Fast Matrix Algorithms for Data Analytics: Problem Set 2 Solutions

1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, J be an $n \times 1$ permutation vector, and $J_s = J(1:k)$ for some $k \in \mathbb{N}$. Now suppose

$$\begin{array}{rcl}
\mathbf{A} &= & \mathbf{E} & \mathbf{F}, \\
m \times n & & m \times k & k \times n
\end{array} \tag{1}$$

and suppose

$$\mathbf{F}(:,J) = \mathbf{F}(:,J_s) \begin{bmatrix} \mathbf{I} & \mathbf{T} \end{bmatrix}.$$

Prove that

$$\mathbf{A}(:,J) = \mathbf{A}(:,J_s) \begin{bmatrix} \mathbf{I} & \mathbf{T} \end{bmatrix}.$$

Solution: Start with the ID of F and multiply by E:

$$\mathbf{EF}(:, J) = \mathbf{EF}(:, J_s)[\mathbf{I} \quad \mathbf{T}]$$

Then $\mathbf{EF}(:, J) = \mathbf{A}(:, J)$ by (1). Similarly, $\mathbf{EF}(:, J_s) = \mathbf{A}(:, J_s)$, so

$$\mathbf{A}(:,J) = \mathbf{EF}(:,J) = \mathbf{EF}(:,J_s)[\mathbf{IT}] = \mathbf{A}(:,J_s)[\mathbf{IT}]$$

2. Suppose that **A** is an $m \times n$ matrix of precise rank k. Moreover, suppose that you have available a double-sided ID of **A** of the form

$$\begin{array}{rcl}
\mathbf{A} &= & \mathbf{X} & \mathbf{A}_{\mathrm{s}} & \mathbf{Z}, \\
m \times n & & m \times k & k \times k & k \times n
\end{array}$$
(2)

where $\mathbf{A}_{s} = \mathbf{A}(I_{s}, J_{s})$ for some index vectors I_{s} and J_{s} .

(a) Prove that \mathbf{A}_{s} must be of full rank.

Solution: Since the rows of I_k are a subset of the rows of X and the columns of I_k are a subset of the columns of Z, we know that X and Z have full column and row rank, respectively. Therefore, we have

$$k = \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{X}\mathbf{A}_s\mathbf{Z}) = \operatorname{rank}(\mathbf{A}_s\mathbf{Z}) = \operatorname{rank}(\mathbf{A}_s).$$

Thus \mathbf{A}_s has full rank.

(b) Set $\mathbf{U} = \mathbf{A}_{s}^{-1}$, so that (2) can be written

$$\mathbf{A} = \mathbf{X}\mathbf{A}_{s} \quad \mathbf{U} \quad \mathbf{A}_{s}\mathbf{Z}.$$

$$m \times n \qquad m \times k \quad k \times k \quad k \times n \tag{3}$$

Prove that $\mathbf{X}\mathbf{A}_{s} = \mathbf{A}(:, J_{s})$ and $\mathbf{A}_{s}\mathbf{Z} = \mathbf{A}(I_{s}, :)$ so that (3) is a CUR factorization.

Solution: We have $\mathbf{A}(:, J_s) = \mathbf{X}\mathbf{A}_s\mathbf{Z}(:, J_s)$. Since, in the double-sided ID, we have

$$\mathbf{A} = \mathbf{A}(:, J_s)\mathbf{Z} \implies \mathbf{A}(:, J_s) = \mathbf{A}(:, J_s) = \mathbf{A}(:, J_s)\mathbf{Z}(:, J_s) \implies \mathbf{Z}(:, J_s) = \mathbf{I}_k,$$

it follows that

$$\mathbf{A}(:,J_s)=\mathbf{X}\mathbf{A}_s.$$

A similar argument shows that

$$\mathbf{A}(I_s,:) = \mathbf{X}(I_s,:)\mathbf{A}_s\mathbf{Z}(:,J_s) = \mathbf{A}_s\mathbf{Z}(:,J_s).$$

3. Suppose that **A** is an $m \times n$ matrix of approximate rank k, and that we have identified two index sets I_s and J_s such that the matrices

$$\mathbf{C} = \mathbf{A}(:, J_s), \quad \mathbf{R} = \mathbf{A}(I_s, :)$$

hold k columns/rows that span the column/row space of \mathbf{A} . Then

$$\mathbf{A} \approx \mathbf{C} \mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger} \mathbf{R}$$

and the optimal choice for the "U" factor in the CUR decomposition is

$$\mathbf{U} = \mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}.$$

Set $\mathbf{X} = \mathbf{C}\mathbf{C}^{\dagger}$.

