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Abstract. This paper describes the mechanics of materials with periodic skele-
tal micro-structures. The principal technical results consist of certain Korn-type
inequalities for solutions to the elasto-static equilibrium equations; these inequal-
ities provide upper and lower bounds for the linear elastic strain energy in the
material. Using these bounds, existence and uniqueness results for the equations
of linear elastic equilibrium are derived, and certain asymptotic properties of the
solutions are described. Particular attention is paid to the question of when a
lattice structure can accurately be modelled as a pin-jointed truss, and when a
rigid-node frame model must be employed. A practical technique for how to dis-
tinguish between the two types of material is given, and the distinct differences
in their mechanical behavior are described.

1. Introduction

1.1. Motivation. In this paper we describe the mechanics of materials that have
a periodic skeletal micro-structure, called lattice materials. It has long been known
that through design of the micro-structural geometry, it is possible to engineer such
materials that have extreme or unusual properties but it is only during the last
decade that manufacturing technology has advanced sufficiently to allow industrial
scale production of materials of this kind. This development has prompted a surge
of interest from investigators who have proposed the design of, e.g. (i) materials that
block acoustic waves in certain frequency bands, Sigmund and Jensen [29], Ruzzene
and Scarpa [26], and Martinsson and Movchan [20], (ii) materials that have negative
Poisson’s ratios or negative thermal expansion coefficients, Lakes [14] and Sigmund
and Torquato [30], (iii) materials with very low stiffness-to-weight ratios, Gibson
and Ashby [13], (iv) materials with very high stiffness-to-weight ratios, Deshpande,
Fleck and Ashby [7] and Wallach and Gibson [33], and, (v) materials where the
nature of the micro-structure is used to construct multi-functional materials, Evans,
Hutchinson and Ashby [9].

The motivation for the research presented in this paper is twofold: (1) To ob-
tain the detailed quantitative description of the lattice equilibrium equation that is
necessary for the construction of fast numerical solvers, see e.g. [18]. (2) To answer
basic questions regarding the connection between the micro-structural geometry of
a lattice material and its macro-scopic properties. As a simple illustration of such
a question, consider the case of in-plane loads acting on the lattice materials in
Fig. 2.1. It is well known that structures B and C will be much stiffer than struc-
tures A and D since any deformation of B or C would require struts to change
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Figure 1.1. Examples of lattices. An irreducible unit cell is shaded.
Lattices A and C are mono-atomic, B and D are multi-atomic. Lat-
tices B and C are of truss type, A and D of frame type.

length, thus engaging their axial stiffness rather than their bending stiffness, see
Gibson and Ashby [13]. We call stiff materials such as B and C truss-materials and
soft materials such as A and D frame-materials. We will answer the question of how
to determine to which of these two classes a given geometry belongs.

1.2. Scope of the present paper and summary of main results. We study
the equations associated with the following three lattice models:

• Thermostatics of an infinite lattice: The equilibrium equation relates an
unknown field of nodal temperatures to a prescribed field of nodal heat
sources.

• Elastostatics of an infinite truss: The struts are modelled as axial springs
that are connected by pin-joints at the nodes. The equilibrium equation
relates a field of nodal displacements to a field of prescribed forces. In Rd,
the nodal potential has dimension d.

• Elastostatics of an infinite frame: The struts are modelled as beams with
both axial and bending stiffnesses. The beams are rigidly connected at
the nodes. The equilibrium equation relates a field of translational and
rotational nodal displacements to a prescribed field of forces and torques. In
Rd, the nodal potential has dimension d(d + 1)/2.

The equilibrium equations under consideration are defined on the integer lattice Zd

and are elliptic in nature. For the thermostatics problem, the lattice equation is
qualitatively similar to Poisson’s equation. For the elastostatics problem on truss
and frame lattices, the analogous continuum equations are the equations of classical
and micro-polar elasticity, respectively.

We consider only infinite periodic lattices but make very weak assumptions on the
local geometry. In fact, we prove that for heat conduction and the mechanical frame
model, the condition that the lattice is connected is both sufficient and necessary
for the equilibrium equation to be well-posed. For the mechanical truss model, the
corresponding condition is slightly more complex to state (although it is simple to
use in practise). We prove that the given condition is sufficient for well-posedness of
the equilibrium equation, and we conjecture that it is necessary, although this has
not yet been proved.
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Remark 1.1. Lattice equations on finite domains can be analyzed using a discrete
boundary formulation, see Saltzer [27, 28] and [18, 25]. Such a formulation relies on
the existence of a fundamental solution to the lattice equilibrium equation, which is
assured due to the Korn-type inequalities proved in this paper, see [21].

For each model mentioned above, we prove that the lattice equilibrium equation
is coercive and satisfies a Korn-type inequality. These inequalities are used to prove
that solutions exist and are unique (up to rigid body motions) as long as the load
satisfies modest decay conditions. Under slightly stronger conditions on the right
hand side, we construct an explicit inverse operator using Fourier techniques and
describe its basic properties. For mono-atomic lattices, the results presented are
closely analogous to the corresponding continuum theories (heat conduction, classi-
cal elasticity for truss problems and micro-polar elasticity for frame problems). For
multi-atomic lattices, additional effects such as solutions with intra-cell oscillations
are present.

Remark 1.2. The truss and the frame models are related as follows: The frame
model accurately captures the mechanics of any lattice material with slender struts.
However, this is a very complex model and for many lattice geometries, such as B
and C in Figure 1.1, the bending stiffnesses of the struts contribute only marginally
to the overall strength of the material. To a high degree of accuracy, they can simply
be ignored, which then leads to the truss model. Strict bounds on the modelling
error thus incurred can be constructed using a technique outlined in Section 7.5.

1.3. Mathematical apparatus. In this section we first give a brief review of one
way of using Fourier methods to study the continuum equations of elasticity. We
then describe how these methods can be modified to study the discrete equations
that describe elastic equilibrium on a lattice.

Consider static equilibrium of an infinite elastic body. Using standard tensor
notation, we let ui denote the (unknown) displacement field, fi the (prescribed)
body forces, Cijkl the constant stiffness tensor and x = [x1, . . . , xd] a point in Rd.
The equilibrium equation then reads

(1.1) −
d∑

i,k,l=1

Cijkl
∂2

∂xk∂xl
ui(x) = fj(x), ∀ x ∈ Rd.

For ξ = [ξ1, . . . , ξd] ∈ Rd, we introduce a Fourier transform

(1.2) û(ξ) =
∫

Rd

eix·ξu(x) dx,

and apply it to the equation (1.1) to obtain the alternative form

(1.3)
d∑

i,k,l=1

Cijkl ξk ξl ûi(ξ) = f̂j(ξ).

We then rewrite (1.3) as

(1.4) σ(ξ) û(ξ) = f̂(ξ), ∀ ξ ∈ Rd,
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by introducing the symbol σ(ξ) of the equilibrium operator. It is a d × d matrix
whose ij’th component is given by

(1.5) [σ(ξ)]ij :=
d∑

k,l=1

Cijkl ξk ξl.

Since the equation (1.4) is algebraic, it can trivially be solved; û(ξ) = σ(ξ)−1f̂(ξ).
Upon application of the Fourier inversion formula, we formally find that

(1.6) u(x) =
1

(2π)d

∫

Rd

e−ix·ξσ(ξ)−1f̂(ξ) dξ.

The questions of existence, uniqueness and stability of solutions to (1.4), and well-
posedness of the integral (1.6), all hinge on the identity

(1.7) ϕ · σ(ξ)ϕ ≥ c|ξ|2|ϕ|2, ∀ ϕ ∈ Cd,

which is a crude incarnation of Korn’s inequality.
When studying lattice materials, we employ a structural mechanics model so that

the unknown displacement field is defined by its nodal values. Considering a truss-
lattice with q nodes in the unit cell, we use m ∈ Zd as an index for a cell and let
u(m) ∈ Rqd denote the displacements of the q nodes in the cell. The equilibrium
equation then takes the form, cf. (1.1),

(1.8) [Au](m) = f(m), ∀ m ∈ Zd,

where f is the prescribed load and the operator A is a constant coefficient convo-
lution operator

[Au](m) =
∑

n∈B
A(n)u(m− n).

