Fast Matrix Algorithms for Data Analytics: Problem Set 2

1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, J be an $n \times 1$ permutation vector, and $J_s = J(1:k)$ for some $k \in \mathbb{N}$. Now suppose

$$\mathbf{A} = \mathbf{E} \quad \mathbf{F}, \\ m \times n \qquad m \times k \quad k \times n \tag{1}$$

and suppose that for some matrix **T** of size $k \times (n-k)$, it holds that

$$\mathbf{F}(:,J) = \mathbf{F}(:,J_s) \begin{bmatrix} \mathbf{I}_k & \mathbf{T} \end{bmatrix},$$

where \mathbf{I}_k is the $k \times k$ identity matrix. Prove that

$$\mathbf{A}(:,J) = \mathbf{A}(:,J_s) \begin{bmatrix} \mathbf{I}_k & \mathbf{T} \end{bmatrix}.$$

2. Suppose that **A** is an $m \times n$ matrix of precise rank k. Moreover, suppose that you have available a double-sided ID of **A** of the form

$$\mathbf{A} = \mathbf{X} \quad \mathbf{A}_{\mathrm{s}} \quad \mathbf{Z}, \\ m \times n \quad m \times k \quad k \times k \quad k \times n \tag{2}$$

where $\mathbf{A}_{s} = \mathbf{A}(I_{s}, J_{s})$ for some index vectors I_{s} and J_{s} . Recall from the definition of the double-sided ID that \mathbf{X} and \mathbf{Z} must contain the $k \times k$ identity matrix \mathbf{I}_{k} as a submatrix, so that $\mathbf{X}(I_{s}, :) = \mathbf{I}_{k}$ and $\mathbf{Z}(:, J_{s}) = \mathbf{I}_{k}$.

- (a) Prove that \mathbf{A}_{s} must be of full rank.
- (b) Set $\mathbf{U} = \mathbf{A}_{s}^{-1}$, so that (2) can be written

$$\mathbf{A} = \mathbf{X}\mathbf{A}_{\mathrm{s}} \quad \mathbf{U} \quad \mathbf{A}_{\mathrm{s}}\mathbf{Z}.$$
$$m \times n \qquad m \times k \quad k \times k \quad k \times n \tag{3}$$

Prove that $\mathbf{X}\mathbf{A}_{s} = \mathbf{A}(:, J_{s})$ and $\mathbf{A}_{s}\mathbf{Z} = \mathbf{A}(I_{s}, :)$ so that (3) is a CUR factorization.

3. Suppose that **A** is an $m \times n$ matrix of approximate rank k, and that we have identified two index sets I_s and J_s such that the matrices

$$\mathbf{C} = \mathbf{A}(:, J_s), \quad \mathbf{R} = \mathbf{A}(I_s, :)$$

hold k columns/rows that span the column/row space of \mathbf{A} . Then

 $\mathbf{A} \approx \mathbf{C} \mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger} \mathbf{R},$

and the optimal choice for the "U" factor in the CUR decomposition is

$$\mathbf{U} = \mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}.$$

Set $\mathbf{X} = \mathbf{C}\mathbf{C}^{\dagger}$.

- (a) Suppose that C has the SVD $C = WDV^*$. Prove that $X = WW^*$.
- (b) Suppose that C has the QR factorization CP = QS. Prove that $X = QQ^*$.
- (c) Prove that \mathbf{X} is the orthogonal projection onto $\operatorname{Col}(\mathbf{C})$.
- (d) Suppose that **A** has precisely rank k and that **C** and **R** are both of rank k. Prove that then $\mathbf{C}^{\dagger}\mathbf{AR}^{\dagger} = (\mathbf{A}(I_s, J_s))^{-1}$.

- 4. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have rank exactly k. In this problem, we will prove that \mathbf{A} admits a factorization $\mathbf{A} = \mathbf{A}(:, J_s)\mathbf{Z}$, where $\mathbf{A}(:, J_s) \in \mathbb{R}^{m \times k}$ and $\mathbf{Z} \in \mathbb{R}^{k \times n}$ such that $\mathbf{Z}(:, J_s) = \mathbf{I}_k$ and $\max_{i,j} |\mathbf{Z}(i, j)| \leq 1$.
 - (a) case 1: m = k.
 - i. Pick a permutation vector J_s such that $|\det(\mathbf{A}(:, J_s))|$ is maximized, and let J_r denote the remaining indices so that $[J_s \quad J_r]$ is some permutation of the vector $[1 \ 2 \ \cdots \ n]$. Then we have that

$$\mathbf{A}(:, \begin{bmatrix} J_s & J_r \end{bmatrix}) = \begin{bmatrix} \mathbf{A}(:, J_s) & \mathbf{A}(:, J_r) \end{bmatrix}$$

can be written as \mathbf{AP} for some permutation matrix \mathbf{P} . Find an interpolative decomposition $\mathbf{A} = \mathbf{CZ}$ of \mathbf{A} , where the columns of \mathbf{C} are some of the columns of \mathbf{A} . \mathbf{C} and \mathbf{Z} should be in terms of $\mathbf{A}(:, J_s), \mathbf{A}(:, J_r), \mathbf{P}$, and the identity matrix \mathbf{I} .

ii. Consider the matrix $\mathbf{T} = \mathbf{A}(:, J_s)^{-1}\mathbf{A}(:, J_r)$. If we can show that

$$\max_{i,j} |\mathbf{T}(i,j)| \le 1,\tag{4}$$

then we will be done with the case m = k (why?). Find a way to show (4) by applying Cramer's Rule to our definition of **T**.

Cramer's Rule: Consider the linear system Ax = b. The *i*-th entry of the solution x is given by

$$x_i = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})},$$

where \mathbf{A}_i is matrix formed by replacing the *i*-th column of \mathbf{A} with \mathbf{b} .

(b) case 2: $m \ge k$.

Then **A** admits a factorization $\mathbf{A} = \mathbf{E}\mathbf{F}$, where **E** is $m \times k$ and **F** is $k \times n$. Apply case 1 to **F** to show the result for this case (something we proved in a previous problem may help, too...).