Fast Matrix Algorithms for Data Analytics: Problem Set 3

1. The purpose of this exercise is to prove the equivalence of subspace iteration and the "power" version of the RSVD. Suppose you are given an $m \times n$ matrix A and an $n \times k$ matrix \mathbf{G} of full rank. Then set

$$
\mathbf{Y}=\left(\mathbf{A A}^{*}\right)^{q} \mathbf{A} \mathbf{G}
$$

for some positive integer q. Also define \mathbf{Z} as the output of the iteration

$$
\begin{aligned}
& \mathbf{Z} \leftarrow \operatorname{orth}(\mathbf{A G}) \\
& \text { for } i=1: q \\
& \mathbf{Z} \leftarrow \operatorname{orth}\left(\mathbf{A}^{*} \mathbf{Z}\right) \\
& \mathbf{Z} \leftarrow \operatorname{orth}(\mathbf{A Z}) \\
& \text { end }
\end{aligned}
$$

The output of orth (\mathbf{A}) for a matrix \mathbf{A} is a matrix \mathbf{Z} with orthonormal columns such that $\operatorname{ran}(\mathbf{Z})=\operatorname{ran}(\mathbf{A})$. Show that $\operatorname{ran}(\mathbf{Y})=\operatorname{ran}(\mathbf{Z})$.
2. Suppose we would like to perform the RSVD algorithm on a matrix A, but we do not know in advance the rank of \mathbf{A}. In this case, to find a low-rank approximation of \mathbf{A}, for phase A of RSVD we wish to construct \mathbf{Q} such that $\left\|\mathbf{A}-\mathbf{Q Q}^{*} \mathbf{A}\right\|<\epsilon$, where ϵ is a user-defined parameter. An algorithm for accomplishing this, published as Algorithm 4.2 of the paper "Finding Structure with Randomness" by Halko, Martinsson, and Tropp, is given in Algorithm 1 below. To make sure we understand why this algorithm works, we'll focus in on lines 7-9.

Specifically, consider the iteration:
Input: $\mathbf{Q} \in \mathbb{R}^{m \times r}, \mathbf{y} \in \mathbb{R}^{m}$ such that $\mathbf{Q}^{*} \mathbf{Q}=\mathbf{I}_{r}$.
Iteration:

$$
\begin{aligned}
\overline{\mathbf{y}} & =\left(\mathbf{I}-\mathbf{Q Q}^{*}\right) \mathbf{y} \\
\mathbf{q} & =\frac{\overline{\mathbf{y}}}{\|\overline{\mathbf{y}}\|} \\
\overline{\mathbf{Q}} & =[\mathbf{Q}, \mathbf{q}]
\end{aligned}
$$

Show that for this procedure, the output $\overline{\mathbf{Q}}$ is such that $\operatorname{ran}(\overline{\mathbf{Q}})=\operatorname{ran}\left(\left[\begin{array}{ll}\mathbf{Q} & \mathbf{y}\end{array}\right]\right)$ and $\overline{\mathbf{Q}}^{*} \overline{\mathbf{Q}}=\mathbf{I}_{r+1}$.

```
Algorithm 1 Adaptive Randomized Range Finder
Given an \(m \times n\) matrix A, a tolerance \(\epsilon\), and an integer \(r\) (e.g., \(r=10\) ), the following
scheme computes an orthonormal matrix \(\mathbf{Q}\) such that (4.2) holds with probability at
least \(1-\min \{m, n\} 10^{-r}\).
    Draw standard Gaussian vectors \(\omega^{(1)}, \ldots, \omega^{(r)}\) of length \(n\).
    \(i=1,2, \ldots, r\), compute \(\mathbf{y}^{(i)}=\mathbf{A} \omega^{(i)}\).
    \(j=0\).
    \(\mathbf{Q}^{(0)}=[]\), the \(m \times 0\) empty matrix.
    while max \(\left\{\left\|\mathbf{y}^{(j+1)}\right\|,\left\|\mathbf{y}^{(j+2)}\right\|, \ldots,\left\|\mathbf{y}^{(j+r)}\right\|,\right\}>\epsilon /(10 \sqrt{2 / \pi})\),
    \(j=j+1\).
    Overwrite \(\mathbf{y}^{(j)}\) by \(\left(\mathbf{I}-\mathbf{Q}^{(j-1)}\left(\mathbf{Q}^{(j-1)}\right)^{*}\right) \mathbf{y}^{(j)}\).
    \(\mathbf{q}^{(j)}=\mathbf{y}^{(j)} /\left\|\mathbf{y}^{(j)}\right\|\).
    \(\mathbf{Q}^{(j)}=\left[\mathbf{Q}^{(j-1)} \mathbf{q}^{(j)}\right]\).
    Draw a standard Guassian vector \(\omega^{(j+r)}\) of length \(n\).
    \(\mathbf{y}^{(j+r)}=\left(\mathbf{I}-\mathbf{Q}^{(j)}\left(\mathbf{Q}^{(j)}\right)^{*}\right) \mathbf{A} \omega^{(j+r)}\).
        for \(i=(j+1),(j+2), \ldots,(j+r-1)\),
            Overwrite \(\mathbf{y}^{(i)}\) by \(\mathbf{y}^{(i)}-\mathbf{q}^{(j)}\left\langle\mathbf{q}^{(j)}, \mathbf{y}^{(i)}\right\rangle\).
        end for
end while
\(\mathbf{Q}=\mathbf{Q}^{(j)}\).
```