Here, B is a finite index set and the A(n)’s are matrices. (We use boldface italic
symbols to define functions on lattices and operators acting on such functions.)
Introducing a discrete Fourier transform

(1.9) ũ(ξ) = [Fu](ξ) =
∑

m∈Zd

eim·ξu(m), ∀ ξ ∈ (−π, π)d =: Id,

and applying it to both sides of (1.8) we obtain the diagonal form, cf. (1.4),

(1.10) σ(ξ)ũ(ξ) = f̃(ξ), ∀ ξ ∈ Id,

where the symbol of A is given by

(1.11) σ(ξ) =
∑

n∈B
ein·ξA(n).

Solving (1.10) and applying the inverse of (1.9) we find that

(1.12) u(m) =
1

(2π)d

∫

Id

e−in·ξσ(ξ)−1f̃(ξ) dξ.

In order to state the lattice equivalent of (1.7) it is necessary to split the displace-
ments associated with a cell into a cell-wise average and an intra-cell oscillation.
On the Fourier domain, this amounts to splitting a vector ϕ ∈ Cqd into an average

4



ϕa and a difference ϕd so that ϕ = ϕa + ϕd. Thus, ϕa belongs to a d-dimensional
subspace of Cqd. Then there exists a c > 0 such that

(1.13) ϕ · σ(ξ)ϕ ≥ c
(|ξ|2|ϕa|2 + |ϕd|2

)
, for all ϕ ∈ Cqd.

The proof that (1.13), and the analogous statement for frame lattices, hold is the
main contribution of the present work. Once these inequalities are established, it
is straight-forward to prove that (1.8) is well-posed and that the integral (1.12) is
well-defined under appropriate conditions on f .

In proving the coercivity result (1.13), three technical obstacles must be over-
come: (i) The mechanics of the average fields and the intra-cell oscillations must
be separated. (ii) A non-degeneracy condition that excludes lattice geometries that
can deform without any bars changing length (such as A and D in Figure 1.1) must
be devised and incorporated into the analysis of truss lattices. (iii) In the analysis
of frame lattices, the rotational degrees of freedom must be treated differently than
the translational ones.

Remark 1.3. The inequality (1.13) admits a detailed description of the singular
behavior of σ(ξ)−1 as ξ → 0. Recalling that small values of ξ in Fourier space
correspond to long range modes in physical space (where “long” is measured against
the cell size) we expect that the nature of this singularity determines the asymptotic
behavior of solutions to the equilibrium equation (1.8) as the lattice cell size tends
to zero. In fact, once the singular behavior of σ(ξ)−1 is known, it is possible to
construct continuum equations (so called “homogenized” equations) whose solutions
approximate the solution of the lattice equilibrium equation to arbitrary order of
accuracy. See [19] for details.

Remark 1.4. Equations of the form (1.8) also occur in the modelling of atomic
crystals and many other applications. The results presented are readily generalizable
to such models.

1.4. Context. The problem of finding the energy minimizer for a network prob-
lem can be approached from several different directions. In the current work, we
have decided to limit the analysis to the case of quadratic energy functionals (in
other words, the “small deformations” case) defined on periodic, infinite networks.
This allows us to make truly minimal assumptions on the geometry of the lattice.
(The generality is important since complicated multi-atomic lattices are frequently
encountered in applications.) Moreover, in this environment it was possible to ex-
tend the analysis of the conduction problem (which has been studied by several
authors, see, e.g. Vogelius [32]) to the case of mechanical lattices whose links have
both bending and torsional stiffnesses.

In contrast, the case of non-quadratic energy functionals, generally with more
restrictive geometric assumptions, has been studied by, e.g. Blanc, LeBris and Lions
[4], Braides and Gelli [5], and Connelly and Whiteley [6].

The question of when an infinite periodic truss structure is rigid has previously
been addressed by Babuška and Sauter [2]. The analysis in [2] is based on algebraic
methods and the test criterion is very different from the one presented here. The
relationship between the two criteria is currently under investigation. There is also
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an extensive litterature on the rigidity of finite truss structures, see e.g. Whiteley [34]
and Laman [16]. A review of the engineering literature on this subject is provided by
Ostoja-Starzewski [23]. A description of Green’s function techniques for analyzing
finite lattice structures is given in Liu, Karpov and Park [17].

For methods applicable to non-periodic network problems, we refer to Berlyand
and Kolpakov [3], and the references therein.

As mentioned in Remark 1.1, a principal motivation for the current work is to
enable the construction of a fundamental solution to the equilibrium equation on an
infinite lattice. Such a fundamental solution can then be used to develop analytical
and computational techniques for treating the case of equilibrium problems on finite
lattice structures by rewriting the equilibrium equation on the domain as an equation
on the boundary, see [25]. However, since the analysis is limited to the case of
quadratic energy functionals, such an approach cannot be used to treat the problem
of finding large deformation energy minimizers for problems on finite structures.
An illustration of how delicate such problems can be even on very simple lattice
structures is given by Friesecke and Theil [12].

From a technical point of view, we were much helped by the earlier literature
on the use Fourier transforms to study difference equations, see e.g. Duffin [8], Fix
and Strang [10, 11], Stephan [31], and Babuška [1]. In the early stages of the
research, invaluable insight into the mechanics of the truss- and frame-materials
was obtained from the rich engineering literature on the subject. In addition to the
works mentioned earlier in this section, we particularly wish to mention Lakes [15]
and Noor [22] who discuss the use of micro-polar models of elasticity for modelling
bending dominated structures.

1.5. Outline. This paper is organized as follows: In Section 2, we introduce nota-
tion for describing lattice geometries and lattice potentials. We also describe some
known facts about the discrete Fourier transform and Hermitian matrices. In Sec-
tion 3, we derive the lattice equilibrium equation in a general setting that covers, in
particular, the three models that we study. We also prove that the equilibrium oper-
ator is bounded on l2, self-adjoint and positive semi-definite. In Section 4, we leave
the general case to study the conduction model. We prove the Korn-type inequality
(1.13) and use it to demonstrate that after factoring out constant functions, the
equilibrium operator is positive definite. This is then used to prove that the lattice
equilibrium equation is well-posed and to describe the nature of the inverse. In Sec-
tion 5 we extend some of the results for the scalar case to general lattice models. In
sections 6 and 7, these results are applied to investigate the truss and frame models,
respectively. Section 8 summarizes the main results.

2. Preliminaries

In this section, we establish a framework for describing lattice geometries and
functions defined at the nodes of a lattice. We will also introduce a discrete Fourier
transform and present some basic facts about Hermitian positive definite matrices.

For simplicity, we restrict attention to lattices with the unit cube [0, 1)d as the
irreducible cell. This is for notational convenience only, other geometries (such as
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Node ((0,0),1)

Node ((2,1),2)

Cell (2,1)

Cell (0,0)

Node 1 Link (1,(1,0),1)

Link (2,(1,0),1)

Link (2,(1,1),1)

Node 2

Link(1,(0,0),2)

Link(1,(0,1),1)

Figure 2.1. Lattice notation. Circles denote nodes of type 1 and
diamonds nodes of type 2. The unit cell is depicted on the right.

C and D in Figure 1.1) can be treated by simply introducing a scaling matrix into
all formulas, see [18].

2.1. General notation. Given a matrix A, we let At denote its transpose and A∗
its adjoint (the complex conjugate transpose). For a vector v, we let |v|p denote the
lp-norm. Given a Hermitian positive semi-definite matrix X, we define

〈ϕ,X,ψ〉 = ϕ ·Xψ = Xϕ · ψ.