(a) Suppose that **C** has the SVD $\mathbf{C} = \mathbf{W}\mathbf{D}\mathbf{V}^*$. Prove that $\mathbf{X} = \mathbf{W}\mathbf{W}^*$. Solution: To start with, we make the reasonable assumption that the columns of **C** form a linearly independent set (if dim(Col(**C**)) = p < k but Col(**C**) \approx Col(**A**), then the problem statement would have said that **A** has approximate rank p). Therefore, assuming without loss of generality that the given SVD of **C** is the "economic" version (to ensure that Σ^{-1} exists and therefore $\Sigma^{\dagger} = \Sigma^{-1}$), we have by the definition of the pseudoinverse that

$$\mathbf{C}^{\dagger} = \mathbf{V} \mathbf{\Sigma}^{\dagger} \mathbf{W}^{*} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{W}^{*}.$$

Therefore, using the fact that **V** is orthonormal implies $\mathbf{V}^*\mathbf{V} = \mathbf{I}$, we have

$$\mathbf{X} = \mathbf{C}\mathbf{C}^{\dagger} = \mathbf{W}\mathbf{\Sigma}\mathbf{V}^{*}\mathbf{V}\mathbf{\Sigma}^{-1}\mathbf{W}^{*} = \mathbf{W}\mathbf{\Sigma}\mathbf{\Sigma}^{-1}\mathbf{W}^{*} = \mathbf{W}\mathbf{W}^{*}.$$

(note that the distribution of the \dagger is legal because **W** has orthonormal columns and **V**^{*} has orthonormal rows.)

(b) Suppose that C has the QR factorization CP = QS. Prove that $X = QQ^*$.

Solution: First, we mention that we will again use the assumption that **C** has full column rank. This, along with the assumption that the QR factorization given is the economic factorization so that $\mathbf{S} \in \mathbb{R}^{\min(m,n) \times n}$, guarantees that, in fact, $\mathbf{S} \in \mathbb{R}^{n \times n}$ and \mathbf{S} is invertible. Therefore, since $\mathbf{CP} = \mathbf{QS} \implies \mathbf{C} = \mathbf{QSP}^*$, we have that

$$\mathbf{X} = \mathbf{C}\mathbf{C}^{\dagger} = \mathbf{Q}\mathbf{S}\mathbf{P}^{*}(\mathbf{Q}\mathbf{S}\mathbf{P}^{*})^{\dagger} = \mathbf{Q}\mathbf{S}\mathbf{P}^{*}\mathbf{P}\mathbf{S}^{\dagger}\mathbf{Q}^{\dagger} = \mathbf{Q}\mathbf{S}\mathbf{S}^{-1}\mathbf{Q}^{*} = \mathbf{Q}\mathbf{Q}^{*}$$

(note that the distribution of the † is again legal because **Q** has orthonormal columns and **P**^{*} has orthonormal rows.)

(c) Prove that \mathbf{X} is the orthogonal projection onto $\operatorname{Col}(\mathbf{C})$.

Solution: Assume as in part a) that C has the SVD $C = WDV^*$. Then the result of part a) gives us that $X = WW^*$. Therefore,

$$\mathbf{X}^2 = \mathbf{W}(\mathbf{W}^*\mathbf{W})\mathbf{W}^* = \mathbf{W}\mathbf{W}^* = \mathbf{X},$$

so \mathbf{X} is a projection. Furthermore,

$$\mathbf{X}^* = (\mathbf{W}\mathbf{W}^*)^* = \mathbf{W}\mathbf{W}^* = \mathbf{X},$$

so **X** is self-adjoint and thus an orthogonal projection. Now we only need to prove that $\operatorname{Col}(\mathbf{C}) = \operatorname{Col}(\mathbf{X})$.

