } \begin{array}{c}
k \\
p-
\end{array} \begin{array}{c}
\mathbf{V}_{1}^{*} \\
\mathbf{V}_{2}^{*} \\
n
\end{array}\right]
$$

Then observe that $\mathbf{U}_{1}=\mathbf{U}(:, 1: k), \mathbf{D}_{1}=D(1: k, 1: k)$, and $\mathbf{V}_{1}^{*}=V(:$ $, 1: k)^{*}$, so that $\mathbf{A}_{k}=\mathbf{U}_{1} \mathbf{D}_{1} \mathbf{V}_{1}^{*}$. By carrying out block multiplication on the partitioned factorization, we see that

$$
\mathbf{A}=\mathbf{U}_{1} \mathbf{D}_{1} \mathbf{V}_{1}^{*}+\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*}=\mathbf{A}_{k}+\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*}
$$

so

$$
\begin{equation*}
\mathbf{A}-\mathbf{A}_{k}=\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*} \tag{3}
\end{equation*}
$$

Let $\mathbf{x} \in \mathbb{R}^{n}$ be any vector such that $\|\mathbf{x}\|=1$. We will show that $\|(\mathbf{A}-$ $\left.\mathbf{A}_{k}\right) \mathbf{x} \| \leq \sigma_{k+1}$. We establish the notation that \mathbf{v}_{i} and \mathbf{u}_{i} are the columns of \mathbf{V} and \mathbf{U}, respectively. Since the columns of \mathbf{V} are orthonormal we can construct an orthonormal basis of $\mathbb{R}^{n}:\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}, \mathbf{v}_{p+1}, \ldots, \mathbf{v}_{n}\right\}$ (note that vectors \mathbf{v}_{p+1} through \mathbf{v}_{n} are not actually columns of \mathbf{V} but are simply used to construct the basis), and thus

$$
\mathbf{x}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{n}
$$

for some $c_{i}, i=1, \ldots, n$. Now, we have that

$$
\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{x}=\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*} \mathbf{x}
$$

Since the i-th entry of $\mathbf{V}_{2}^{*} \mathbf{x}$ is $\left\langle\mathbf{v}_{i}, \mathbf{x}\right\rangle$, and since \mathbf{x} is a linear combination of the orthonormal basis $\left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$,

$$
\mathbf{V}_{2}^{*} \mathbf{x}=\left[\begin{array}{c}
c_{k+1} \\
c_{k+2} \\
\vdots \\
c_{p}
\end{array}\right]
$$

and so

$$
\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*} \mathbf{x}=\sum_{i=k+1}^{p} c_{i} \sigma_{i} \mathbf{u}_{i}
$$

which implies

$$
\left\|\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{V}_{2}^{*} \mathbf{x}\right\| \leq \sigma_{k+1}\left\|\sum_{i=k+1}^{p} c_{i} \mathbf{u}_{i}\right\|
$$

Finally, by the orthonormality of $\left\{\mathbf{u}_{i}\right\}_{i=1}^{p}$,

$$
\left\|\sum_{i=k+1}^{p} c_{i} \mathbf{u}_{i}\right\|^{2}=\sum_{i=k+1}^{p} c_{i}^{2}
$$

and by the orthonormality of $\left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$,

$$
1=\|\mathbf{x}\|^{2}=\left\|\sum_{i=1}^{n} c_{i} \mathbf{v}_{n}\right\|^{2}=\sum_{i=1}^{n} c_{i}^{2} \Longrightarrow \sum_{i=k+1}^{p} c_{i}^{2} \leq 1
$$

and therefore

$$
\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{x}\right\| \leq \sigma_{k+1}\left\|\sum_{i=k+1}^{p} c_{i} \mathbf{u}_{i}\right\| \leq \sigma_{k+1}
$$

