Fast Matrix Algorithms for Data Analytics: Problem Set 2

1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}, J$ be an $n \times 1$ permutation vector, and $J_{s}=J(1: k)$ for some $k \in \mathbb{N}$. Now suppose

$$
\begin{equation*}
\underset{m \times n}{\mathbf{A}}=\underset{m \times k}{\mathbf{E}} \underset{k \times n}{\mathbf{F},} \tag{1}
\end{equation*}
$$

and suppose that for some matrix \mathbf{T} of size $k \times(n-k)$, it holds that

$$
\mathbf{F}(:, J)=\mathbf{F}\left(:, J_{s}\right)\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{T}
\end{array}\right],
$$

where \mathbf{I}_{k} is the $k \times k$ identity matrix. Prove that

$$
\mathbf{A}(:, J)=\mathbf{A}\left(:, J_{s}\right)\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{T}
\end{array}\right] .
$$

2. Suppose that \mathbf{A} is an $m \times n$ matrix of precise rank k. Moreover, suppose that you have available a double-sided ID of \mathbf{A} of the form

$$
\begin{equation*}
\underset{k \times n}{\mathbf{A}}=\underset{m \times k}{\mathbf{X}} \underset{k \times k}{\mathbf{A}_{\mathbf{s}}} \underset{k \times n}{\mathbf{Z}} \tag{2}
\end{equation*}
$$

where $\mathbf{A}_{\mathrm{s}}=\mathbf{A}\left(I_{\mathrm{s}}, J_{\mathrm{s}}\right)$ for some index vectors I_{s} and J_{s}. Recall from the definition of the double-sided ID that \mathbf{X} and \mathbf{Z} must contain the $k \times k$ identity matrix \mathbf{I}_{k} as a submatrix, so that $\mathbf{X}\left(I_{\mathrm{s}},:\right)=\mathbf{I}_{k}$ and $\mathbf{Z}\left(:, J_{\mathrm{s}}\right)=\mathbf{I}_{k}$.
(a) Prove that $\mathbf{A}_{\mathbf{s}}$ must be of full rank.
(b) Set $\mathbf{U}=\mathbf{A}_{\mathrm{s}}^{-1}$, so that (2) can be written

$$
\underset{m \times n}{\mathbf{A}}=\underset{m \times k}{\mathbf{X A}_{\mathbf{s}}} \quad \underset{ }{\mathbf{U}} \quad \underset{k \times k}{\mathbf{A}_{\mathbf{s}} \mathbf{Z}} \begin{gather*}
k \times n
\end{gather*}
$$

Prove that $\mathbf{X A}_{\mathbf{s}}=\mathbf{A}\left(:, J_{\mathrm{s}}\right)$ and $\mathbf{A}_{\mathrm{s}} \mathbf{Z}=\mathbf{A}\left(I_{\mathrm{s}},:\right)$ so that (3) is a CUR factorization.
3. Suppose that \mathbf{A} is an $m \times n$ matrix of approximate rank k, and that we have identified two index sets I_{s} and J_{s} such that the matrices

$$
\mathbf{C}=\mathbf{A}\left(:, J_{s}\right), \quad \mathbf{R}=\mathbf{A}\left(I_{s},:\right)
$$

hold k columns/rows that span the column/row space of \mathbf{A}. Then

$$
\mathbf{A} \approx \mathrm{CC}^{\dagger} \mathrm{AR}^{\dagger} \mathbf{R}
$$

and the optimal choice for the "U" factor in the CUR decomposition is

$$
\mathbf{U}=\mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}
$$

Set $\mathbf{X}=\mathbf{C C}^{\dagger}$.
(a) Suppose that \mathbf{C} has the SVD $\mathbf{C}=\mathbf{W D V}^{*}$. Prove that $\mathbf{X}=\mathbf{W} \mathbf{W}^{*}$.
(b) Suppose that \mathbf{C} has the QR factorization $\mathbf{C P}=\mathbf{Q S}$. Prove that $\mathbf{X}=$ QQ*.
(c) Prove that \mathbf{X} is the orthogonal projection onto $\operatorname{Col}(\mathbf{C})$.
(d) Suppose that \mathbf{A} has precisely rank k and that \mathbf{C} and \mathbf{R} are both of rank k. Prove that then $\mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}=\left(\mathbf{A}\left(I_{s}, J_{s}\right)\right)^{-1}$.
4. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have rank exactly k. In this problem, we will prove that \mathbf{A} admits a factorization $\mathbf{A}=\mathbf{A}\left(:, J_{s}\right) \mathbf{Z}$, where $\mathbf{A}\left(:, J_{s}\right) \in \mathbb{R}^{m \times k}$ and $\mathbf{Z} \in \mathbb{R}^{k \times n}$ such that $\mathbf{Z}\left(:, J_{s}\right)=\mathbf{I}_{k}$ and $\max _{i, j}|\mathbf{Z}(i, j)| \leq 1$.
(a) case 1: $m=k$.
i. Pick a permutation vector J_{s} such that $\left|\operatorname{det}\left(\mathbf{A}\left(:, J_{s}\right)\right)\right|$ is maximized, and let J_{r} denote the remaining indices so that $\left[\begin{array}{ll}J_{s} & J_{r}\end{array}\right]$ is some permutation of the vector $\left[\begin{array}{llll}1 & 2 & \cdots & n\end{array}\right]$. Then we have that

$$
\mathbf{A}\left(:,\left[\begin{array}{ll}
J_{s} & J_{r}
\end{array}\right]\right)=\left[\mathbf{A}\left(:, J_{s}\right) \quad \mathbf{A}\left(:, J_{r}\right)\right]
$$

can be written as AP for some permutation matrix \mathbf{P}. Find an interpolative decomposition $\mathbf{A}=\mathbf{C Z}$ of \mathbf{A}, where the columns of \mathbf{C} are some of the columns of $\mathbf{A} . \mathbf{C}$ and \mathbf{Z} should be in terms of $\mathbf{A}\left(:, J_{s}\right), \mathbf{A}\left(:, J_{r}\right), \mathbf{P}$, and the identity matrix \mathbf{I}.
ii. Consider the matrix $\mathbf{T}=\mathbf{A}\left(:, J_{s}\right)^{-1} \mathbf{A}\left(:, J_{r}\right)$. If we can show that

$$
\begin{equation*}
\max _{i, j}|\mathbf{T}(i, j)| \leq 1 \tag{4}
\end{equation*}
$$

then we will be done with the case $m=k$ (why?). Find a way to show (4) by applying Cramer's Rule to our definition of \mathbf{T}.

Cramer's Rule: Consider the linear system $\mathbf{A x}=\mathbf{b}$. The i-th entry of the solution \mathbf{x} is given by

$$
x_{i}=\frac{\operatorname{det}\left(\mathbf{A}_{i}\right)}{\operatorname{det}(\mathbf{A})}
$$

where \mathbf{A}_{i} is matrix formed by replacing the i-th column of \mathbf{A} with \mathbf{b}.
(b) case 2: $m \geq k$.

Then \mathbf{A} admits a factorization $\mathbf{A}=\mathbf{E F}$, where \mathbf{E} is $m \times k$ and \mathbf{F} is $k \times n$. Apply case 1 to \mathbf{F} to show the result for this case (something we proved in a previous problem may help, too...).