Since $\mathbf{X} = \mathbf{W}\mathbf{W}^{\dagger}$, every column of \mathbf{X} is a linear combination of the columns of \mathbf{W} , so $\operatorname{Col}(\mathbf{X}) \subseteq \operatorname{Col}(\mathbf{W})$. Finally, since \mathbf{W}^* has rank k and \mathbf{W} does as well, since the columns of \mathbf{W} form an orthonormal basis for $\operatorname{Col}(\mathbf{C})$, and since $\operatorname{Col}(\mathbf{X}) \subseteq \operatorname{Col}(\mathbf{C})$, we get $\operatorname{Col}(\mathbf{X}) = \operatorname{Col}(\mathbf{W}\mathbf{W}^*) = \operatorname{Col}(\mathbf{W}) = \operatorname{Col}(\mathbf{C})$.

(d) Suppose that **A** has precisely rank k and that **C** and **R** are both of rank k. Prove that then $\mathbf{C}^{\dagger}\mathbf{A}\mathbf{R}^{\dagger} = (\mathbf{A}(I_s, J_s))^{-1}$.

Solution: As we showed in class, since **A** is rank k and $\mathbf{C} = \mathbf{A}(:, J_s)$ and $\mathbf{R} = \mathbf{A}(I_s, :)$ are rank k as well, we have that

$$\mathbf{A} = \mathbf{C}(\mathbf{A}(I_s, J_s)^{-1})\mathbf{R}.$$

Therefore, we have that

$$\mathbf{C}^{\dagger}\mathbf{A}\mathbf{R}^{\dagger} = \mathbf{C}^{\dagger}\mathbf{C}(\mathbf{A}(I_s, J_s))^{-1}\mathbf{R}\mathbf{R}^{\dagger}.$$

Let $\mathbf{C} = \mathbf{U}_C \mathbf{D}_C \mathbf{V}_C^*$ be the SVD of \mathbf{C} . Then since $\mathbf{C} \in \mathbb{C}^{m \times k}$, $\mathbf{V}_{\mathbf{C}} \in \mathbb{C}^{k \times k}$, and so $\mathbf{V}_C \mathbf{V}_C^* = \mathbf{I}$. Therefore, since \mathbf{C} has full rank implies that \mathbf{D}_C is invertible, we have that

$$\mathbf{C}^{\dagger}\mathbf{C} = \mathbf{V}_{C}\mathbf{D}_{C}^{-1}\mathbf{U}_{C}^{*}\mathbf{U}_{C}\mathbf{D}_{C}\mathbf{V}_{C}^{*} = \mathbf{V}_{C}\mathbf{V}_{C}^{*} = I.$$

Similarly, if $\mathbf{R} = \mathbf{U}_R \mathbf{D}_R \mathbf{V}_R^*$ is the SVD of \mathbf{R} , we have that

$$\mathbf{R}\mathbf{R}^{\dagger}=\mathbf{U}_{R}\mathbf{D}_{R}\mathbf{V}_{R}^{*}\mathbf{V}_{R}\mathbf{D}_{R}^{-1}\mathbf{U}_{R}^{*}=\mathbf{U}_{R}\mathbf{U}_{R}^{*}=\mathbf{I},$$

where $\mathbf{U}_R \mathbf{U}_R^* = \mathbf{I}$ because $\mathbf{U} \in \mathbb{C}^{k \times k}$ and is orthonormal, and \mathbf{D}_R^{-1} exists because \mathbf{R} is full rank. Therefore, we have shown that

$$\mathbf{C}^{\dagger}\mathbf{A}\mathbf{R}^{\dagger} = \mathbf{C}^{\dagger}\mathbf{C}(\mathbf{A}(I_s, J_s))^{-1}\mathbf{R}\mathbf{R}^{\dagger} = \mathbf{I}(\mathbf{A}(I_s, J_s))^{-1}\mathbf{I} = (\mathbf{A}(I_s, J_s))^{-1}.$$