Thus, we have shown that $\left\|\mathbf{A}-\mathbf{A}_{k}\right\| \leq \sigma_{k+1}$. Next, we observe that for $\mathbf{x}=\mathbf{v}_{k+1}$,

$$
\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{x}\right\|=\left\|\sigma_{k+1} \mathbf{u}_{k+1}\right\|=\sigma_{k+1}\left\|\mathbf{u}_{k+1}\right\|=\sigma_{k+1}
$$

so since $\left\|\mathbf{v}_{k+1}\right\|=1,\left\|\mathbf{A}-\mathbf{A}_{k}\right\| \geq \sigma_{k+1}$. Therefore,

$$
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|=\sigma_{k+1} .
$$

(b) In phase A of the RSVD algorithm, we seek a matrix $\mathbf{Q} \in \mathbb{R}^{m \times k}$ with orthonormal columns such that $\mathbf{A} \approx \mathbf{Q Q}^{*} \mathbf{A}$. Since $\operatorname{rank}\left(\mathbf{Q Q}^{*} \mathbf{A}\right) \leq k$, the Eckart-Young Theorem assures us that

$$
\inf _{\mathbf{Q} \in \mathbb{R}^{m \times k}}\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\| \geq \sigma_{k+1}
$$

Show that we can achieve this bound by choosing $\mathbf{Q}=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k}\end{array}\right]$, where $\left\{\mathbf{u}_{i}\right\}_{i=1}^{k}$ are the k leading left singular vectors of \mathbf{A}. That is, show that for such a \mathbf{Q}, we have

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\|=\sigma_{k+1}
$$

Solution: Let $p=\min (m, n)$ and assume $\mathbf{U D V}^{*}$ is the SVD of \mathbf{A}. We have that $\mathbf{Q}=\mathbf{U}_{k}=\mathbf{U}(:, 1: k)=\mathbf{U P}$, where \mathbf{P} is a $p \times k$ matrix defined by

$$
\mathbf{P}=\left[\begin{array}{c}
\mathbf{I}_{k} \\
\mathbf{0}
\end{array}\right] .
$$

Then we have that

$$
\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}=\mathbf{U D V}^{*}-\mathbf{U P P}^{*} \mathbf{U}^{*} \mathbf{U D V}^{*}=\mathbf{U}\left(\mathbf{D}-\mathbf{P P}^{*} \mathbf{D}\right) \mathbf{V}^{*}
$$

Carrying out the matrix multiplication, we see that

$$
\mathbf{P P}^{*} \mathbf{D}=\left[\begin{array}{cc}
\mathbf{D}_{k} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]=: \hat{\mathbf{D}}_{k}
$$

Thus, since the spectral norm is invariant under multiplication by matrices with orthonormal columns or rows, we have

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\|=\left\|\mathbf{U}\left(\mathbf{D}-\hat{\mathbf{D}}_{k}\right) \mathbf{V}^{*}\right\|=\left\|\mathbf{D}-\hat{\mathbf{D}}_{k}\right\|=\sigma_{k+1} .
$$

3. Suppose \mathbf{A} is a real symmetric $n \times n$ matrix with eigenpairs $\left\{\lambda_{j}, \mathbf{v}_{j}\right\}_{j=1}^{n}$, ordered so that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$. Define a sequence of vectors $\mathbf{x}_{p}=\mathbf{A}^{p} \mathbf{v}_{0}$, where \mathbf{v}_{0} is an $n \times 1$ random vector whose entries are drawn independently from a standard Gaussian distribution.
(a) Set $\beta=\left|\lambda_{2}\right| /\left|\lambda_{1}\right|$ and $\mathbf{y}_{p}=\left(1 /\left\|\mathbf{x}_{p}\right\|\right) \mathbf{x}_{p}$. Assume $\lambda_{1}=1$ and $\beta<1$. Prove that as $p \rightarrow \infty$, the vectors $\left\{\mathbf{y}_{p}\right\}$ converge either to \mathbf{v}_{1} or $-\mathbf{v}_{1}$.
Solution: Since \mathbf{A} is symmetric, we may assume without loss of generality that the eigenvectors $\left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$ of \mathbf{A} form an orthonormal basis for \mathbb{R}^{n}. Thus, we can write

