
PCMI Summer Session, The Mathematics of Data

Midway, Utah

July, 2016

Randomized algorithms for matrix computations and
analysis of high dimensional data

Gunnar Martinsson
The University of Colorado at Boulder

Slides and lecture notes at: http://amath.colorado.edu/faculty/martinss/2016_PCMI/

(Or simply google “Gunnar Martinsson”)

Research support by:

Objective:

Given an m× n matrix A we seek to compute a rank-k approximation,
typically with k � min(m,n) (say m,n ∼ 104,106,108, . . . and k ∼ 102 or 103),

A ≈ E F∗ =
k∑

j=1
ej f∗j .

m× n m× k k × n
Solving this problem leads to algorithms for computing:

• Eigenvectors corresponding to leading eigenvalues.
(Require ej = λj fj, and {fj}kj=1 to be orthonormal.)

• Singular Value Decomposition (SVD) / Principal Component Analysis (PCA).
(Require {ej}kj=1 and {fj}kj=1 to be orthogonal sets.)

• Spanning columns or rows.
(Require {ej}kj=1 to be columns of A, or require {f∗j }kj=1 to be rows of A.)

• Etc

The problem being addressed is ubiquitous in applications.

Applications:

• Computational statistics (Principal Component Analysis, regression analysis, etc).

• Data mining, machine learning, analysis of network matrices, imaging, etc.
(Algorithms related to PageRank, Latent Semantic Indexing, relaxed versions of
k-means clustering, etc.)

• Accelerating standard packages for linear algebra.

• Nearest neighbor search for large clouds of points in high dimensional space.

• Diffusion geometry; a technique for constructing parameterizations on large
collections of data points organized (modulo noise) along non-linear low-dimensional
manifolds. Requires the computations of eigenvectors of graph Laplace operators.

• Fast algorithms for elliptic PDEs: more efficient Fast Multipole Methods, fast direct
solvers, construction of special quadratures for corners and edges, etc.

• “General” pre-conditioners.

• Etc.

Review of existing methods I

For a dense n× n matrix that fits in RAM, excellent algorithms are already part of
LAPACK (and incorporated into Matlab, Mathematica, etc).
• Double precision accuracy.
• Very stable.
• O(n3) asymptotic complexity. Reasonably small constants.
• Require extensive random access to the matrix.

When the target rank k is much smaller than n, there also exist O(n2 k) methods with
similar characteristics (the well-known Golub-Businger method, RRQR by Gu and
Eisentstat, etc).

For small matrices, the state-of-the-art is quite satisfactory.
(By “small,” we mean something like n ≤ 10 000 on today’s computers.)
For kicks, we will improve on it anyway, but this is not the main point.

Review of existing methods II

If the matrix is large, but can rapidly be applied to a vector (if it is sparse, or sparse in
Fourier space, or amenable to the FMM, etc.), so called Krylov subspace methods often
yield excellent accuracy and speed.

The idea is to pick a starting vector r (often a random vector), “restrict” the matrix A to
the k-dimensionsal “Krylov subspace”

Span(r, A r, A2 r, . . . , Ak−1 r)

and compute an eigendecomposition of the resulting matrix.
Advantages:

• Very simple access to A.
• Extremely high accuracy possible. (Double precision accuracy for “converged”
eigenmodes, etc.)

Drawbacks:

• The matrix is typically revisited O(k) times if a rank-k approximation is sought.
(Blocked versions exist, but the convergence analysis is less developed.)
• Numerical stability issues. These are well-studied and can be overcome, but they
make software less portable (between applications, hardware platforms, etc.).

“New” challenges in algorithmic design:

The existing state-of-the-art methods of numerical linear algebra that we have very
briefly outlined were designed for an environment where the matrix fits in RAM and the
key to performance was to minimize the number of floating point operations required.

Currently, communication is becoming the real bottleneck:

• While clock speed is hardly improving at all anymore, the cost of a flop keeps going
down rapidly. (Multi-core processors, GPUs, cloud computing, etc.)

• The cost of slow storage (hard drives, flash memory, etc.) is also going down rapidly.

• Communication costs are decreasing, but not rapidly.
• Moving data from a hard-drive.
• Moving data between nodes of a parallel machine. (Or cloud computer ...)
• The amount of fast cache memory close to a processor is not improving much.

(In fact, it could be said to be shrinking — GPUs, multi-core, etc.)

• “Deluge of data”. Driven by ever cheaper storage and acquisition techniques. Web
search, data mining in archives of documents or photos, hyper-spectral imagery,
social networks, gene arrays, proteomics data, sensor networks, financial
transactions, . . .

The more powerful computing machinery becomes,
the more important efficient algorithm design becomes.

• Linear scaling (w.r.t. problem size, processors, etc.).

• Minimal data movement.

That randomization can be used to overcome some of the communication bottlenecks in
matrix computations has been pointed out by several authors:

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)
A. Frieze, R. Kannan, and S. Vempala (1999, 2004)
D. Achlioptas and F. McSherry (2001)
P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006)
S. Har-Peled (2006)
A. Deshpande and S. Vempala (2006)
S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)
T. Sarlós (2006a, 2006b, 2006c)
M. Rudelson, R. Vershynin (2007)
K. Clarkson, D. Woodruff (2009)
. . . deluge of papers . . .

Covered by other lecturers in this summer school. Lectures of P. Drineas in particular.

Literature surveys: Halko, Martinsson, Tropp (2011). Mahoney (2011). Woodruff (2014). Etc.

Review of existing methods III

Examples of how randomization could be used:

• Random column/row selection
Draw at random some columns and suppose that they span the entire column space.
If rows are drawn as well, then spectral properties can be estimated.
Crude sampling leads to less than O(mn) complexity, but is “dangerous.”

• Sparsification
Zero out the vast majority of the entries of the matrix. Keep a random subset of
entries, and boost their magnitude to preserve “something.”

• Quantization and sparsification
Restrict the entries of the matrix to a small set of values (-1/0/1 for instance).

The methods outlined can be as fast as you like, but must necessarily have weak
performance guarantees. They can work well for certain classes of matrices for which
additional information is available (basically, matrices that are in some sense
“over-sampled”).

Approach advocated here:

A set of randomized algorithms for computing a rank-k approximation to a matrix.
These methods are engineered from the ground up to:
• Minimize communication.
• Handle streaming data, or data stored “out-of-core.”
• Easily adapt to a broad range of distributed computing architectures.

Computational profile (for an m× n matrix of approximate rank k):
• At least O(mn) complexity. (To be precise: O(mnk) or O(mn log k).)
• The accuracy ε is a user-set number.
(If the application permits, it could be ε = 10−12 or less.)
• Since the method is randomized, it has a failure probability η.
η is a user specified number.
The cost of the method grows as η → 0, but setting η = 10−10 is cheap.
For all practical purposes, the method succeeds with probability 1.