3. Let \mathbf{R} be an $m \times n$ random matrix. Assume the entries of \mathbf{R} are independent, and $\mathbb{E}\left[\mathbf{R}_{i j}\right]=0$ and $\operatorname{Var}\left(\mathbf{R}_{i j}\right)=1 \forall i, j$. Let $\mathbf{x} \in \mathbb{R}^{n}$. Show that $\mathbb{E}\left[\|\mathbf{R} \mathbf{x}\|^{2}\right]=$ $m\|\mathbf{x}\|^{2}$.
4. Let k and ℓ be positive integers such that $k<\ell$, and let \mathbf{G} be a $k \times \ell$ random matrix whose every entry is drawn independently from a normalized Gaussian distribution. It is known that when ℓ is "sufficiently" much larger than k, the rows of \mathbf{G} will be close to orthogonal, and that \mathbf{G} will be well conditioned. In this exercise, we will walk through an argument that provides an indication of how this could be proven.

Let $N(0,1)$ denote a normalized Gaussian distribution and let $S(k)$ denote the distribution for the square root of random variable with a χ_{k}^{2} distribution. In other words, if \mathbf{g} is a vector of length k whose entries are drawn independently from $N(0,1)$, then $\|\mathbf{g}\| \in S(k)$.
(a) Assume we have used entries in the first row of \mathbf{G} to build a Householder
reflector that you apply from the right of \mathbf{G} to obtain a matrix of the form

$$
\mathbf{H}_{1}=\left[\begin{array}{cccccc}
h_{11} & 0 & 0 & 0 & 0 & \cdots \\
g & g & g & g & g & \cdots \\
g & g & g & g & g & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

Show that each entry marked by " g " is drawn from $N(0,1)$ and $h_{11} \in S(\ell)$.
(b) Now suppose we have used the entries below the diagonal in the first column to build a Householder reflector that upon application from the left maps \mathbf{H}_{1} to a matrix of the form

$$
\mathbf{H}_{2}=\left[\begin{array}{cccccc}
h_{11} & 0 & 0 & 0 & 0 & \cdots \\
h_{21} & g & g & g & g & \cdots \\
0 & g & g & g & g & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

Show that each entry marked by " g " is drawn from $N(0,1)$, that $h_{11} \in$ $S(\ell)$, and that $h_{21} \in S(k-1)$.
(c) Suppose we continue building Householder reflectors in the pattern outlined in (a) and (b) to drive \mathbf{G} all the way to a bidiagonal matrix

$$
\mathbf{H}=\left[\begin{array}{cccccc}
h_{11} & 0 & 0 & 0 & 0 & \cdots \\
h_{21} & h_{22} & 0 & 0 & 0 & \cdots \\
0 & h_{32} & h_{33} & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

Show that each diagonal entry $h_{i i} \in S(\ell-i+1)$ and that each sub-diagonal entry $h_{i+1, i} \in S(k-i)$.
(d) The expectation of a random variable h drawn from distribution $S(n)$ is $\mathbb{E}[h]=\sqrt{2} \Gamma((n+1) / 2) / \Gamma(n / 2)$. Show that $\mathbb{E}[\mathbf{H}]$ is well-conditioned (i.e. the singular values are bounded away from 0) when ℓ is sufficiently much larger than $k .{ }^{1}$

Hint: Use that \mathbf{H} is diagonally dominant, and apply the Gershgorin circle theorem.

[^0]
[^0]: ${ }^{1}$ Warning: If you work out all the details, this gets messy! I'd recommend that you only work out enough details to convince yourself that the singular values can be bounded away from 0 .