Furthermore, if X and Y are both Hermitian and 〈ϕ, X, ϕ〉 ≤ 〈ϕ, Y, ϕ〉 for every
ϕ, then we say that X ≤ Y . If there are positive constants a and b, such that
aX ≤ Y ≤ bX, then we say that X ∼ Y . The following is a well-known result but
we state it for future reference.

Lemma 2.1. If X and Y are Hermitian positive semi-definite matrices and X ≤ Y ,
then detX ≤ detY . If X and Y are also invertible, then Y −1 ≤ X−1.

2.2. Describing the lattice geometry. For a d-dimensional lattice with q nodes
in the unit cell, we use m ∈ Zd to label the different cells and κ ∈ {1, . . . , q} = Nq

to label the different nodes in a cell. Thus, (m, κ) uniquely labels a node in the
lattice Ω := Zd×Nq. Let X(m,κ) ∈ Rd denote the coordinates of node (m, κ). The
periodicity of the lattice then implies that X(m, κ) = X(0, κ) + m. Finally, define
for non-negative integers J , the sub-lattices ΩJ := {(m,κ) ∈ Ω : |m|∞ ≤ J}.

In addition to the points in Ω, the lattice also consists of directed links that
connect these points. Since the lattice is periodic, it is sufficient to describe only
those links that originate in the zero-cell, Ω0. A link from the node (0, κ) to the
node (n, λ) is then represented by the triple (κ, n, λ) ∈ Nq×Zd×Nq. All such triples
are collected in a set B+. In applications where the links are innately direction-less
(as they are in the conduction and truss models but not in the frame model) we
arbitrarily assign each link with a direction for book-keeping purposes.

Example: For the lattice in Figure 2.1; q = 2, X(0, 1) = [0, 0]t, X(0, 2) =
[1/2, 1/2]t, and B+ = { (1, [1, 0], 1), (1, [0, 1], 1), (1, [0, 0], 2), (2, [1, 0], 1), (2, [1, 1], 1) }.

¤
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2.3. Functions on lattices. With each node (m,κ) ∈ Ω we associate a “potential”
u(m,κ) ∈ Cr that represents a quantity such as a temperature or a displacement.
We let V denote the set of all functions u : Ω → Cr, while l2(Ω,Cr) = l2(Ω) denotes
the subset of square summable functions. This is a Hilbert space with the inner
product

〈u, v〉 :=
∑

(m,κ)∈Ω

u(m,κ) · v(m,κ).

We let VJ := l2(ΩJ ,Cr) denote the functions in V that are supported in ΩJ , and
define PJ as the canonical projection V → VJ . (Throughout the paper, we use the
bold font u, v,f , . . . to represent functions that are defined on integer lattices.)

The potential associated with a cell can either be viewed as a collection of q
vectors with r elements, or as a single vector with qr elements,

(2.1) u(m) = [u(m, 1)t, . . . , u(m, q)t]t

=
[
u1(m, 1), . . . , ur(m, 1),u1(m, 2), . . . , ur(m, q−1),u1(m, q), . . . ,ur(m, q)

]t ∈ Cqr.

We shall frequently make use of this trivial identification of l2(Zd × Nq,Cr) and
l2(Zd,Cqr).

2.4. The Fourier transform. We define a discrete Fourier transform via

(2.2) F : l2(Zd,Cqr) → L2(Id,Cqr) : u 7→ ũ(ξ) =
∑

m∈Zd

eim·ξu(m),

where Id := (−π, π)d. The equivalent of (2.1) in the Fourier domain is then

(2.3) ũ(ξ) = [ũ(ξ, 1)t, . . . , ũ(ξ, q)t]t =
[
ũ1(ξ, 1), . . . , ũr(ξ, 1), . . . , ũ1(ξ, q), . . . , ũr(ξ, q)

]t ∈ Cqr.

The following identity (Parseval) says that F is an isometric isomorphism,

(2.4) ||u||2l2(Zd) =
∑

m∈Zd

|u(m)|2 =
1

(2π)d

∫

Id

|ũ(ξ)|2 dξ =
1

(2π)d
||ũ||2l2(Id).

3. Basic properties of the lattice equilibrium equation

We refer to an equation that relates a potential field u on Zd (representing, e.g.,
temperatures or displacements) to a load field f (representing, e.g., heat sources
or forces) as a lattice equilibrium equation. In Section 3.1 we derive such a global
equation from a local equilibrium condition in a framework that is sufficiently general
that it covers all the three models under consideration. In Sections 3.2 and 3.3,
we prove that the equilibrium operator is bounded, self-adjoint and positive semi-
definite as an operator on l2(Zd).

Considered as an operator on l2(Zd), the equilibrium operator is not positive
definite in any of the three models that we consider. However, by redefining the
function spaces (loosely speaking, we “factor out” the constants and the rigid body
motions), it is possible to prove lower bounds on the energy functional that ensure
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the well-posedness of the equilibrium equations. The details of this analysis, which
will be different for each of the three models, are presented in sections 4, 6 and 7.

3.1. Derivation of the equilibrium equation. We start by specifying the equi-
librium condition for a single link. Consider the link (κ, n, λ) that connects the
node (0, κ) to the node (n, λ). If the two ends are given potentials u, v ∈ Cr, then
the loads f, g ∈ Cr that need to be applied to the two ends to keep the link in
equilibrium are specified by a non-negative Hermitian matrix A(κ,n,λ) ∈ C2r×2r,

(3.1) A(κ,n,λ)

[
u
v

]
=

[
f
g

]
, where A(κ,n,λ) =

[
B(κ,n,λ) C(κ,n,λ)

(C(κ,n,λ))∗ D(κ,n,λ)

]
.

Here, B(κ,n,λ), C(κ,n,λ) and D(κ,n,λ) are all r × r matrices. From A(κ,n,λ), we define
an operator A(κ,n,λ) acting on the global potential u by

[A(κ,n,λ)u](0, κ) =B(κ,n,λ)u(0, κ) + C(κ,n,λ)u(n, λ)

[A(κ,n,λ)u](n, λ) =(C(κ,n,λ))∗u(0, κ) + D(κ,n,λ)u(n, λ),
(3.2)

and [A(κ,n,λ)u](l, µ) = 0, for all other nodes (l, µ). The operator that represents the
connection between the nodes (m, κ) and (m+n, λ) is then given by s−mA(κ,n,λ)sm,
where for m ∈ Zd the translation operator sm : V → V is defined by

[smu](l) := u(l −m).

The operator A : V → V that accounts for all links is obtained by adding the
contributions from each individual link

(3.3) A :=
∑

m∈Zd

∑

(κ,n,λ)∈B+

s−mA(κ,n,λ)sm,

whence we obtain the global equilibrium equation

(3.4) [Au](m,κ) = f(m,κ), ∀ (m,κ) ∈ Ω.

In the Fourier domain, A is a multiplicative operator;

[
F [Au]

]
(ξ) =


 ∑

(κ,n,λ)∈B+

Υ(κ,n,λ)(ξ)


 ũ(ξ),

where each matrix Υ(κ,n,λ)(ξ) consists of q × q blocks, each of size r × r. The four
non-zero blocks are located at the intersections of the κ, λ-rows and columns,

(3.5) Υ(κ,n,λ)(ξ) :=




...
...

· · · B(κ,n,λ) · · · ein·ξC(κ,n,λ) · · ·
...

...
· · · e−in·ξ(C(κ,n,λ))t · · · D(κ,n,λ) · · ·

...
...




.
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Introducing the symbol σ(ξ) ∈ Cqr×qr as the Fourier representation of A,

(3.6) σ(ξ) :=
∑

(κ,n,λ)∈B+

Υ(κ,n,λ)(ξ) = F A F−1,

the equilibrium equation (3.4) can be written equivalently as

(3.7) σ(ξ)ũ(ξ) = f̃(ξ), ∀ ξ ∈ Id.