• The only error that will be controlled is the “backwards error” ‖A− EF‖ ≤ TOL.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Brief review of some key facts of the SVD:
Let A be an m× n matrix. Then A admits a singular value decomposition (SVD)

A = U D V∗,
m× n m× r r × r r × n

where r = min(m,n) and where

U = [u1 u2 · · · ur] is a matrix holding the “left singular vectors” ui,
V = [v1 v2 · · · vr] is a matrix holding the “right singular vectors” vi,
D = diag(σ1, σ2, . . . , σr) is a diagonal matrix holding the “singular values” σi.

For any k such that 1 ≤ k ≤ min(m,n), we define the truncated SVD as

Ak = U(:,1 : k)D(1 : k,1 : k)V(:,1 : k)∗ =
k∑

i=1
σiuiv∗i .

The following theorem states that Ak is the “optimal” rank-k approximation to A:

Theorem (Eckart-Young): Let ‖ · ‖ denote either the Frobenius or spectral norm. Then

‖A− Ak‖ = min{‖A− B‖ : B is of rank k}.

Moreover,

‖A− Ak‖ = σk+1, when the spectral norm is used,

‖A− Ak‖ =
√
σ2k+1 + σ2k+2 + · · · + σ2r , when the Frobenius norm is used.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Brief review of some key facts of the SVD: Recall the SVD

A = U D V∗ =
r∑

j=1
σjujv∗j .

m× n m× r r × r r × n

where r = min(m,n). Some facts:
• The left singular vectors {uj}kj=1 form an optimal basis for the column space of A in the sense that

‖A− U(:,1 : k)U(:,1 : k)∗A‖ = inf{‖A− PA‖ : where P is an ON proj. to a k − dimensional space}.

• The right singular vectors {vj}kj=1 form an optimal basis for the row space of A.
• For a symmetric matrix, the eigenvalue decomposition (EVD) and the singular value decomposition

are in many ways equivalent, and a truncated EVD is also an optimal rank-k approximation.
• The EVD and the SVD are also in many ways equivalent for a normal matrix (recall that A is normal if

AA∗ = A∗A), but the EVD might be complex even when A is real.
• For non-normal matrices, eigenvectors and eigenvalues are generally not convenient tools for low

rank approximation.
• For a general matrix, the SVD provides the EVDs of A∗A and AA∗:

AA∗ = UD2U∗, and A∗A = VD2V∗.

The SVD can be derived from the relations above.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.
Algorithm:

1.

2.

3.
4. Form the k × n matrix B = Q∗A.

5. Compute the SVD of the small matrix B so that B = Û DV∗.

6. Form the matrix U = QÛ.

Find an m× k orthonormal matrix Q such that A ≈ QQ∗A.
(I.e., the columns of Q form an ON-basis for the range of A.)

Note: Steps 4 – 6 are exact; the error in the method is all in Q:

‖A− U︸︷︷︸
=QÛ

DV∗‖ = ‖A−QÛDV∗︸ ︷︷ ︸
=B

‖ = ‖A−Q B︸︷︷︸
Q∗A
‖ = ‖A−QQ∗A‖.

Note: The classical Golub-Businger algorithm follows this pattern. It finds Q in Step 3
via direct orthogonalization of the columns of A via, e.g., Gram-Schmidt.

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.
Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors r1, r2, . . . , rk ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = A r1, y2 = A r2, . . . , yk = A rk ∈ Rm.

3. Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that

Span(q1, q2, . . . , qk) = Span(y1, y2, . . . , yk).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then Span{qj}kj=1 = Ran(A) with probability 1.

What is perhaps surprising is that even in the general case, {qj}kj=1 often does almost
as good of a job as the theoretically optimal vectors (which happen to be the k leading
left singular vectors).

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.
Solving the primitive problem via randomized sampling — intuition:

1. Draw a random matrix R ∈ Rn×k.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form a “sample” matrix Y = AR ∈ Rm×k.

3. Form an orthonormal matrix Q ∈ Rm×k such that Y = QR.
For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then A = QQ∗A with probability 1.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix R. R = randn(n,k)

2. Form the m× k sample matrix Y = AR. Y = A * R

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of the small matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

6. Form the matrix U = QÛ. U = Q * Uhat

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix R. R = randn(n,k)

2. Form the m× k sample matrix Y = AR. Y = A * R

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of the small matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

6. Form the matrix U = QÛ. U = Q * Uhat

Observation: The proposed method interacts with A exactly twice:
• The matrix-matrix multiplication on line 2: Y = AR.
• The matrix-matrix multiplication on line 4: B = Q∗A.

The matrix-matrix multiplication is a very efficient operation. It executes well on many
different computing platforms — singlecore CPU, multicore CPU, distributed memory
parallel machines, cloud computers. Very fast on GPUs.

Next, we will demonstrate that one can actually avoid the second visit to A.
This allows us to process matrices so large they cannot be stored at all.

Single pass algorithms
Consider a randomized algorithm for computing the EVD of a symmetric matrix A:
Input: An n× n symmetric matrix A, and a target rank k.
Output: Rank-k factors U and D that form an approximate EVD A ≈ UDU∗

1. Draw an n× k Gaussian random matrix G.
2. Compute an n× k sample matrix Y = AG.
3. Compute an n× k ON matrix Q such that Y = QQ∗Y.
4. Project A down to C = Q∗AQ.
5. Compute the EVD of C (which is small): C = ÛDÛ

∗
.

6. Map back to original space U = QÛ.

We see that A is visited twice, in the computations high-lighted in red.

Single pass algorithms
Consider a randomized algorithm for computing the EVD of a symmetric matrix A:
Input: An n× n symmetric matrix A, and a target rank k.
Output: Rank-k factors U and D that form an approximate EVD A ≈ UDU∗

1. Draw an n× k Gaussian random matrix G.
2. Compute an n× k sample matrix Y = AG.
3. Compute an n× k ON matrix Q such that Y = QQ∗Y.

We claimed earlier that the columns of Q approximately span col(A), so
A ≈ QQ∗A.

Since A is symmetric, we also have A ≈ AQQ∗, so
A ≈ QQ∗AQQ∗ = QCQ∗,

where
C := Q∗AQ.

Right multiply the definition of C by Q∗G to get
CQ∗G = Q∗AQQ∗G ≈ {Use that AQQ∗ ≈ A} ≈ Q∗AG = Q∗Y.

Observe that the quantities in red are known and can be formed inexpensively.
As a consequence, we can determine C by solving the matrix equation:

C
(
Q∗G

)
=
(
Q∗Y

)
.

k × k k × k k × k

A single pass algorithm for computing an approximate EVD of a symmetric matrix:

Input: An n× n symmetric matrix A, and a target rank k.
Output: Rank-k factors U and D that form an approximate EVD A ≈ UDU∗

1. Draw an n× k Gaussian random matrix G.
2. Compute an n× k sample matrix Y = AG.
3. Compute an n× k ON matrix Q such that Y = QQ∗Y.
4. Solve the matrix equation C (Q∗Y) = (Q∗G) for C, enforcing C = C∗.
5. Compute the EVD of C (which is small): C = ÛDÛ∗.
6. Map back to original space U = QÛ.

Single pass algorithms
Now consider a general m× n matrix A. (Not necessarily symmetric.)
Input: An m× n matrix A, and a target rank k.
Output: Rank-k factors U, D, and V that form an approximate SVD A ≈ UDV∗

1. . . . ?
2. . . . ?
3. . . . ?
4. . . . ?
5. . . . ?
6. . . . ?