$$
\mathbf{x}_{0}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{i}
$$

for some $c_{i} \in \mathbb{R}, i=1,2, \ldots, n$, which implies

$$
\mathbf{x}_{p}=\sum_{i=1}^{n} c_{i} \lambda_{i}^{p} \mathbf{v}_{i}=c_{1} \mathbf{v}_{1}+\sum_{i=2}^{n} c_{i} \lambda_{i}^{p} \mathbf{v}_{i}
$$

and since \mathbf{x}_{0} is chosen from an i.i.d. Gaussian distribution, each c_{i} is nonzero with probability 1. Next, after observing $\beta<1$ implies that $\left|\lambda_{i}\right|<1$ for $i>1$, we have that

$$
\lim _{p \rightarrow \infty} c_{i} \lambda_{i}^{p} \mathbf{v}_{i}=\mathbf{0}, \quad i=2,3, \ldots, n
$$

Therefore,

$$
\begin{aligned}
\lim _{p \rightarrow \infty} \mathbf{y}_{p} & =\frac{\lim _{p \rightarrow \infty} \mathbf{x}_{p}}{\left\|\lim _{p \rightarrow \infty} \mathbf{x}_{p}\right\|} \\
& =\frac{c_{1} \mathbf{v}_{1}+\lim _{p \rightarrow \infty} \sum_{i=2}^{n} c_{i} \lambda_{i}^{p} \mathbf{v}_{i}}{\left\|c_{1} \mathbf{v}_{1}+\lim _{p \rightarrow \infty} \sum_{i=2}^{n} c_{i} \lambda_{i}^{p} \mathbf{v}_{i}\right\|} \\
& =\frac{c_{1} \mathbf{v}_{1}}{\left|c_{1}\right|\left\|\mathbf{v}_{1}\right\|} \\
& =\operatorname{sign}\left(c_{1}\right) \mathbf{v}_{1}= \pm \mathbf{v}_{1} .
\end{aligned}
$$

(b) What is the speed of convergence of $\left\{\mathbf{y}_{p}\right\}$?

Solution: Since the convergence of $\left\{\mathbf{y}_{p}\right\}$ is controlled by how quickly the $c_{i} \lambda_{i}^{p} \mathbf{v}_{i}$ terms go to zero as p increases, the convergence will be geometric, with the largest $\left|\lambda_{i}\right|, i=2,3, \ldots, n$ controlling the speed. Therefore, the error is reduced by roughly $\left|\lambda_{2}\right|$ each iteration.
(c) Assume again that $\beta<1$, but now drop the assumption that $\lambda_{1}=1$. Prove that your answers in (a) and (b) are still correct, with the exception that if $\lambda_{1}<0$, then it is the vector $(-1)^{p} \mathbf{y}_{p}$ that converges instead.
Solution: As before, note that we can write

$$
\mathbf{x}_{p}=\sum_{i=1}^{n} c_{i} \lambda_{i}^{p} \mathbf{v}_{i} .
$$

Then $\beta<1$ implies that

$$
\lim _{p \rightarrow \infty} c_{i}\left(\frac{\lambda_{i}}{\left|\lambda_{1}\right|}\right)^{p} \mathbf{v}_{i}=0, \quad i=2,3, \ldots, n
$$

Therefore, we have that

$$
\begin{aligned}
\lim _{p \rightarrow \infty}(-1)^{p} \mathbf{y}_{p} & =\frac{\lim _{p \rightarrow \infty}(-1)^{p} \frac{\mathbf{x}_{p}}{|\lambda|^{p}}}{\left\|\lim _{p \rightarrow \infty} \frac{\mathbf{x}_{p}}{\left|\lambda_{1}\right|^{p}}\right\|} \\
& =\frac{\sum_{i=1}^{n} \lim _{p \rightarrow \infty}(-1)^{p} c_{i}\left(\frac{\lambda_{i}}{\left|\lambda_{1}\right|}\right)^{p} \mathbf{v}_{i}}{\left\|\sum_{i=1}^{n} \lim _{p \rightarrow \infty} c_{i}\left(\frac{\lambda_{i}}{\left|\lambda_{1}\right|}\right)^{p} \mathbf{v}_{i}\right\|} \\
& =\frac{\lim _{p \rightarrow \infty}(-1)^{p} c_{1}\left(\frac{\lambda_{1}}{\left|\lambda_{1}\right|}\right)^{p} \mathbf{v}_{1}}{\left\|\lim _{p \rightarrow \infty} c_{1}\left(\frac{\lambda_{1}}{\left|\lambda_{1}\right|}\right)^{p} \mathbf{v}_{1}\right\|} \\
& =\frac{\lim _{p \rightarrow \infty}(-1)^{2 p} c_{1} \mathbf{v}_{1}}{\left|c_{1}\right|\left\|\mathbf{v}_{1}\right\|} \\
& =\operatorname{sign}\left(c_{1}\right) \mathbf{v}_{1}= \pm \mathbf{v}_{1} .
\end{aligned}
$$