Examples of how this notation can be used to describe specific lattices and lattice
models are given in Appendix A.

3.2. Basic properties of the equilibrium operator. Since the index set B+ in
(3.3) is finite, the global operator A is bounded on l2(Zd × Nq) and inherits the
properties of self-adjointness and positive semi-definiteness from the local matrices
A(κ,n,λ). We have:

Lemma 3.1. The operator A is bounded, self-adjoint and positive semi-definite on
l2(Zd × Nq).

Since F is an isometric isomorphism from l2(Zd) to L2(Id), the following result
is a direct consequence of Lemma 3.1:

Lemma 3.2. The symbol σ(ξ) is a uniformly bounded Hermitian positive semi-
definite matrix.

3.3. The quadratic form of A. Given a potential field u, we say that the quantity
〈
s−mu,A(κ,n,λ)s−mu

〉
=

[
u(m,κ)

u(m + n, λ)

]t

A(κ,n,λ)

[
u(m,κ)

u(m + n, λ)

]

is the “energy” stored in the link connecting the node (m,κ) to the node (m+n, λ).
We then define

(3.8) W [u](m) :=
∑

(κ,n,λ)∈B+

〈
s−mu,A(κ,n,λ)s−mu

〉

as the energy of the bars originating in the cell m and let

||u||2A := lim
J→∞

∑

|m|≤J

W [u](m) =
∑

m∈Zd

∑

(κ,n,λ)∈B+

[
u(m,κ)

u(m + n, λ)

]
A(κ,n,λ)

[
u(m,κ)

u(m + n, λ)

]

define the global energy semi-norm. Invoking Parseval’s relation (2.4), we find that

||u||2A =
1

(2π)d

∫

Id

ũ(ξ) · σ(ξ)ũ(ξ) dξ.

Remark 3.1. When ||u||A < ∞ it is the case that ||u||2A = 〈u, Au〉 =: 〈u,A,u〉,
but there typically exist potentials u ∈ V such that Au = 0 even though ||u||A = ∞.

We will next show that the quadratic form on Cqr induced by σ(ξ), namely

ϕ 7→ 〈ϕ, σ(ξ), ϕ〉 := ϕ · [σ(ξ)ϕ],

is related to the energy of a certain periodic potential field generated by ϕ and
ξ; splitting the vector ϕ into subvectors, ϕ = [ϕ(1), . . . , ϕ(q)], where ϕ(κ) ∈ Cr,
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we define a periodic potential field by setting u(m,κ) := ϕ(κ)e−im·ξ. For this
displacement field, W [u](m) does not depend on m:

Lemma 3.3. Given ξ ∈ Id and ϕ ∈ Cqr, define a quasi-periodic lattice function by
setting u(m,κ) := ϕ(κ)e−im·ξ. Then W [u](m) = 〈ϕ, σ(ξ), ϕ〉.
Proof: Inserting the expression for u in the definition of W , we get

W [u](m) =
∑

(κ,n,λ)∈B+

eim·ξ
[

ϕ(κ)
ein·ξϕ(λ)

]
·A(κ,n,λ)e−im·ξ

[
ϕ(κ)

e−in·ξϕ(λ)

]

=
∑

(κ,n,λ)∈B+

ϕ · [Υ(κ,n,λ)(ξ)ϕ],

which equals ϕ · [σ(ξ)ϕ] by the definitions (3.5) and (3.6). ¤

4. The conduction problem

In this section we consider the problem of determining the temperature distribu-
tion of a lattice in thermo-static equilibrium. The “potential” of a node is then its
temperature, and the “load” is a heat source (both are scalars). In Section 4.1 we
describe the mathematical model, in 4.2 we prove Korn’s inequality for the infinite
lattice, in 4.3 we give conditions on the load and the lattice geometry that are nec-
essary and sufficient for the basic lattice equilibrium equation to be well-posed, and
in 4.4 we construct and describe an explicit representation of the inverse operator.

4.1. The model. An individual link of conductivity α is said to be in equilibrium
if the temperatures of its endpoints, u and v, are related to the fluxes through the
endpoints f and g, by f = −g = α(u − v). Thus, for each link (κ, n, λ) ∈ B+, we
have, cf. (3.1),

A(κ,n,λ) = α(κ,n,λ)

[
1 −1

−1 1

]
,

for some α(κ,n,λ) > 0. The energy functional is simply

(4.1) ||u||2A = 〈u, A, u〉 =
∑

m∈Zd

∑

(κ,n,λ)∈B+

α(κ,n,λ)|u(m + n, λ)− u(m, κ)|2.

For an explicit example, see Section A.1.

4.2. Coercivity of the lattice operator. In this section we prove that if a lattice
is connected, then the equilibrium operator A is coercive in the sense that the
symbol σ(ξ) satisfies Korn’s inequality (1.13). In order to give a precise statement,
we first need to introduce a change of variables that separates the average potential
in a cell from the intra-cell oscillation. We set Ψa := q−1/2[1, . . . , 1]t ∈ Cq and let
Ψd be a q × (q − 1) matrix such that Ψ = [Ψa, Ψd] forms a unitary matrix. Then
we split ϕ ∈ Cq into an average ϕa and a difference ϕd as follows,[

ϕa

ϕd

]
=

[
Ψt

aϕ
Ψt

dϕ

]
= Ψtϕ.

This section is devoted to proving the following result:
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Lemma 4.1. If a lattice is connected, then there exist c > 0 and C < ∞ such that

(4.2) c
(|ξ|2|ϕa|2 + |ϕd|2

) ≤ 〈ϕ, σ(ξ), ϕ〉 ≤ C
(|ξ|2|ϕa|2 + |ϕd|2

)
, ∀ ϕ ∈ Cq.

Remark 4.1. Using Parseval’s relation (2.4), we can restate (4.2) in physical space.
To this end, define a discrete Laplace operator by

(4.3) [A0v](m) :=
d∑

j=1

(−v(m− ej) + 2v(m)− v(m + ej)) ,

where the ej ’s are the canonical unit vectors of Cd (so that for instance e1 =
[1, 0, . . . , 0]t). The symbol of A0 is

σ0(ξ) =
d∑

j=1

4 sin2(ξj/2).

Since σ0(ξ) ∼ |ξ|2 on Id, the inequalities (4.2) are equivalent with

(4.4) c
(〈ua, A0, ua〉+ ||ud||2

) ≤ 〈u, A, u〉 ≤ C
(〈ua, A0, ua〉+ ||ud||2

)
,

where ua(m) = Ψt
au(m) and ud = Ψt

du(m).

We will present a proof of Lemma 4.1 that is slightly longer than necessary but
that has the merit of being readily generalizable to more complicated lattice models.
First we will show that for scalar problems, the connectivity property is equivalent to
a more general property regarding projections of nullspaces onto finite sub-trusses
(this non-degeneracy condition turns out to be generalizable to mechanical prob-
lems). Then we give two lemmas that show that the new non-degeneracy condition
implies certain “proto” upper and lower bounds on 〈·, σ(ξ), ·〉. Once this is done, we
shall prove Lemma 4.1.

From (4.1), it is clear that a lattice is connected if and only if the null-space of
|| · ||A consists of the set of constant functions, which we call N . To enable us to use
a compactness argument later, we want to reformulate this condition as a condition
on finite sub-trusses. We let AJ denote the operator corresponding to all links that
originate in the box ΩJ ,

AJ :=
∑

|m|∞≤J

∑

(κ,n,λ)∈B+

s−mA(κ,n,λ)sm.

