
Fast Matrix Algorithms for Data Analytics: Problem Set 2 Solutions

1. Let A ∈ Rm×n, J be an n× 1 permutation vector, and Js = J(1 : k) for some
k ∈ N. Now suppose

A = E F,
m× n m× k k × n

(1)

and suppose
F(:, J) = F(:, Js)

[
I T

]
.

Prove that
A(:, J) = A(:, Js)

[
I T

]
.

Solution: Start with the ID of F and multiply by E:

EF(:, J) = EF(:, Js)[I T].

Then EF(:, J) = A(:, J) by (1). Similarly, EF(:, Js) = A(:, Js), so

A(:, J) = EF(:, J) = EF(:, Js)[I T] = A(:, Js)[I T].

2. Suppose that A is an m× n matrix of precise rank k. Moreover, suppose that
you have available a double-sided ID of A of the form

A = X As Z,
m× n m× k k × k k × n

(2)

where As = A(Is, Js) for some index vectors Is and Js.

(a) Prove that As must be of full rank.
Solution: Since the rows of Ik are a subset of the rows of X and the
columns of Ik are a subset of the columns of Z, we know that X and Z
have full column and row rank, respectively. Therefore, we have

k = rank(A) = rank(XAsZ) = rank(AsZ) = rank(As).

Thus As has full rank.
(b) Set U = A−1

s , so that (2) can be written

A = XAs U AsZ.
m× n m× k k × k k × n

(3)
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Prove that XAs = A(:, Js) and AsZ = A(Is, :) so that (3) is a CUR
factorization.
Solution: We have A(:, Js) = XAsZ(:, Js). Since, in the double-sided
ID, we have

A = A(:, Js)Z =⇒ A(:, Js) = A(:, Js) = A(:, Js)Z(:, Js) =⇒ Z(:, Js) = Ik,

it follows that
A(:, Js) = XAs.

A similar argument shows that

A(Is, :) = X(Is, :)AsZ(:, Js) = AsZ(:, Js).

3. Suppose that A is an m× n matrix of approximate rank k, and that we have
identified two index sets Is and Js such that the matrices

C = A(:, Js), R = A(Is, :)

hold k columns/rows that span the column/row space of A. Then

A ≈ CC†AR†R,

and the optimal choice for the “U” factor in the CUR decomposition is

U = C†AR†.

Set X = CC†.

(a) Suppose that C has the SVD C = WDV∗. Prove that X = WW∗.
Solution: To start with, we make the reasonable assumption that the
columns of C form a linearly independent set (if dim(Col(C)) = p < k but
Col(C) ≈ Col(A), then the problem statement would have said that A has
approximate rank p). Therefore, assuming without loss of generality that
the given SVD of C is the “economic” version (to ensure that Σ−1 exists
and therefore Σ† = Σ−1), we have by the definition of the pseudoinverse
that

C† = VΣ†W∗ = VΣ−1W∗.

Therefore, using the fact that V is orthonormal implies V∗V = I, we have

X = CC† = WΣV∗VΣ−1W∗ = WΣΣ−1W∗ = WW∗.

(note that the distribution of the † is legal because W has orthonormal
columns and V∗ has orthonormal rows.)
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(b) Suppose that C has the QR factorization CP = QS. Prove that X =
QQ∗.
Solution: First, we mention that we will again use the assumption that
C has full column rank. This, along with the assumption that the QR
factorization given is the economic factorization so that S ∈ Rmin(m,n)×n,
guarantees that, in fact, S ∈ Rn×n and S is invertible. Therefore, since
CP = QS =⇒ C = QSP∗, we have that

X = CC† = QSP∗(QSP∗)† = QSP∗PS†Q† = QSS−1Q∗ = QQ∗.

(note that the distribution of the † is again legal because Q has orthonor-
mal columns and P∗ has orthonormal rows.)