Our old approach started:
1. Draw an n× k Gaussian random matrix G.
2. Compute an n× k sample matrix Y = AG.
3. Compute an n× k ON matrix Q such that Y = QQ∗Y.
While the information in G and Y contains everything we need for a symmetric matrix,
this simply is not true for a general matrix.
We have no idea about the directions of the right singular vectors!

Single pass algorithms
Now consider a general m× n matrix A. (Not necessarily symmetric.)
Input: An m× n matrix A, and a target rank k.
Output: Rank-k factors U, D, and V that form an approximate SVD A ≈ UDV∗

1. Draw two Gaussian random matrices Gc of size n× k and Gr of size m× k.
2. Form two sampling matrices Yc = AGc and Yr = A∗Gr. This can be done in one pass!!
3. Compute two basis matrices Qc = orth(Yc) and Qr = orth(Yr).

The columns of Qc and Qr form approximate bases for the column and row spaces of A,
respectively, so

A ≈ QcQ∗cAQrQ∗r = QcCQ∗r ,
where

(1) C := Q∗cAQr.

First right multiply (1) by Q∗rGc to obtain

(2) CQ∗rGc = Q∗cAQrQ∗rGc ≈ {Use that AQrQ∗r ≈ A} ≈ Q∗cAGc = Q∗cYc.

Next left multiply (1) by G∗rQc to obtain

(3) G∗rQcC = G∗rQcQ∗cAQr ≈ {Use that QcQ∗cA ≈ A} ≈ G∗rAQr = Y∗rQr.

Finally, define C as the least-square solution of the two equations(
G∗rQc

)
C =

(
Y∗rQr

)
and C

(
Q∗rGc

)
=
(
Q∗cYc

)
.

A single pass algorithm for computing an approximate SVD of a general matrix:

Input: An m× n matrix A, and a target rank k.
Output: Rank-k factors U, D, and V that form an approximate SVD A ≈ UDV∗

1. Draw two Gaussian random matrices Gc of size n× k and Gr of size m× k.
2. Form two sampling matrices Yc = AGc and Yr = A∗Gr.

Step 2 can be executed in one pass over the matrix.

3. Compute two basis matrices Qc = orth(Yc) and Qr = orth(Yr).
4. Determine C by solving

(
G∗rQc

)
C =

(
Y∗rQr

)
and C

(
Q∗rGc

)
=
(
Q∗cYc

)
for C.

5. Compute the SVD of C (which is small): C = ÛDV̂∗.
6. Map back to original space U = QcÛ and V = QrV̂.

Single pass (“streaming”) algorithms:

A is symmetric: A is not symmetric:

Generate a random matrix G. Generate random matrices Gc and Gr.

Compute a sample matrix Y. Compute sample matrices Yc = AGc and Yr = A∗Gr.

Find an ON matrix Q Find ON matrices Qc and Qr

such that Y = QQ∗Y. such that Yc = QcQ∗c Yc and Yr = QrQ∗r Yr.

Solve for C the linear system Solve for C the linear systems
Q∗Y = C (Q∗G).

(
G∗rQc

)
C =

(
Y∗rQr

)
and C

(
Q∗rGc

)
=
(
Q∗cYc

)
Factor C so that C = Û D Û∗. Factor C so that C = Û D V̂∗.

Form U = QÛ. Form U = Qc Û and V = Qr V̂.

Output: A ≈ UDU∗ Output: A ≈ UDV∗

References: Woolfe, Liberty, Rokhlin, and Tygert (2008), Clarkson and Woodruff (2009),
Halko, Martinsson and Tropp (2009).

Cost of randomized methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomized
method described also has O(mnk) cost, but with a much lower pre-factor since the
matrix-matrix multiply is very fast. (The price we pay is some reduction in accuracy.)

It gets better: The cost can be reduced to O(mnlog k)!The key is to replace the Gaussian
random matrix by a “structured” random matrix. For instance, R can be a sub-sampled
randomized Fourier transform, which can be applied rapidly using variations of the FFT.

Example of a subsampled random Fourier Transform (SRFT)

R = D F S.
n× k n× n n× n n× k

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fpq =
1√
n
e−2πi(p−1)(q−1)/n.

• S is a matrix whose entries are all zeros except for a single, randomly placed 1 in
each column. (So the action of S is to draw k columns at random from DF.)

References: Ailon and Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006).

To achieve overall complexity O(mn log(k)), we need to use the “single-pass” scheme so
as to replace both matrix-matrix multiplications involving A by “fast” operations.
Input: An m× n matrix A, and a rank k.
Output: Matrices U, V, D that form a rank-k SVD such that A ≈ UDV∗.

1. Generate SRFT’s Rc and Rr of sizes n× k, and m× k.

2. Form the sample matrices Yc = ARc and Yr = A∗Rr.

3. Find ON matrices Qc and Qr such that Yc = QcQ∗c Yc and Yr = QrQ∗r Yr.

4. Solve for the k × k matrix C the systems(
Q∗c Yc

)
= C (Q∗r Rc) and

(
Q∗r Yr

)
= C∗ (Q∗c Rr).

5. Compute the SVD of the small matrix C = Û D V̂∗ (and truncate if desired).

6. Form U = Qc Û and V = Qr V̂.

Observation 1: Forming ARc and A∗Rr in Step 2 has cost O(mn log(k)).

Observation 2: All other steps cost at most O((m + n) k2).

Note: In Lecture 2, we will present a slightly different O(mn log k) algorithm based on
the interpolative decomposition.

Practical speed of O(mn log k) complexity randomized SVD

Consider the task of computing a rank-k SVD of a matrix A of size n× n.

t(direct)Time for classical (Golub-Businger) method — O(k n2)

t(srft) Time for randomized method with an SRFT — O(log(k)n2)

t(gauss)Time for randomized method with a Gaussian matrix — O(k n2)

t(svd) Time for a full SVD — O(n3)

We will show the

acceleration factors: t(direct)

t(srft)
t(direct)

t(gauss)
t(direct)

t(svd)

for different values of n and k.

10
1

10
2

10
3

0

1

2

3

4

5

6

7

10
1

10
2

10
3

0

1

2

3

4

5

6

7

10
1

10
2

10
3

0

1

2

3

4

5

6

7

k k k

n = 1 024 n = 2 048 n = 4 096

t(direct)/t(gauss)

t(direct)/t(srft)
t(direct)/t(svd)

SRFT speedup

Gauss speedup

Full SVD

Ac
ce

le
ra
tio

n
fa
ct
or

Observe: Large speedups (up to a factor 6!) for moderate size matrices.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix R. R = randn(n,k)

2. Form the m× k sample matrix Y = AR. Y = A * R

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of the small matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

6. Form the matrix U = QÛ. U = Q * Uhat

Notes:
• The algorithm interacts with A only via the matrix-matrix multiplication.

• This simple algorithm works well for many different types of problems. A could be
dense or sparse. It could be stored in RAM, on a hard drive, on a distributed
memory parallel computer, on a GPU, etc.