For a connected lattice, we can always find a J such that the nodes in the set Ω1 are
connected to one another through links that contribute to AJ , as shown in Figure
4.1. Another way of saying that all the nodes in Ω1 are connected is to say that if
u ∈ Null(AJ), then u must be constant on Ω1, and thus u ∈ PΩ1N . We have now
established that the following statements are equivalent:

(1) The lattice is connected.
(2) Null(|| · ||A) = N .
(3) There exists an integer J such that PΩ1Null(AJ) = PΩ1N .

Using the equivalence of (1) and (3), we prove the following lemma:
12



Figure 4.1. The three sub-lattices corresponding to A0, A1

and A2 for a mono-atomic lattice generated by B+ =
{(1, [−1, 2], 1), (1, [1, 2], 1), (1, [3, 1], 1)}. Note that for the A1 sub-
lattice, the middle node is not connected to any other nodes in Ω1

(shaded) but that for the A2 sub-lattice, all nodes in Ω1 are con-
nected.

Lemma 4.2. If a lattice is connected, then there exists a positive constant c such
that, with u(m,κ) = ϕ(κ)e−im·ξ,

〈ϕ, σ(ξ), ϕ〉 ≥ c inf
v∈N

||u− v||2V1
.

Proof: Lemma 3.3 implies that 〈ϕ, σ(ξ), ϕ〉 = (2J + 1)−d 〈u, AJ , u〉. Next we will
show that there exists a c > 0 such that 〈u,AJ ,u〉 ≥ c||Qu||2, where Q denotes the
projection onto the orthogonal complement of N in V1 (so that infv∈N ||u−v||V1 =
||Qu||). Set

c := inf
u∈V

〈u, AJ , u〉
||Qu||2 .

Now note that the infimum can be restricted to the compact set {u ∈ VJ+M : ||u|| =
1}, with the M defined in Lemma 4.3. Since the infimum is taken over a compact
set, we know that if c = 0, then there must exist a minimizer u′ such that ||Qu′|| 6= 0
and 〈u′, AJ , u′〉 = 0, but this contradicts statement (3) above. Since we assumed
connectivity, we must then have c > 0. ¤

The proto upper bound is straight-forward:

Lemma 4.3. Let M be the length of the longest link, M := max{|n|∞ : (κ, n, λ) ∈
B+}. Then there exists a constant C such that, with u(m,κ) = ϕ(κ)e−im·ξ,

〈ϕ, σ(ξ), ϕ〉 ≤ C inf
v∈N

||u− v||2VM
.

Proof: Fix any v ∈ N and invoke Lemma 3.3 to obtain that 〈ϕ, σ(ξ), ϕ〉 =
W [u](0) = W [u − v](0). Since all links originating in Ω0 are wholly contained
in ΩM , we know that W [u− v](0) ≤ ||A||V ||u− v||2VM

, and the claim follows from
the boundedness of A. ¤
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Combining lemmas 4.2 and 4.3 we are now in a position to prove Lemma 4.1.

Proof of Lemma 4.1: Let u(m,κ) := ϕ(κ)e−im·ξ, as in Lemmas 4.2 and 4.3.
To prove the upper bound in (4.2), use Lemma 4.3 with the choice v(m,κ) := ϕa

to get

〈ϕ, σ(ξ), ϕ〉 ≤ C
(||ua − v||2VM

+ ||ud||2VM

)

= C
∑

|m|≤M

(
|ϕae

−im·ξ − ϕa|2 + |ϕde
−im·ξ|2

)
≤ C

(|ξ|2|ϕa|2 + |ϕd|2
)
.

Next we prove the lower bound in (4.2) using Lemma 4.2. Set

(4.5) la(ξ) := inf
ϕ∈Cq

1
2
〈ϕ, σ(ξ), ϕ〉
|ϕa|2 , and ld(ξ) := inf

ϕ∈Cq

1
2
〈ϕ, σ(ξ), ϕ〉
|ϕd|2 ,

so that
〈ϕ, σ(ξ), ϕ〉 ≥ la(ξ)|ϕa|2 + ld(ξ)|ϕd|2.

First note that the infimum can be restricted to the unit ball in Cq, which is a
compact set. Then, since u /∈ N for ξ 6= 0, Lemma 4.2 immediately tells us that
both la(ξ) and ld(ξ) are positive for ξ 6= 0. It remains to investigate their behavior
near the origin.

To prove that ld(0) > 0, we note that for ξ = 0, the minimizer in Lemma 4.2 is
ua, so that

〈ϕ, σ(0), ϕ〉 ≥ c||u− ua||2V1
= c||ud||2V1

= c3d|ϕd|2.
In order to prove that la(ξ) ≥ c|ξ|2, we first use that

〈ϕ, σ(ξ), ϕ〉 ≥ c inf
v∈N

||u− v||2V1
≥ c inf

v∈N
||ua − va||2V1

= c inf
z∈C

∑

|m|≤1

|ϕae
−im·ξ − z|2.

The minimizer is

z(min) =
1
3d

∑

|m|≤1

ϕae
−im·ξ = ϕa

d∏

j=1

1∑

mj=−1

e−imjξj

3
= ϕa

d∏

j=1

(
1− 4

3
sin2 ξj

2

)
=: ϕa

(
1+rd(ξ)

)
,

where rd(ξ) satisfies |rd(ξ)| ≤ C|ξ|2. Thus, using that |a + b|2 ≥ |a|2 − |b|2 we find
that

〈ϕ, σ(ξ), ϕ〉 ≥ c
∑

|m|≤1

|ϕae
−im·ξ − ϕa − ϕard(ξ)|2

≥ c|ϕa|2
∑

|m|≤1

(
|e−im·ξ − 1|2 − |rd(ξ)|2

)
≥ c|ϕa|2

(|ξ|2 − |ξ|4) ≥ c|ϕa|2|ξ|2,

which proves that la(ξ) ≥ c|ξ|2. ¤
Introducing L(ξ) as a diagonal matrix with the diagonal [|ξ|2, 1, . . . , 1] we can

reformulate the statement of Lemma 4.1 as σ(ξ) ∼ ΨL(ξ)Ψt. Invoking Lemma 2.1
we then immediately obtain:

Corollary 4.4. For the conduction problem on a connected lattice, detσ(ξ) ∼ |ξ|2.
14



4.3. Well-posedness of the lattice equation. In this section we will use the
coercivity result of Lemma 4.1 to prove that the lattice equilibrium equation

(4.6)
{

Au = f ,
||u||A < ∞,

is well-posed under certain conditions on f . In order to state these conditions, it will
be necessary to split f into an average component, fa(m) = (1/

√
q)

∑q
κ=1 f(m,κ),

and an oscillatory component, fd(m,κ) = f(m,κ)− fa(m), since it turns out that
stronger decay conditions are required for the fa than for fd. Moreover, it will
be necessary to distinguish between the case of two-dimensional lattices on the one
hand, and lattices in higher dimensions on the other, since in the former case, the
load f must sum to zero. The principal result of this section is the following:

Theorem 4.5. (a) In two dimensions, suppose that |m|fa(m) ∈ l1,
∑

f(m, κ) = 0,
fd ∈ l2, and that the lattice is connected. Then (4.6) has a solution u ∈ V which is
unique up to a constant. This solution satisfies ||u||A ≤ C (||mfa(m)||l1 + ||fd||l2).
(b) In three (and higher) dimensions, suppose that fa ∈ l1, fd ∈ l2, and that the
lattice is connected. Then (4.6) has a solution u ∈ V which is unique up to a
constant. This solution satisfies ||u||A ≤ C (||fa||l1 + ||fd||l2).

In order to prove Theorem 4.5, we will first prove a more general result whose
conditions are stated in terms of the following function spaces (which are lattice
equivalents of continuum Sobolev spaces):

Sr
k := {v ∈ V : ||v||Sr

k
< ∞}, where ||v||Sr

k
=

[∫

Id

(
|ξ|−k|ṽ(ξ)|

)r
dξ

]1/r

.