If $\beta>1$, then we similarly have

$$
\lim _{p \rightarrow \infty} \mathbf{y}_{p}= \pm \mathbf{v}_{1}
$$

Furthermore, the convergence will again be geometric with rate β since the term that controls the rate of the convergence is $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, so the error is reduced by roughly $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$ each iteration.
4. Consider the "single pass algorithm" for a non-Hermitian $m \times n$ matrix \mathbf{A}, the essentials of which are reiterated below. Suppose our matrix \mathbf{T} is such that $\mathbf{Q}^{*} \mathbf{Y}=\mathbf{T}\left(\mathbf{W}^{*} \mathbf{G}\right)$ and $\mathbf{W}^{*} \mathbf{Z}=\mathbf{T}^{*}\left(\mathbf{Q}^{*} \mathbf{H}\right)$ hold exactly (this is not usually the case in practice!). Show that in this case, the output of the algorithm is exact,
i.e. $\mathbf{A}=\mathbf{U D V}^{*}$.

"Single Pass" RSVD

- Generate random matrices $\mathbf{G} \in \mathbb{R}^{n \times \ell}$ and $\mathbf{H} \in \mathbb{R}^{m \times \ell}$. For this problem, choose $\ell=\min (m, n)$, though in practice we choose $\ell<\min (m, n)$.
- Compute sample matrices $\mathbf{Y}=\mathbf{A G}$ and $\mathbf{Z}=\mathbf{A}^{*} \mathbf{H}$.
- Find ON matrices \mathbf{Q} and \mathbf{W} such that $\mathbf{Y}=\mathbf{Q Q}^{*} \mathbf{Y}$ and $\mathbf{Z}=\mathbf{W} \mathbf{W}^{*} \mathbf{Z}$.
- Solve for \mathbf{T} the linear systems $\mathbf{Q}^{*} \mathbf{Y}=\mathbf{T}\left(\mathbf{W}^{*} \mathbf{G}\right)$ and $\mathbf{W}^{*} \mathbf{Z}=\mathbf{T}^{*}\left(\mathbf{Q}^{*} \mathbf{H}\right)$.
- Factor \mathbf{T} so that $\mathbf{T}=\hat{\mathbf{U}} \mathbf{D} \hat{\mathbf{V}}^{*}$.
- Form $\mathbf{U}=\mathbf{Q} \hat{\mathbf{U}}$ and $\mathbf{V}=\mathbf{W} \hat{\mathbf{V}}$.

Solution: For now, assume $n \leq m$ so that $\mathbf{G} \in \mathbb{R}^{n \times n}$. From the various matrix definitions in the algorithm, we have that

$$
\mathbf{A G}=\mathbf{Y}=\mathbf{Q Q}^{*} \mathbf{Y}=\mathbf{Q T Q}^{*} \mathbf{G}=\mathbf{U D V}^{*} \mathbf{G}
$$

\mathbf{G} is $n \times n$ and as discussed in lecture, its columns are therefore linearly independent with probability 1 . So \mathbf{G}^{-1} exists and therefore $\mathbf{A}=\mathbf{U D V}^{*}$. If instead $m \leq n$, then we simply follow an analogous path using \mathbf{H}, \mathbf{W}, etc.