• Today, we will discuss costs and accuracy of the method. We will also describe
randomized techniques for “structure preserving” factorizations.

• On Thursday, we will discuss the mathematical theory, and describe other
applications of randomized projections, and “Johnson-Lindenstrauss” techniques.

Cost of randomized methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomized
method described also has O(mnk) cost, but are very fast due to the efficiency of the
matrix-matrix multiplication. However, the cost can be reduced to O(mnlog k) if a
structured random matrix is used. For instance, R can be a sub-sampled randomized
Fourier transform, which can be applied rapidly using variations of the FFT.
Case 2 — A is given as an array of numbers on disk (“large matrix”):
In this case, the relevant metric is memory access. Randomized methods access A via
sweeps over the entire matrix. With slight modifications, the randomized method can be
executed in a single pass over the matrix. High accuracy can be attained with a small
number of passes (say two, or five).
(In contrast, classical (deterministic) methods require “random” access to matrix elements...)

Case 3 — A and A∗ can be applied fast (“structured matrix”):
Think of A sparse, or sparse in the Fourier domain, or amenable to the Fast Multipole
Method, etc. The classical competitor is in this case “Krylov methods”. Randomized
methods tend to be more robust, and easier to implement in parallel environments. They
are more easily blocked to reduce communication. However, Krylov methods sometimes
lead to higher accuracy.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Let us first investigate some numerical examples. Then we will survey some rigorous
mathematical results that provide bounds on the error and explain some of the
phenomena we will see in the examples. (We outline the proofs in Lecture 3.)

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by a different instantiation
of the proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by a different instantiation
of the proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue lines indicate the
actual errors ek incurred
by 20 instantiations of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue lines indicate the
actual errors ek incurred
by 20 instantiations of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 3:

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.

!!
!!
!!

x)
l

p(x)
j

67
58
72
69
53
76
90
74
52

p(x)
i
=

p(x)
k

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

p(

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
The errors are huge, and the estimated eigenvalues are much too small.

Example 4: “Eigenfaces”

We next process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

0 20 40 60 80 100
10

0

10
1

10
2

0 20 40 60 80 100
10

0

10
1

10
2

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below bythe singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Bound on the expectation of the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 2, then

E‖A−QQ∗A‖Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Ref: Halko, Martinsson, Tropp, 2009 & 2011

Observations:

• The error depends only on the singular values of A.

• The error does not depend on the leading k singular values {σj}kj=1 at all.

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤

1 + 16

√
1 +

k
p + 1

σk+1 + 8
√

k + p
p + 1

∑
j>k

σ2j

1/2

,

except with probability at most 3e−p.

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤
(
1 + 6

√
(k + p) · p logp

)
σk+1 + 3

√
k + p

∑
j>k

σ2j

1/2

,

except with probability at most 3p−p.

Let us look at the error bound a little closer:

E||A− Acomputed
k+p || ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

 n∑
j=k+1

σ2j

1/2

.

Case 1 — the singular values decay rapidly: If (σj) decays sufficiently rapidly that(∑
j>k σ

2
j

)1/2
≈ σk+, then we are fine — a minimal amount of over-sampling (say p = 5

or p = k) drives the error down close to the theoretically minimal value.

Case 2 — the singular values do not decay rapidly: In the worst case, we have∑
j>k

σ2j

1/2

∼
√
n− k σk+1.

If n is large, and σk+1/σ1 is not that small, we could lose all accuracy.

This is a common situation when you analyze noisy data. If there is, say, 5%

noise so that σj ≈ 0.05‖A‖ for j > k, then

min(m,n)∑
j=k+1

σ2j

1/2

≈ 0.05‖A‖
√
n!

Power method for improving accuracy:

The error depends on how quickly the singular values decay.

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (AA∗)qA has the same left singular vectors as A, and its singular
values are

σj((AA∗)qA) = (σj(A))2q+1.

Much faster decay — so let us use the sample matrix

Y = (AA∗)qAG

instead of
Y = AG.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also
similar to “block power method,” and “block Lanczos.”

Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× ` random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× ` sample matrix Y = (AA∗)qAR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, with Acomputed = UDV∗, the expectation of the error satisfies:

(4) E
[
‖A− Acomputed‖

]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)
σk+1(A).

Reference: Halko, Martinsson, Tropp (2011).

• The improved accuracy from the modified scheme comes at a cost;
2q + 1 passes over the matrix are required instead of 1.
However, q can often be chosen quite small in practice, q = 2 or q = 3, say.

• The bound (4) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.

A numerically stable version of the “power method”:

Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.

Draw an n× ` Gaussian random matrix R.
Set Q = orth(AR)
for i = 1, 2, . . . , q
W = orth(A∗Q)

Q = orth(AW)

end for
B = Q∗A
[Û, D, V] = svd(B)
U = QÛ.

Note: Algebraically, the method with orthogonalizations is identical to the “original”
method where Q = orth((AA∗)qAR).
Note: This is a classic subspace iteration.
The novelty is the error analysis, and the finding that using a very small q is often fine.
(In fact, our analysis allows q to be zero. . .)

Example 3 (revisited):

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.

!!
!!
!!

x)
l

p(x)
j

67
58
72
69
53
76
90
74
52

p(x)
i
=

p(x)
k

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

p(

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
The errors for q = 0 are huge, and the estimated eigenvalues are much too small.
But: The situation improves very rapidly as q is cranked up!

Example 4 (revisited): “Eigenfaces”

We next process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

0 20 40 60 80 100
10

0

10
1

10
2

0 20 40 60 80 100
10

0

10
1

10
2

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.
But: The situation improves very rapidly as q is cranked up!

Interpolative and CUR decompositions: The basic column ID

[This section has strong connections to the lectures of Petros Drineas.]

Any matrix A of size m× n and rank k, where k < min(m,n), admits a so call
“interpolative decomposition (ID)” which takes the form

(5)
A = C Z,

m× n m× k k × n
where the matrix C is given by a subset of the columns of A and where Z is
well-conditioned in a sense that we will make precise shortly. The ID has several
advantages, as compared to, e.g., the QR or SVD factorizations:
• If A is sparse or non-negative, then C shares these properties.
• The ID requires less memory to store than either the QR or the SVD.
• Finding the indices associated with the spanning columns is often helpful in data
interpretation.

One shortcoming of the ID is that when A is not of precisely rank k, then the
approximation error by the best possible rank-k ID can be substantially larger than the
theoretically minimal error. (In fact, the ID and the column pivoted QR factorizations are
closely related, and they attain exactly the same minimal error.)

Interpolative and CUR decompositions: Three flavors of IDs

Recall the column-ID:

(6)
A = C Z,

m× n m× k k × n
where C = A(:, Js) holds a subset of k columns of A.
“Use k columns to span the column space of A.”

There is an analogous row-ID:

(7)
A = X R,

m× n m× k k × n
where R = A(Is, :) holds a subset of k rows of A.
“Use k rows to span the row space of A.”