The general well-posedness result (from which Theorem 4.5 follows) is then:

Theorem 4.6. Suppose that fa ∈ S2
1 , fd ∈ S2

0 , and that the lattice is connected.
Then equation (4.6) has a solution u which is unique up to a constant. This solution
satisfies ||u||A ≤ C

(||fa||S2
1

+ ||fd||S2
0

)
.

Proof: The idea of the proof is to construct an energy space (similar to H1 in
the analysis of Poisson’s equation), with 〈Au, v〉 as the inner product. Then we
reformulate (4.6) in variational form and use Riesz’ representation theorem to prove
existence and uniqueness of the solutions.

The first step is to construct the energy space. To this end, let u and v be
compactly supported functions in V and define

〈u, v〉A := 〈Au,v〉 =
1

(2π)d

∫

Id

ũ(ξ) · σ(ξ)ṽ(ξ) dξ,

and the corresponding semi-norm ||u||A =
√〈u,u〉A. By Lemma 4.1, we know

that for some c > 0,

(4.7) ||u||2A ≥ c

∫

Id

(|ξ|2|ũd(ξ)|2 + |ũa(ξ)|2
)

dξ.
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Then define the energy space W as the closure of the compactly supported functions
in V under the norm || · ||A. We note that any two functions in V whose difference
is constant are considered identical in W .

Next, we reformulate (4.6) as a variational equation

(4.8) Find u ∈ W such that 〈u,v〉A = 〈f , v〉 for every v ∈ W.

Since there are no non-empty sets of measure zero in Ω, (4.6) and (4.8) are exactly
equivalent.

By virtue of Riesz’ representation theorem, (4.8) has a unique solution in W
provided that the map v 7→ 〈f , v〉 is a bounded functional on W . We have

| 〈f ,v〉 | =
∣∣∣∣

1
(2π)d

∫

Id

f̃(ξ) · ṽ(ξ) dξ

∣∣∣∣ ≤ C

∫

Id

(
|f̃a(ξ)| |ṽa(ξ)|+ |f̃d(ξ)| |ṽd(ξ)|

)
dξ

≤ C

[∫

Id

|f̃a(ξ)|2
|ξ|2 dξ

]1/2 [∫

Id

|ξ|2|ṽa(ξ)|2 dξ

]1/2

+ ||fd||l2 ||vd||l2

≤ C
(
||fa||2S2

1
+ ||fd||2S2

0

)1/2
||v||W ,

where the crucial inequality (4.7) was invoked at the last step.
It only remains to prove that uniqueness in W implies uniqueness up to constants

in V. To see this, suppose that u and v in V both solve (4.6). Then u − v ∈ W
and ||u− v||A = 0. Since the lattice is connected, equation (4.1) then implies that
u− v is constant. ¤

Theorem 4.5 follows directly from Theorem 4.6 by virtue of the following lemmas:

Lemma 4.7. If kr < d, then || · ||Sr
k
≤ C|| · ||l1 and thus l1(Ω) ⊆ Sr

k.

Proof: If v ∈ l1, then |ṽ(ξ)| ≤ C||v||l1 , and thus

||v||rSr
k

=
∫

Id

(|ξ|−k|ṽ(ξ)|)r dξ ≤ C

∫ √
dπ

0
(ρ−k||v||l1)rρd−1 dρ = C||v||rl1

∫ √
dπ

0
ρd−kr−1 dρ,

which is finite if d− kr > 0. ¤

Lemma 4.8. A sufficient condition for v ∈ Sr
k is that for some integer l > k− d/r

the following conditions hold:

A:
∑

(1 + |m|l)|v(m)| < ∞.
B:

∑
mαv(m) = 0, for every α ∈ Nd such that α1 + · · ·+ αd < l.

Proof: Condition B implies that ṽ has l vanishing moments. Then, since condition
A implies that ṽ has l continuous derivatives we find that |ṽ(ξ)| ≤ C|ξ|l, whence

||v||rSr
k

=
∫

Id

(|ξ|−k|ṽ(ξ)|)r dξ ≤ C

∫

Id

(|ξ|−k|ξ|l)r dξ ≤ C

∫ √
dπ

0
ρr(l−k)ρd−1 dρ,

which is finite if r(l − k) + d > 0. ¤
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4.4. Properties of σ(ξ)−1. In the Fourier domain, the solution of the lattice equi-
librium equation has the simple form

(4.9) ũ(ξ) = σ(ξ)−1f̃(ξ).

Since σ(ξ)−1 is analytic and bounded away from the origin, the long-range behavior
of u is entirely determined by the singularity at the origin. The following theorem,
which characterizes this singularity, is the main result of this section:

Theorem 4.9. For the conduction problem on a connected lattice, all the entries of
σ(ξ)−1 have the same asymptotic behavior at the origin. To be precise, as |ξ| → 0,

σ(ξ)−1 = Ψaσ
(0)(ξ)−1Ψt

a + O(|ξ|−1),

where σ(0)(ξ) = ξ ·Mξ for some positive definite matrix M .

Proof: The idea of the proof is to combine Lemma 2.1 with the inequality (4.2),
which we rewrite as (recall that the notation A ∼ B was defined in Section 2.1)

(4.10) Ψtσ(ξ)Ψ ∼
[ |ξ|2 0

0 Iq−1

]
,

where Iq−1 is the (q− 1)-dimensional identity matrix. Invoking Lemma 2.1 we then
find that

(4.11) Ψtσ(ξ)−1Ψ ∼
[ |ξ|−2 0

0 Iq−1

]
.

To obtain the precise statements of Theorem 4.9 from this inequality, we split the
matrices on the left hand sides of (4.10) and (4.11) into cell-wise averages and
differences; for α, β ∈ {a,d}, set σαβ(ξ) := Ψt

ασ(ξ)Ψβ and ταβ(ξ) := Ψt
ασ(ξ)−1Ψβ

so that

(4.12) Ψtσ(ξ)Ψ =
[

σaa(ξ) σad(ξ)
σda(ξ) σdd(ξ)

]
, and Ψtσ(ξ)−1Ψ =

[
τaa(ξ) τad(ξ)
τda(ξ) τdd(ξ)

]
.

The inequality (4.11) implies that

(4.13) |τaa(ξ)| ≤ C|ξ|−2, |τad(ξ)| ≤ C|ξ|−1, |τda(ξ)| ≤ C|ξ|−1, |τdd(ξ)| ≤ C.

Thus, σ(ξ)−1 = Ψaτaa(ξ)Ψt
a + O(|ξ|−1).

It remains to prove that τaa(ξ) = (ξ ·Mξ)−1 + O(|ξ|−1). To this end, note that

τaa(ξ) =
[
σaa(ξ)− σad(ξ)

(
σdd(ξ)−1

)
σda(ξ)

]−1
.

Equation (4.10) implies that
(4.14)
c|ξ|2 ≤ σaa(ξ) ≤ C|ξ|2, ||σad(ξ)|| = ||σda(ξ)|| ≤ C|ξ|, cIq−1 ≤ σdd(ξ) ≤ CIq−1.

This enables us to define

(4.15) σ(0)(ξ) :=
[
lim
ε→0

ε2τaa(εξ)
]−1

= lim
ε→0

1
ε2

[
σaa(εξ)− σad(εξ)σdd(0)−1σda(εξ)

]
,

and be assured that σ(0)(ξ) = ξ · Mξ for some symmetric matrix M . The first
inequality of (4.13) implies that this matrix must be positive definite. ¤
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We can now proceed in two ways: (i) Use the frame-work of generalized functions
to construct a fundamental solution G = F−1[σ−1], determine its properties using
Theorem 4.9 and then make inferences about u from the formula u = G ∗ f , see
[21]. (ii) View ũ(ξ) as an L2-function and use Theorem 4.9 in combination with
Paley-Wiener analysis to determine the long range behavior of u. We will not go
into details, but the main findings from either line of investigation are these:

• Oscillatory components in a potential decay faster (by a factor of |m|−1)
than the average potential away from a concentrated load.