- 4. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have rank exactly k. In this problem, we will prove that \mathbf{A} admits a factorization $\mathbf{A} = \mathbf{A}(:, J_s)\mathbf{Z}$, where $\mathbf{A}(:, J_s) \in \mathbb{R}^{m \times k}$ and $\mathbf{Z} \in \mathbb{R}^{k \times n}$ such that $\mathbf{Z}(:, J_s) = \mathbf{I}_k$ and $\max_{i,j} |\mathbf{Z}(i, j)| \leq 1$.
 - (a) case 1: m = k.
 - i. Pick a permutation vector J_s such that $|\det(\mathbf{A}(:, J_s))|$ is maximized, and let J_r denote the remaining indices so that $[J_s \ J_r]$ is some permutation of the vector $[1 \ 2 \ \cdots \ n]$. Then we have that

$$\mathbf{A}(:, \begin{bmatrix} J_s & J_r \end{bmatrix}) = \begin{bmatrix} \mathbf{A}(:, J_s) & \mathbf{A}(:, J_r) \end{bmatrix}$$

can be written as **AP** for some permutation matrix **P**. Find an interpolative decomposition $\mathbf{A} = \mathbf{CZ}$ of **A**, where the columns of **C** are some of the columns of **A**. **C** and **Z** should be in terms of $\mathbf{A}(:, J_s), \mathbf{A}(:, J_r), \mathbf{P}$, and the identity matrix **I**.

Solution: Since we have $\mathbf{AP} = [\mathbf{A}(:, J_s) \ \mathbf{A}(:, J_r)]$, we can write

$$\mathbf{A} = \mathbf{A}(:, J_s)[\mathbf{I}_k \quad \mathbf{A}(:, J_s)^{-1}\mathbf{A}(:, J_r)]\mathbf{P}^*.$$

Thus, setting $\mathbf{C} = \mathbf{A}(:, J_s)$ and $\mathbf{Z} = [\mathbf{I}_k \quad \mathbf{A}(:, J_s)^{-1}\mathbf{A}(:, J_r)]\mathbf{P}^*$, we have our interpolative decomposition.

ii. Consider the matrix $\mathbf{T} = \mathbf{A}(:, J_s)^{-1}\mathbf{A}(:, J_r)$. If we can show that

$$\max_{i,j} |\mathbf{T}(i,j)| \le 1,\tag{4}$$

then we will be done with the case m = k (why?). Find a way to show (4) by applying Cramer's Rule to our definition of **T**.

Cramer's Rule: Consider the linear system Ax = b. The *i*-th entry of the solution x is given by

$$x_i = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})},$$

where \mathbf{A}_i is matrix formed by replacing the *i*-th column of \mathbf{A} with \mathbf{b} . Solution: We have $\mathbf{T} = \mathbf{A}(:, J_s)^{-1}\mathbf{A}(:, J_r)$. We can also write this as $\mathbf{A}(:, J_s)\mathbf{T} = \mathbf{A}(:, J_r)$, where \mathbf{T} is the solution to this equation. By Cramer's Rule, we have that

$$\mathbf{T}(1,1) = \frac{\det(\mathbf{A}_1)}{\det(\mathbf{A}(:,J_s))},$$

where \mathbf{A}_1 is $\mathbf{A}(:, J_s)$ with the first column from $\mathbf{A}(:, J_r)$ replacing the first column of $\mathbf{A}(:, J_s)$. Because of our criterion in choosing J_s , we know that $|\det(\mathbf{A}(:, J_s))| \ge |\det(\mathbf{A}_1)|$, so we have

$$|\mathbf{T}(1,1)| = \left|\frac{\det(\mathbf{A}_1)}{\det(\mathbf{A}(:,J_s))}\right| \le 1.$$

Similarly, $|\mathbf{T}(i, j)| \leq 1$ for all i, j.

(b) case 2: $m \ge k$.

Then **A** admits a factorization $\mathbf{A} = \mathbf{E}\mathbf{F}$, where **E** is $m \times k$ and **F** is $k \times n$. Apply case 1 to **F** to show the result for this case.

Solution: We showed that **F** admits a factorization $\mathbf{F} = \mathbf{F}(:, J_s)\mathbf{Z}$ for a **Z** that satisfies all the criteria. Then by problem 1,

$$\mathbf{A} = \mathbf{A}(:, J_s)\mathbf{Z}.$$