Finally, there is a double-sided ID:

(8)
A = X Askel Z,

m× n m× k k × k k × n
where Askel = A(Is, Js) is a k × k submatrix of A.
“Use k columns to span the column space and k rows to span the row space.”

Interpolative and CUR decompositions: Connection between ID and CUR

Recall from the previous slide the double-sided ID:

(9)
A = X Askel Z,

m× n m× k k × k k × n
where Askel = A(Is, Js) is a k × k submatrix of A. Also recall from the lectures by Petros
Drineas the CUR decomposition:

(10)
A = C U R,

m× n m× k k × k k × n
where C = A(:, Js) and R = A(Is, :).
Both (9) and (10) use the rows identified by Is as a basis for the row-space, and the
columns identified by Js as a basis for the column space. Both of them share
advantages in terms of preserving properties of A (sparsity, non-negativity, etc) and in
enabling data interpretation. For sparse matrices, the CUR is more storage efficient.
(Although with a slight twist, the storage requirements of the ID can match those of
CUR.) In situations where A(Is, Js) is well-conditioned, either factorization can be used
without difficulty. However, when A(Is, Js) is ill-conditioned, the double-sided ID is a
stable decomposition that is more immune to the effects of round-off errors and other
numerical problems. Recall that common formulas for the “link matrix” U include:

U = A(Is, Js)
−1, or U = C†AR†.

Interpolative and CUR decompositions: Connection to column pivoted QR

Let A be an m× n matrix whose columns {aj}nj=1 ∈ Rm approximately lie in a space of
dimension k.

Question: How do you find an index set Js s.t. A(:, Js) forms a good basis for Col(A)?

Optimal answer: Js is the index set that maximizes the volume spanned by the vectors
A(:, Js). Very expensive to find!

Leverage scores: Randomized sampling using carefully chosen sampling weights
provides an elegant solution with strong theoretical results in support. See lectures by
Petros Drineas.

Column pivoted QR (CPQR): The problem is analogous to finding a basis for
span{aj}nj=1. The classical text book solution is to apply Gram-Schmidt. This works
quite well in most circumstances. It is communication intensive, however, so not well
suited for very large matrices. The theory on approximation errors is complex, and in
certain ways unsatisfactory.

Randomized projection followed by CPQR: Works very well in practice, slightly
weaker theory. Well suited for very large matrices.

Deriving a column ID from a partial column pivoted QR factorization

Recall that the Gram-Schmidt process can be described conveniently via the QR
factorization. To be precise, after k steps of the Gram-Schmidt process, we have
determined a factorization

(11)
A(:, J) = Q1

[
R11 R12

]
+
[

0 B
]
,

m× n m× k k × k k × (n− k) m× k m× (n− k)
where J is a permutation of the indices [1,2, . . . ,n], where R11 is upper triangular, and
where B is a remainder matrix that is small in magnitude. Let us partition the index vector

J = [Js Jrem],

so that Js is a vector identifying the k chosen “pivot columns.” Then by construction

A(:, Js) = Q1R11.

Now let P be the permutation matrix for which A(:, J) = AP. Then (11) can be written

AP = Q1R11
[
I R−111R12

]
+
[
0 B

]
.

Right multiplying by P∗ (recall that PP∗ = I since P is unitary) we get

A = A(:, Js)︸ ︷︷ ︸
=:C

[
I R−111R12

]
P∗︸ ︷︷ ︸

=:Z

+
[
0 B

]
P∗.

Computing a double-sided ID, or a CUR decomposition

Given an m× n matrix A, we seek to compute a double-sided ID or CUR decomposition.
Step 1: Compute a column ID of A via column pivoted Gram-Schmidt:

(12)
A = C Z + E,

m× n m× k k × n m× n
where C = A(:, Js) is a subset of k columns of A, and E is small in magnitude.
Step 2: Execute Gram-Schmidt on the rows of C so that

(13)
C = X C(Is, :),

m× k m× k k × k
where Is identifies k pivot rows in C. The factorization (13) is exact since C has precisely
rank k. Now combine (12) and (13), observing that C(Is, :) = A(Is, Js) to obtain

(14)
A = X A(Is, Js) Z + E.

m× n m× k k × k k × n m× n
Step 3 — if a CUR is desired: Set R = A(Is, :) and C = A(:, Js) and solve the equation

(15)
U R = Z

k × k k × n k × n
for U (in a least squares sense). Then combining (12) and (15) we get A ≈ CUR.

Summary of deterministic techniques for computing ID and CUR decompositions
For an m× n matrix A that is stored in RAM, we can compute structure preserving
factorizations as follows:

Column-ID: Perform k steps of Gram-Schmidt on the columns of A.

Row-ID: Perform k steps of Gram-Schmidt on the rows of A.

Double-sided-ID: Perform k steps of G-S on the columns of A to form the ID A ≈ CZ.
Then perform k steps of Gram-Schmidt on the rows of the resulting (thin) matrix C.

CUR: Form a double-sided ID A ≈ XA(Is, Js)Z. Then set R := A(Is, :) and C := A(:, Js).
Finally solve UR = Z for U.

The slow step is in every case the initial k steps of G-S on the columns/rows of A.

Question: What if A does not fit in RAM? Then Gram-Schmidt becomes impossible, or
at least prohibitively slow.

Caveat: Care must be taken in implementing the algorithms described. Orthonormality must be strictly

enforced to avoid problems due to floating point arithmetic.

Randomized algorithms for computing ID and CUR decompositions

Theorem: Let A be an m× n matrix of rank k. Suppose:
(1) We have by some means computed a factorization

A = Y W.

m× n m× k k × n
(2) We have computed a row ID of Y, so that

Y = X Y(Is, :).
m× k m× k k × k

Then, automatically, we also obtain a row ID for A:

A = X A(Is, :).
m× k m× k k × k

Perfect for randomization! We can find the matrix Y using randomized sampling:
1. Draw a Gaussian random matrix G of size n× k.
2. Form a sample matrix Y = AG.

3. Do nothing! You know now that with probability one:
A = Y Y†A.

m× n m× k k × n

Observation 1: You never need to form the matrix Y†A.
Observation 2: When A does not have exact rank k, over-sampling is required.

Recall the randomized ID:

1. Draw a Gaussian random matrix G of size n× (k + p).
2. Form a sample matrix Y = AG.
3. Form an ID of the n× (k + p) sample matrix: [X, Is] = ID_row(Y, k).

Question: Why is it that this strangely simple algorithm works?

Loosely speaking, the reason is that the linear dependencies between the rows of Y are
the same as the linear dependencies between the rows of A.

While not providing a proof that the procedure works, it might help intuition to recall that
Gaussian random maps preserve distances in expectation. In other words, if G is an
n× ` Gaussian matrix, and if x ∈ R1×n, then

E
[
‖xG‖2

]
= ` ‖x‖2.

As ` increases, the probability distribution concentrates tightly around ` ‖x‖2. This
implies that, with Y = AG, we have

E
[
‖Y(i, :)− Y(j, :)‖2

]
= ` ‖A(i, :)− A(j, :)‖2, ∀i, j ∈ {1,2, . . . ,n}.

Note: This result is a special case of a much stronger theorem presented in
R. Vershynin’s lecture on Tuesday.

