
Fast Matrix Algorithms for Data Analytics: Problem Set 3

1. The purpose of this exercise is to prove the equivalence of subspace iteration
and the “power” version of the RSVD. Suppose you are given an m×n matrix
A and an n× k matrix G of full rank. Then set

Y = (AA∗)qAG

for some positive integer q. Also define Z as the output of the iteration

Z← orth(AG)
for i = 1 : q

Z← orth(A∗Z)
Z← orth(AZ)

end

The output of orth(A) for a matrix A is a matrix Z with orthonormal columns
such that ran(Z) = ran(A). Show that ran(Y) = ran(Z).

2. Suppose we would like to perform the RSVD algorithm on a matrix A, but
we do not know in advance the rank of A. In this case, to find a low-rank
approximation of A, for phase A of RSVD we wish to construct Q such that
‖A −QQ∗A‖ < ε, where ε is a user-defined parameter. An algorithm for ac-
complishing this, published as Algorithm 4.2 of the paper “Finding Structure
with Randomness” by Halko, Martinsson, and Tropp, is given in Algorithm 1
below. To make sure we understand why this algorithm works, we’ll focus in
on lines 7-9.

Specifically, consider the iteration:
Input: Q ∈ Rm×r, y ∈ Rm such that Q∗Q = Ir.
Iteration:

ȳ = (I−QQ∗)y

q = ȳ
‖ȳ‖

Q̄ = [Q,q]

Show that for this procedure, the output Q̄ is such that ran(Q̄) = ran([Q y])
and Q̄∗Q̄ = Ir+1.
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Algorithm 1 Adaptive Randomized Range Finder
Given an m×n matrix A, a tolerance ε, and an integer r (e.g., r = 10), the following
scheme computes an orthonormal matrix Q such that (4.2) holds with probability at
least 1−min{m,n}10−r.

1: Draw standard Gaussian vectors ω(1), . . . , ω(r) of length n.
2: i = 1, 2, . . . , r, compute y(i) = Aω(i).
3: j = 0.
4: Q(0) = [ ], the m× 0 empty matrix.
5: while max

{
‖y(j+1)‖, ‖y(j+2)‖, . . . , ‖y(j+r)‖,

}
> ε/(10

√
2/π),

6: j = j + 1.
7: Overwrite y(j) by (I−Q(j−1)(Q(j−1))∗)y(j).
8: q(j) = y(j)/‖y(j)‖.
9: Q(j) = [Q(j−1) q(j)].

10: Draw a standard Guassian vector ω(j+r) of length n.
11: y(j+r) = (I−Q(j)(Q(j))∗)Aω(j+r).
12: for i = (j + 1), (j + 2), . . . , (j + r − 1),
13: Overwrite y(i) by y(i) − q(j)〈q(j),y(i)〉.
14: end for
15: end while
16: Q = Q(j).

3. Let R be an m× n random matrix. Assume the entries of R are independent,
and E[Rij] = 0 and Var(Rij) = 1 ∀i, j. Let x ∈ Rn. Show that E[‖Rx‖2] =
m‖x‖2.

4. Let k and ` be positive integers such that k < `, and let G be a k × ` random
matrix whose every entry is drawn independently from a normalized Gaussian
distribution. It is known that when ` is “sufficiently” much larger than k, the
rows of G will be close to orthogonal, and that G will be well conditioned. In
this exercise, we will walk through an argument that provides an indication of
how this could be proven.
Let N(0, 1) denote a normalized Gaussian distribution and let S(k) denote the
distribution for the square root of random variable with a χ2

k distribution. In
other words, if g is a vector of length k whose entries are drawn independently
from N(0, 1), then ‖g‖ ∈ S(k).

(a) Assume we have used entries in the first row of G to build a Householder
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reflector that you apply from the right of G to obtain a matrix of the form

H1 =


h11 0 0 0 0 · · ·
g g g g g · · ·
g g g g g · · ·
... ... ... ... ...

 .
Show that each entry marked by “g” is drawn from N(0, 1) and h11 ∈ S(`).

(b) Now suppose we have used the entries below the diagonal in the first
column to build a Householder reflector that upon application from the
left maps H1 to a matrix of the form

H2 =


h11 0 0 0 0 · · ·
h21 g g g g · · ·
0 g g g g · · ·
... ... ... ... ...

 .
Show that each entry marked by “g” is drawn from N(0, 1), that h11 ∈
S(`), and that h21 ∈ S(k − 1).

(c) Suppose we continue building Householder reflectors in the pattern out-
lined in (a) and (b) to drive G all the way to a bidiagonal matrix

H =


h11 0 0 0 0 · · ·
h21 h22 0 0 0 · · ·
0 h32 h33 0 0 · · ·
... ... ... ... ...

 .
Show that each diagonal entry hii ∈ S(`−i+1) and that each sub-diagonal
entry hi+1,i ∈ S(k − i).

(d) The expectation of a random variable h drawn from distribution S(n) is
E[h] =

√
2Γ((n + 1)/2)/Γ(n/2). Show that E[H] is well-conditioned (i.e.

the singular values are bounded away from 0) when ` is sufficiently much
larger than k. 1

Hint: Use that H is diagonally dominant, and apply the Gershgorin circle
theorem.

1Warning: If you work out all the details, this gets messy! I’d recommend that you only work
out enough details to convince yourself that the singular values can be bounded away from 0.
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