• The contribution from an oscillatory load decays faster (by a factor of |m|−1)
than the contribution from a smooth load of the same magnitude.

Both of these statements agree with our expectation that the equilibrium equation
should share qualitative behavior with an elliptic partial differential equation.

Remark 4.2. Theorem 4.9 is also central to the analysis of the asymptotic behavior
of solutions to the lattice equilibrium equation. As an example, it will turn out that
an approximate solution of the lattice equation can be obtained by solving the
continuum equation −∇ ·M∇u = f . See [19] for details.

Remark 4.3. Another application of Theorem 4.9 is that it allows us to give specific
condition on f under which the explicit inversion formula

(4.16) u(m) =
[
F−1

[
σ−1f̃

]]
(m) =

1
(2π)d

∫

Id

e−im·ξσ(ξ)−1f̃(ξ) dξ,

is absolutely integrable. From the inequalities (4.13) it follows that

|σ(ξ)−1f̃(ξ)| ≤ (|τaa(ξ)|+ |τda(ξ)|)|f̃a(ξ)|+ (|τad(ξ)|+ |τdd(ξ)|)|f̃d(ξ)|
≤ C|ξ|−2|f̃a(ξ)|+ C|ξ|−1|f̃d(ξ)|.

Thus, e−im·ξσ(ξ)−1f̃(ξ) ∈ L1(Id) if fa ∈ S2
1 and fd ∈ S1

1 . For the special case of a
mono-atomic cubic lattice, this result was reported by Duffin [8].

5. General coercivity results

The findings for conduction problems in Section 4 will in sections 6 and 7 be
generalized to mechanical problems of truss and frame type, respectively. Before
giving those results, it simplifies matters to restate some of the results for conduction
problems in a more general setting. We let N ⊂ V denote a set of function which
we know is in the nullset of || · ||A and that we want to prove constitutes the
entire nullset. For conduction problems, N was the set of constants, for mechanical
problems, N will be the rigid body motions. We will consider only nullspaces N of
finite dimension. The periodicity of the lattice then implies that N must satisfy:

A: Translation invariance: smN = N , for any m ∈ Zd.
B: Localization: there exists an integer k such that any v ∈ N is uniquely determined by Pkv.

We will next define a local coercivity condition that is a generalization of condition
(3) given before Lemma 4.2. This condition is sufficient for the Korn-type inequality
(1.13) to hold and it has the virtue of being easily checked computationally, once a
lattice and an interaction model are given.
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Definition: Say that A isN -coercive if there is a finite J such that PΩk+1
Null(AJ) =

PΩk+1
N . (We recall that k is the parameter in the condition B above.)

The point of this definition is that the property of N -coercivity is local and can
be verified computationally by simply constructing the sequence of matrices AJ

and investigating their nullspaces. Our next result states that when A satisfies the
(local) N -coercivity property, then A is also globally coercive “modulo N”.

Lemma 5.1. If A is N -coercive, then Null(|| · ||A) = N .

Proof: Suppose that the lattice is N -coercive. By definition, N ⊆ Null(|| · ||A), so
we only need to prove that N ⊇ Null(|| · ||A). Given a v ∈ Null(|| · ||A) we find that
(5.1)

PΩk+1
v ∈ PΩk+1

Null(|| · ||A) ⊂ PΩk+1
Null(|| · ||AJ

) = PΩk+1
Null(AJ) = PΩk+1

N .

Statement (5.1) combined with property B imply that there exists a unique v′ ∈ N
such that PΩk+1

v = PΩk+1
v′. Next we need to show that v′ = v on all of Ω. Let

m ∈ Zd be any vector such that |m|∞ = 1. By property A, the translated function
smv also belongs to Null(A). We can therefore repeat the calculation (5.1) to find a
unique v′′ ∈ N that equals v in smΩk+1. Now use that PΩk

v′′ = PΩk
v′ and the fact

that a function in N is uniquely determined by its restriction to Ωk to deduce that
v′′ = v′. Since m was arbitrary, this shows that v(m) = v′(m) for |m|∞ ≤ k + 2.
This process can be continued to cover all of Ω. ¤

We can now state the proto upper and lower bounds on 〈·, σ(ξ), ·〉 in a general
framework. They are proved by following the exact same steps taken in the analysis
of the conduction case.

Lemma 5.2. If a lattice is N -coercive, then there exists a positive constant c such
that, with u(m,κ) = ϕ(κ)e−im·ξ,

〈ϕ, σ(ξ), ϕ〉 ≥ c inf
v∈N

||u− v||2Vk+1
.

Lemma 5.3. Let M be the length of the longest link, M := max{|n|∞ : (κ, n, λ) ∈
B+}. Then there exists a constant C such that, with u(m,κ) = ϕ(κ)e−im·ξ,

〈ϕ, σ(ξ), ϕ〉 ≤ C inf
v∈N

||u− v||2VM
.

The final result of this section says that N -coercivity is a direct consequence of a
lattice being connected for those lattice models that satisfy the following property:

Definition: We say that a link (κ, n, λ) is N -rigid if for any ϕ ∈ Cr, there exists a
unique v ∈ N such that v(0, κ) = ϕ and A(κ,n,λ)v = 0.

Of the three models that we consider, the conduction model and the mechanical
frame model have N -rigid links, but the mechanical truss model does not.

Lemma 5.4. Suppose that all links are N -rigid. Then if a lattice is connected, it
is N -coercive.
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Proof: Let J be large enough that every node in Ωk+1 is connected to the node
(0, 1) through a path entirely contained within ΩJ . Fixing a v ∈ Null(AJ) we need
to show that there exists a v′ ∈ N such that PΩk+1

v = PΩk+1
v′.

Due to the symmetry and the positive semi-definiteness of all the local bars we
know that s−mA(κ,n,λ)smv = 0 for all |m| ≤ J . Thus, given any link (1, n, λ), there
exists a unique v′ ∈ N such that v(0, 1) = v′(0, 1) and v(n, λ) = v′(n, λ).

Given any node (l, µ) ∈ Ωk+1 choose a path that connects (0, 1) to (l, µ). Since
AJv′ = 0 and v′(0, 1) = v(0, 1) it then follows from the N -rigidity of all the links
in the path that v′(l, µ) = v(l, µ). Thus PΩk+1

v = PΩk+1
v′, which concludes the

proof. ¤

6. Mechanical trusses

The results regarding the equations of thermo-static equilibrium presented in
Section 4 will in this section be extended to the case of elasto-static equilibrium of
mechanical lattices that derive their main strength from the axial stiffness of their
links, such as lattices B and C in Figure 1.1. For such geometries we ignore the
bending stiffnesses of the bars and view the lattice as a collection of axial springs
that are pin-jointed at the nodes. The potential of a node is then its translational
displacement, and the load is a force. Consequently, the nodal potentials and loads
have the same dimension as the surrounding space, u(m,κ),f(m,κ) ∈ Rd.

After describing the mathematical model in Section 6.1, we prove Korn’s in-
equality for truss lattices in Section 6.2. This proof is similar to the proof of the
corresponding result for the conduction model but some additional considerations
are required since the non-degeneracy condition for truss lattices is more involved.
Then in sections 6.3 and 6.4 we investigate when the lattice equilibrium equation is
well-posed and describe the inverse symbol.

6.1. The model. In order to derive the local stiffness matrix, consider a strut of
axial stiffness α that is directed along the unit vector e ∈ Rd. If the ends of the
strut are displaced by the vectors u, v ∈ Rd, then the forces needed to keep it in
equilibrium are f = α e (e · (u− v)) and g = −f .Thus, the local stiffness matrix for
the link (κ, n, λ) with stiffness α(κ,n,λ) takes the form

(6.1) A(κ,n,λ) = α(κ,n,λ)

[
e(κ,n,λ)[e(κ,n,λ)]t −e(κ,n,λ)[e(κ,n,λ)]t

−e(κ,n,λ)[e(κ,n,λ)]t e(κ,n,λ)[e(κ,n,λ)]t

]
,

where e(κ,n,λ) is a unit vector pointing along the link (κ, n, λ), i.e.,

e(κ,n,λ) :=
X(n, λ)−X(0, κ)
|X(n, λ)−X(0, κ)| .