Algorithm: Basic Randomized ID

Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p.

Outputs: An m× k interpolation matrix X and an index vector Is such that

A ≈ X A(Is, :).
m× n m× k k × n

(1) G = randn(n, k + p);
(2) Y = AG;
(3) Form an ID of the n× (k + p) sample matrix: [X, Is] = ID_row(Y, k).

This step is executed via Gram-Schmidt on the rows of Y (which is thin).

This is a very simple algorithm that works well when the singular values of A decay
rapidly. It has complexity O(mnk) for a dense matrix but is very fast in practice since the
only step with O(mnk) complexity is a single matrix-matrix multiplication.

Algorithm: Basic Randomized ID — accuracy enhanced

Inputs: An m × n matrix A, a target rank k, an over-sampling parameter p (say
p = 10), and a small integer q denoting the number of power iterations taken.

Outputs: An m× k interpolation matrix X and an index vector Is such that

A ≈ X A(Is, :).
m× n m× k k × n

(1) G = randn(n, k + p);
(2) Y = AG;
(3) for j = 1 : q
(4) Z = A∗Y;
(5) Y = AZ;
(6) end for
(7) Form an ID of the n× (k + p) sample matrix: [X, Is] = ID_row(Y, k).

This step is executed via Gram-Schmidt on the rows of Y (which is thin).

The lines in red are new compared to the “basic” scheme.
This method provides better accuracy for matrices whose singular values decay slowly.
In practice, re-orthonormalization of the sample matrices between iterations may be
called for in order to avoid loss of accuracy due to round-off errors.

Algorithm: Fast randomized ID

Inputs: An m× n matrix A, a rank k, an over-sampling parameter p (say p = k).

Outputs: An m× k interpolation matrix X and an index vector Is such that

A ≈ X A(Is, :).
m× n m× k k × n

1. Form an n× (k + p) SRFT R.
2. Form the sample matrix Y = AR.
3. Form an ID of the n× (k + p) sample matrix: [X, Is] = ID_row(Y, k).

An O(mn log k) algorithm for computing an interpolative decomposition of A.

Algorithm: Fast randomized SVD

Inputs: An m× n matrix A, a rank k, an over-sampling parameter p (say p = k).

Outputs: Matrices U, D, and V in an approximate rank-(k + p) SVD of A. (I.e. U and
V are orthonormal, D is diagonal, and A ≈ UDV∗.)

1. Form an n× (k + p) SRFT R.
2. Form the sample matrix Y = BR.
3. Form an ID of the sample matrix Y: [X, Is] = ID_row(Y, k).
4. Compute the QR decomposition of the interpolation matrix [Q,R] = qr(X).
5. Extract k + p rows of A: Arows = A(Is, :).
6. Multiply R and Arows to form the (k + p)× n matrix F = RArows.
7. Decompose the matrix F in a singular value decomposition [Û, D, V] = svd(F).
8. Form U = QÛ.

An O(mn log k) algorithm for computing a partial SVD. If an SVD of exactly rank k is
desired, then truncate the factors computed in Step (7).

Theory

Bound on the expectation of the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 2, then

E‖A−QQ∗A‖Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Ref: Halko, Martinsson, Tropp, 2009 & 2011

Proofs — Overview:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

We seek to bound the error ek = ek(A,R) = ‖A−QQ∗A‖, which is a random variable.

1. Make no assumption on R. Construct a deterministic bound of the form

‖A−QQ∗A‖ ≤ · · ·A · · ·R · · ·

2. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E
[
‖A−QQ∗A‖

]
≤ · · ·A · · ·

3. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in R to
get that

‖A−QQ∗A‖ ≤ · · ·A · · ·

holds with probability at least · · · .

Part 1 (out of 3) — deterministic bound:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Partition the SVD of A as follows:
k n− k

A = U
[
D1

D2

][
V∗1
V∗2

]
k

n− k
Define R1 and R2 via

R1 = V∗1 R
k × (k + p) k × n n× (k + p)

and
R2 = V∗2 R.

(n− k)× (k + p) (n− k)× n n× (k + p)

Theorem: [HMT2009,HMT2011] Assuming that R1 is not singular, it holds that

|||A−QQ∗A|||2 ≤ |||D2|||
2︸ ︷︷ ︸

theoretically minimal error
+ |||D2R2R

†
1|||

2.

Here, ||| · ||| represents either `2-operator norm, or the Frobenius norm.
Note: A similar result appears in Boutsidis, Mahoney, Drineas (2009).

Recall: A = U
[
D1 0
0 D2

][
V∗1
V∗2

]
,
[
R1
R2

]
=

[
V∗1R
V∗2R

]
, Y = AR, P projn onto Ran(Y).

Thm: Suppose D1R1 has full rank. Then ‖A− PA‖2 ≤ ‖D2‖
2 + ‖D2R2R

†
1‖

2.

Proof: The problem is rotationally invariant⇒We can assume U = I and so A = DV∗.

Simple calculation: ‖(I− P)A‖2 = ‖A∗(I− P)2A‖ = ‖D(I− P)D‖.

Ran(Y) = Ran
([

D1R1
D2R2

])
= Ran

([
I

D2R2R
†
1D
−1
1

]
D1R1

)
= Ran

([
I

D2R2R
†
1D
−1
1

])

Set F = D2R2R
†
1D
−1
1 . Then P =

[
I
F

]
(I + F∗F)−1[I F∗]. (Compare to Pideal =

[
I 0
0 0

]
.)

Use properties of psd matrices: I− P 4 · · · 4

[
F∗F −(I + F∗F)−1F∗

−F(I + F∗F)−1 I

]

Conjugate by D to get D(I− P)D 4

[
D1F∗FD1 −D1(I + F∗F)−1F∗D2

−D2F(I + F∗F)−1D1 D2
2

]

Diagonal dominance: ‖D(I− P)D‖ ≤ ‖D1F∗FD1‖ + ‖D2
2‖ = ‖D2R2R

†
1‖

2 + ‖D2‖2.

Part 2 (out of 3) — bound on expectation of error when R is Gaussian:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Recall: |||A−QQ∗A|||2 ≤ |||D2|||2 + |||D2R2R
†
1|||

2, where R1 = V∗1R and R2 = V∗2R.

Assumption: R is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices R1 and R2 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . .).)

What is the distribution of R†1 when R1 is a k × (k + p) Gaussian matrix?

If p = 0, then ‖R†1‖ is typically large, and is very unstable.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 0

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=0

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 2

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=2

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 5

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=5

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 10

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=10

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of k × (k + p) Gaussian matrices.

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p = 0
p = 2
p = 5
p = 10

k = 20 k = 40 k = 60

1/σmin is plotted against σmax.