(c) Prove that X is the orthogonal projection onto Col(C).
Solution: Assume as in part a) that C has the SVD C = WDV∗. Then
the result of part a) gives us that X = WW∗. Therefore,

X2 = W(W∗W)W∗ = WW∗ = X,

so X is a projection. Furthermore,

X∗ = (WW∗)∗ = WW∗ = X,

so X is self-adjoint and thus an orthogonal projection. Now we only need
to prove that Col(C) = Col(X).
Since X = WW†, every column of X is a linear combination of the
columns of W, so Col(X) ⊆ Col(W). Finally, since W∗ has rank k and
W does as well, since the columns of W form an orthonormal basis for
Col(C), and since Col(X) ⊆ Col(C), we get Col(X) = Col(WW∗) =
Col(W) = Col(C).

(d) Suppose that A has precisely rank k and that C and R are both of rank
k. Prove that then C†AR† = (A(Is, Js))−1.

Solution: As we showed in class, since A is rank k and C = A(:, Js) and
R = A(Is, :) are rank k as well, we have that

A = C(A(Is, Js)−1)R.

Therefore, we have that

C†AR† = C†C(A(Is, Js))−1RR†.
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Let C = UCDCV∗C be the SVD of C. Then since C ∈ Cm×k, VC ∈ Ck×k,
and so VCV∗C = I. Therefore, since C has full rank implies that DC is
invertible, we have that

C†C = VCD−1
C U∗CUCDCV∗C = VCV∗C = I.

Similarly, if R = URDRV∗R is the SVD of R, we have that

RR† = URDRV∗RVRD−1
R U∗R = URU∗R = I,

where URU∗R = I because U ∈ Ck×k and is orthonormal, and D−1
R exists

because R is full rank. Therefore, we have shown that

C†AR† = C†C(A(Is, Js))−1RR† = I(A(Is, Js))−1I = (A(Is, Js))−1.

4. Let A ∈ Rm×n have rank exactly k. In this problem, we will prove that A
admits a factorization A = A(:, Js)Z, where A(:, Js) ∈ Rm×k and Z ∈ Rk×n

such that Z(:, Js) = Ik and maxi,j |Z(i, j)| ≤ 1.

(a) case 1: m = k.

i. Pick a permutation vector Js such that |det(A(:, Js))| is maximized,
and let Jr denote the remaining indices so that [Js Jr] is some per-
mutation of the vector [1 2 · · · n]. Then we have that

A(:, [Js Jr]) = [A(:, Js) A(:, Jr)]

can be written as AP for some permutation matrix P. Find an in-
terpolative decomposition A = CZ of A, where the columns of C
are some of the columns of A. C and Z should be in terms of
A(:, Js), A(:, Jr), P, and the identity matrix I.
Solution: Since we have AP = [A(:, Js) A(:, Jr)], we can write

A = A(:, Js)[Ik A(:, Js)−1A(:, Jr)]P∗.

Thus, setting C = A(:, Js) and Z = [Ik A(:, Js)−1A(:, Jr)]P∗, we
have our interpolative decomposition.

ii. Consider the matrix T = A(:, Js)−1A(:, Jr). If we can show that

max
i,j
|T(i, j)| ≤ 1, (4)
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then we will be done with the case m = k (why?). Find a way to
show (4) by applying Cramer’s Rule to our definition of T.

Cramer’s Rule: Consider the linear system Ax = b. The i-th entry
of the solution x is given by

xi = det(Ai)
det(A) ,

where Ai is matrix formed by replacing the i-th column of A with b.
Solution: We have T = A(:, Js)−1A(:, Jr). We can also write this
as A(:, Js)T = A(:, Jr), where T is the solution to this equation. By
Cramer’s Rule, we have that

T(1, 1) = det(A1)
det(A(:, Js))

,

where A1 is A(:, Js) with the first column from A(:, Jr) replacing the
first column of A(:, Js). Because of our criterion in choosing Js, we
know that |det(A(:, Js))| ≥ |det(A1)|, so we have

|T(1, 1)| =
∣∣∣∣∣ det(A1)
det(A(:, Js))

∣∣∣∣∣ ≤ 1.

Similarly, |T(i, j)| ≤ 1 for all i, j.

(b) case 2: m ≥ k.
Then A admits a factorization A = EF, where E is m×k and F is k×n.
Apply case 1 to F to show the result for this case.
Solution: We showed that F admits a factorization F = F(:, Js)Z for a
Z that satisfies all the criteria. Then by problem 1,

A = A(:, Js)Z.
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