Simplistic proof that a rectangular Gaussian matrix is well-conditioned:
Let G denote a k × ` Gaussian matrix where k < `. Let “g” denote a generic N (0,1)
variable and let “rj” denote a generic random variable distributed like the square root of a
χ2j variable. Then

G ∼

g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... · · ·

∼

r` 0 0 0 0 0 · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... · · ·

∼

r` 0 0 0 0 0 · · ·
rk−1 g g g g g · · ·
0 g g g g g · · ·
0 g g g g g · · ·
... · · ·

∼

r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 g g g g · · ·
0 g g g g · · ·
... · · ·

∼

r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 g g g · · ·
0 0 g g g · · ·
... · · ·

∼ · · · ∼

r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 r`−2 0 0 · · ·
0 0 rk−3 r`−3 0 · · ·
... · · ·

Gershgorin’s circle theorem will now show that G is highly likely to be well-conditioned if,
e.g., ` = 2k. More sophisticated methods are required to get to ` = k + 2.

Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)

Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R
†
1‖

2, where R1 and R2 are Gaussian and R1 is
k × k + p.

Theorem: E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Proof: First observe that

E‖A−QQ∗A‖ = E
(
‖D2‖

2 + ‖D2R2R
†
1‖

2)1/2 ≤ ‖D2‖ + E‖D2R2R
†
1‖.

Condition on R1 and use Proposition 1:

E‖D2R2R
†
1‖ ≤ E

[
‖D2‖ ‖R

†
1‖F + ‖D2‖F ‖R

†
1‖
]

≤ {Hölder} ≤ ‖D2‖
(
E‖R†1‖

2
F
)1/2

+ ‖D2‖FE‖R†1‖.

Proposition 2 now provides bounds for E‖R†1‖
2
F and E‖R†1‖ and we get

E‖D2R2R
†
1‖ ≤

√
k

p− 1‖D2‖ +
e
√

k + p
p ‖D2‖F =

√
k

p− 1σk+1 +
e
√

k + p
p

∑
j>k

σ2j

1/2

.

Some results on Gaussian matrices. Adapted from HMT2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)

Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R†1‖2, where R1 and R2 are Gaussian and R1 is k × k + p.
Theorem: With probability at least 1− 2 t−p − e−u2/2 it holds that

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

.

Proof: Set Et =

{
‖R1‖ ≤

e
√

k+p
p+1 t and ‖R†1‖F ≤

√
3k
p+1 t

}
. By Proposition 4: P(Ec

t) ≤ 2 t−p.

Set h(X) = ‖D2XR†1‖. A direct calculation shows

|h(X)− h(Y)| ≤ ‖D2‖ ‖R†1‖ ‖X − y‖F.

Hold R1 fixed and take the expectation on R2. Then Proposition 1 applies and so

E
[
h
(
R2
) ∣∣ R1

]
≤ ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖.

Now use Proposition 3 (concentration of measure)

P
[
‖D2R2R†1‖︸ ︷︷ ︸

=h(R2)

> ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖︸ ︷︷ ︸
=E[h(R2)]

+ ‖D2‖ ‖R†1‖︸ ︷︷ ︸
=L

u
∣∣ Et

]
< e−u2/2.

When Et holds true, we have bounds on the “badness” of R†1:

P
[
‖D2R2R†1‖ > ‖D2‖

√
3k

p + 1t + ‖D2‖F
e
√

k + p
p + 1 t + ‖D2‖

e
√

k + p
p + 1 ut

∣∣ Et

]
< e−u2/2.

The theorem is obtained by using P(Ec
t) ≤ 2 t−p to remove the conditioning of Et.

Adaptive rank determination
How to proceed when the rank of a matrix is not known in advance.

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m× n matrix of exact rank k, where k is unknown.
We seek an m× k matrix Q whose columns form an ON basis for col(A).

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observation 1: While i ≤ k, we know that zi 6= 0 with probability 1.

Observation 2: Once you come to step i = k + 1, the vector zk+1 must be zero!

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m× n matrix of exact rank k, where k is unknown.
We seek an m× k matrix Q whose columns form an ON basis for col(A).

(*) Q = [];
(*) for i = 1, 2, 3, . . .
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) if

[
zi = 0

]
then

(*) The rank is k = i − 1.
(*) break
(*) else
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end if
(*) end for

Adaptive rank determination — vector-by-vector technique
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance. We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observe that
zi = yi −QQ∗yi = Ari −QQ∗Ari =

(
A−QQ∗A

)
ri.

In consequence, since ri is Gaussian,

E
[
‖zi‖2

]
= ‖A−QQ∗A‖2Fro.

Observation 1: Once you observe several consecutive zi such that, say, ‖zi‖ ≤ ε/2, it
will “likely” be the case that ‖A−QQA‖Fro ≤ ε.
Observation 2: You need to block the algorithm for computational efficiency.

Adaptive rank determination
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance, and let b be a “block size.”
We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(*) Q = [];
(*) for i = 1, 2, 3, . . .
(*) Draw an n× b Gaussian random matrix Ri.
(*) Compute an m× b sample matrix Yi = ARi.
(*) Project the sample columns away from the basis computed Zi = Yi −QQ∗Yi.
(*) Orthonormalize the samples [Qi, Ri] = qr(Zi,0). (Unpivoted QR factorization!)
(*) if

[
“several consecutive columns of Ri are small”

]
then

(*) Add the appropriate number of columns of Qi to Q.
(*) break
(*) else
(*) Add the new element to the basis Q =

[
Q Qi

]
.

(*) end if
(*) end for

Warning: Re-orthogonalization is often needed to combat floating point errors.

Adaptive rank determination — with updating
Consider the special case that A can be updated, e.g. if it is dense and stored in RAM.
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance, and let b be a “block size.”
We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(1) Q = []; B = [];
(2) while ‖A‖ > ε

(3) Draw an n× b Gaussian matrix Ri.
(4) Compute the m× b matrix [Qi,∼] = qr(ARi,0).
(5) Bi = Q∗i A
(6) Q = [Q Qi]

(7) B =

[
B
Bi

]
(8) A = A−QiBi
(9) end while

A blocked and randomized variation of the classical “modified Gram-Schmidt” algorithm.
Warning: Re-orthogonalization is often needed to combat floating point errors.

Adaptive rank determination — with updating
Consider the special case that A can be updated, e.g. if it is dense and stored in RAM.
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance, and let b be a “block size.”
We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(1) Q = []; B = [];
(2) while ‖A‖ > ε

(3) Draw an n× b Gaussian matrix Ri.
(4) Compute the m× b matrix Qi = qr(ARi,0).
(5) Bi = Q∗i A
(6) Q = [Q Qi]

(7) B =

[
B
Bi

]
(8) A = A−QiBi
(9) end while

Observation: Almost all the work is done by matrix-matrix multiplies.
This algorithm is ideal for running on modern CPUs and GPUs!

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 s

e
c
o
n
d
s

n

Time for compression of n x n matrix. k=100 kstep=20

column pivoted QR

randomized QB (q=0)

randomized QB (q=1)

randomized QB (q=2)

randomized QB on GPU (q=0)

randomized QB on GPU (q=1)

randomized QB on GPU (q=2)

full qr using LAPACK

Everything is implemented in Matlab. The “full qr” line refers to Matlab built in qr.
CPU = Intel Xeon E-1660 (6 cores, 3.3GHz). GPU = Tesla K40c (2880 cores, 12GB).
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 s

e
c
o
n
d
s

n

Time for compression of n x n matrix. k=200 kstep=40

column pivoted QR

rand− QB (q=0)

rand−QB (q=1)

rand−QB (q=2)

rand−QB on GPU (q=0)

rand−QB on GPU (q=1)

rand−QB on GPU (q=2)

full qr using LAPACK

Everything is implemented in Matlab. The “full qr” line refers to Matlab built in qr.
CPU = Intel Xeon E-1660 (6 cores, 3.3GHz). GPU = Tesla K40c (2880 cores, 12GB).
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.

Randomized algorithms for FULL factorizations: Column pivoted QR

Sp
ee

d-
up

of
HQ

RR
P
vs

dg
eq

p3
Versus netlib dgeqp3 Versus Intel MKL dgeqp3

N N

Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an N ×N matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

Randomized pre-conditioners
Question: Is it possible to build algorithms that combine the powerful dimension
reduction capability of randomized projections with the accuracy and robustness of
classical deterministic methods?

Putative answer: Yes — use a two-stage approach:

(A) Randomized pre-conditioner:
In a pre-computation, random projections are used to create low-dimensional
sketches of the high-dimensional data. These sketches are somewhat distorted, but
approximately preserve key properties to very high probability.

(B) Deterministic post-processing:
Once a sketch of the data has been constructed in Stage A, classical deterministic
techniques are used to compute desired quantities to very high accuracy, starting
directly from the original high-dimensional data.

It is often advantageous to add a final step of à posteriori error estimation.
This can typically be done very cheaply using randomized sampling.

Example 1 of two-stage approach: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal.

(A) Randomized pre-conditioner:
Use randomized projection methods to form an approximate basis for the range of
the matrix.

(B) Deterministic post-processing:
Restrict the matrix to the subspace determined in Stage A, and perform expensive
but accurate computations on the resulting smaller matrix.

Observe that distortions in the randomized projections are fine, since all we need is a
subspace the captures “most” of the range. Pollution from unwanted singular modes is
harmless, as long as we capture the dominant ones. The risk of missing the dominant
ones is for practical purposes zero.

Example 1 of two-stage approach: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal.

Fix an over-sampling parameter p. Say p = 10.

(A) Randomized pre-conditioner:
A.1 Draw an n× (k + p) Gaussian random matrix G. G = randn(n,k+p)

A.2 Form the m× (k + p) sample matrix Y = AG. Y = A * G

A.3 Form an m× (k + p) orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the (k + p)× n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

B.3 Form the matrix U = QÛ. U = Q * Uhat

(Truncate the last p terms in step B.2 to attain a factorization of precise rank k.)

Example 2 of two-stage approach: Nearest neighbor search in RD

Peter Jones, Andrei Osipov, Vladimir Rokhlin

Objective: Suppose you are given n points {xj}nj=1 in RD. The coordinate matrix is

X = [x1 x2 · · · xn] ∈ RD×n.

How do you find the k nearest neighbors for every point?

If D is “small” (say D ≤ 10 or so), then you have several options; you can, e.g, sort the
points into a tree based on hierarchically partitioning space (a “kd-tree”).
Problem: Classical techniques of this type get very expensive as D grows.

Simple idea: Use a random map to project onto low-dimensional space. This “sort of”
preserves distances. Execute a fast search there.

Improved idea: The output from a single random projection is unreliable. But, you can
repeat the experiment several times, use these to generate a list of candidates for the
nearest neighbors, and then compute exact distances to find the k closest among the
candidates.

Example 2 of two-stage approach: Nearest neighbor search in RD

Peter Jones, Andrei Osipov, Vladimir Rokhlin

Objective: Suppose you are given n points {xj}nj=1 in RD. The coordinate matrix is

X = [x1 x2 · · · xn] ∈ RD×n.

How do you find the k nearest neighbors for every point?

(A) Randomized probing of data:
Use a Johnson-Lindenstrauss random projection to map the n-particle problem in
RD (where D is large) to an n-particle problem in Rd where d ∼ logn. Run a
deterministic nearest-neighbor search in Rd and store a list of the ` nearest
neighbors for each particle (for simplicity, one can set ` = k). Then repeat the
process several times. If for a given particle a previously undetected neighbor is
discovered, then simply add it to a list of potential neighbors.

(B) Deterministic post-processing:
The randomized probing will result in a list of putative neighbors that typically
contains more than k elements. But it is now easy to compute the pairwise
distances in the original space RD to judge which candidates in the list are the k
nearest neighbors.

An observation:

The randomized methods presented are close in spirit to randomized algorithms such as:

• Randomized quick-sort.
(With variations: computing the median / order statistics / etc.)
• Routing of data in distributed computing with unknown network topology.
• Rabin-Karp string matching / verifying equality of strings.
• Verifying polynomial identities.

Many of these algorithms are of the type that it is the running time that is stochastic.
The quality of the final output is excellent.

The randomized algorithm that is perhaps the best known within numerical analysis is
Monte Carlo. This is somewhat lamentable given that MC is often a “last resort” type
algorithm used when the curse of dimensionality hits — inaccurate results are tolerated
simply because there are no alternatives.
(These comments apply to the traditional “unreformed” version of MC — for many
applications, more accurate versions have been developed.)

Concluding remarks:

• For large scale SVD/PCA of dense matrices, these algorithms are highly
recommended; they compare favorably to existing methods in almost every regard.

• The approximation error is a random variable, but its distribution is tightly
concentrated. Rigorous error bounds that are satisfied with probability 1− η where η
is a user set “failure probability” (e.g. η = 10−10).

• Randomized methods are even very competitive for full factorizations! (New!)

• We presented two instantiations of a “two-stage” algorithmic template:
Stage A: Randomized methods to develop a sketch of the data. “Where to look.”
Stage B: Highly accurate classical methods, operating on original data.
My guess: This two-stage approach is likely to find more uses!

• These lectures mentioned error estimators only briefly, but they are important.
Can operate independently of the algorithm for improved robustness.
Typically cheap and easy to implement. Used to determine the actual rank.

• The theory can be hard (at least for me), but experimentation is easy!
Concentration of measure makes the algorithms behave as if deterministic.

Lecture notes:

• Summary of lectures at: http://amath.colorado.edu/faculty/martinss/2016_PCMI/
Provides pointers to original papers and additional reading.
• Book manuscript:
Randomized methods for matrix computations and analysis of high dimensional data
A draft of first half available at: http://arxiv.org/abs/1607.01649

Feedback, suggestions, errata, etc, are very welcome!

Software:
• ID: http://tygert.com/software.html (ID, SRFT, CPQR, etc)

• RSVDPACK: https://github.com/sergeyvoronin (RSVD, randomized ID and CUR)

• HQRRP: https://github.com/flame/hqrrp/ (LAPACK compatible randomized CPQR)

Papers:
• Original paper: P.G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for the

approximation of matrices”. 2006 report YALEU/DCS/RR-1361, 2011 paper in ACHA.
• Survey: N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions.” SIAM Review, 2011.
• Much much more! Many authors. Several excellent surveys. See book manuscript and resources at:

http://amath.colorado.edu/faculty/martinss/2016_PCMI/