See Fig. 6.1(a) for an illustration, or Appendix A.2 for a concrete example. In the
truss model, only the components of the potential differences that are aligned with
the connecting links contribute to the energy,

||u||2A =
∑

m∈Zd

∑

(κ,n,λ)∈B+

α(κ,n,λ)
∣∣e(κ,n,λ) · (u(m + n, λ)− u(m, κ)

)∣∣2.
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X(0, κ)

u(0, κ)

f

X(n, λ)

u(n, λ)

g

X(0, κ)
ut(0, κ)

ur(0, κ)
ft

fr X(n, λ)

ut(n, λ)

ur(n, λ)

gt

gr

(a) (b)

Figure 6.1. (a) The link connecting node (0, κ) to (n, λ) in a truss
model. While being subjected to forces f and g (drawn with dashed
lines), the two ends of the link have been displaced from X(0, κ) and
X(n, λ), to X(0, κ)+u(0, κ), and X(n, λ)+u(n, λ), respectively. (b)
The links connecting node (0, κ) to (n, λ) in a frame model. While
being subjected to forces ft, gt, and moments fr, gr, the two ends of
the link have been displaced from X(0, κ) and X(n, λ), to X(0, κ) +
ut(0, κ), and X(n, λ) + ut(n, λ), respectively, and been rotated by
ur(0, κ) and ur(n, λ).

The difficulty of the truss model lies in the fact that the matrix A(κ,n,λ) in (6.1) has
rank one, which is lower than the dimensionality of the nodal potential. This is the
reason that even for connected lattices such as A and D in Figure 1.1, there exist
displacement fields u that are not rigid body motions but for which ||u||A = 0.

In this model u(m,κ) ∈ Cd, so the symbol σ(ξ) consists of q × q blocks, each of
size d× d.

6.2. Korn’s inequality. The framework set up in Section 5 will now be used to
prove the Korn inequality for truss materials. For truss lattices, the nullspace N is
the set of rigid body motions, which has dimension d(d + 1)/2 and for which the
parameter k in property B (see Section 5) satisfies k = 1 (meaning that a rigid
body motion is uniquely determined by its restriction to Ω1). In order to define the
projection operators Ψa and Ψd (cf. Section 4.2) we first let Ip denote the identity
matrix in Cp, then set Ψa := q−1/2[Id, . . . , Id]t ∈ Cqd×d and finally choose Ψd so that
Ψ = [Ψa, Ψd] forms a unitary qd×qd matrix. Then define ϕa = Ψt

aϕ and ϕd = Ψt
dϕ,

as before. The truss analogue of Lemma 4.1 is:

Lemma 6.1. If a truss lattice is N -coercive, then there exist C < ∞ and c > 0
such that

c
(|ξ|2|ϕa|2 + |ϕd|2

) ≤ 〈ϕ, σ(ξ), ϕ〉 ≤ C
(|ξ|2|ϕa|2 + |ϕd|2

)
, ∀ ϕ ∈ Cqd.

Proof: The proof follows in part the proof of Lemma 4.1. We use Lemma 5.3,
choosing v = ϕa, to prove the upper bound. For the lower bound, define la(ξ) and
ld(ξ) according to the formulae (4.5). Taking the same steps as in the proof of
Lemma 4.1, we prove that ld(ξ) > 0 in Id and then compactness implies the uniform
bound from below.
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It remains to prove that la(ξ) ≥ c|ξ|2. As a first step, we note that

(6.2) 〈ϕ, σ(ξ), ϕ〉 = inf
v∈N

(||ua − va||2V2
+ ||ud − vd||2V2

) ≥ c inf
v∈N

||ua − va||2V2
.

It will be sufficient to keep the linear part of the map ξ 7→ u(m) = ϕe−im·ξ so we
write

ua(m) = ϕae
−im·ξ = ϕa − ϕaim · ξ − ϕa(1− im · ξ − e−im·ξ),

and use the inequality |a + b|2 ≥ |a|2 − |b|2 to transform (6.2) into

〈ϕ, σ(ξ), ϕ〉 ≥ c inf
v∈N

(
||ϕa − ϕai(m · ξ)− va||2V2

− ||ϕa(1− im · ξ − e−im·ξ)||2V2

)

≥ c inf
v∈N

||ϕa − ϕai(m · ξ)− va||2V2
− |ϕa|2|ξ|4.

(6.3)

Let v
(min)
a denote the minimizer in the last term. Since v(min) is a rigid body

motion, v
(min)
a can be written as a sum of a constant and a rotational component,

v
(min)
a = v

(min)
const + v

(min)
rot . Clearly v

(min)
const = ϕa. In order to determine v

(min)
rot , we

introduce a basis for the rotations on Rd: For i, j ∈ {1, . . . , d} such that j − i > 0,
define the basis-vectors w(ij) ∈ N by [w(ij)(m)]k = δikmj − δjkmi. The minimizing
problem can now be written

(6.4) inf
v∈N

||ϕa(m · ξ)− va||2V2
= inf

α(ij)
||ϕa(m · ξ)−

d−1∑

i=1

d∑

j=i+1

α(ij)w(ij)(m)||2V2
.

The vectors w(ij) are orthogonal in V2, so the minimizers are given by

α(ij),min =

〈
ϕa(m · ξ), w(ij)(m)

〉
V2

||w(ij)(m)||2V2

= · · · = 1
2
(ϕA,iξj − ϕA,jξi).

We insert these values into (6.4) to obtain

inf
α(ij)

||ϕa(m·ξ)−
d∑

i=1

d∑

j=i+1

α(ij)w(ij)(m)||2V2
= · · · = 5d

(|ϕa|2|ξ|2 + |ϕa · ξ|2
) ≥ |ϕa|2|ξ|2.

Combining this expression with (6.3) we find that

(6.5) 〈ϕ, σ(ξ), ϕ〉 ≥ c
(|ϕa|2|ξ|2 − |ϕa|2|ξ|4

) ≥ c|ξ|2|ϕa|2,
in some neighborhood of the origin. The inequality (6.5) implies that la(ξ) ≥ c|ξ|2.

¤
Introducing L(ξ) as a qd × qd diagonal matrix with |ξ|2 on the first d entries of

the diagonal and ones on the rest, we can reformulate the statement of Lemma 6.1
compactly as σ(ξ) ∼ ΨL(ξ)Ψt. Since Ψ is unitary and detL(ξ) = |ξ|2d, Lemma 2.1
then justifies to the following result:

Corollary 6.2. For the truss problem on an N -coercive lattice, detσ(ξ) ∼ |ξ|2d.
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6.3. Well posedness of the equilibrium equation. In this section we specify
under what conditions on the load f , the equilibrium equation

(6.6)
{

Au = f ,
||u||A < ∞,

is well-posed. As for the conduction case, this condition depends on the dimension.
The proof of the following result is exactly analogous to the proof of Theorem 4.5
and is omitted.

Theorem 6.3. (a) In two dimensions, suppose that |m|fa(m) ∈ l1,
∑

f(m, κ) = 0,
fd ∈ l2, and that the lattice is N -coercive. Then (6.6) has a solution u which is
unique up to rigid body motions. This solution satisfies ||u||A ≤ C (||mfa(m)||l1 + ||fd||l2).
(b) In three (and higher) dimensions, suppose that fa ∈ l1, fd ∈ l2, and that the
lattice is N -coercive. Then (6.6) has a solution u which is unique up to rigid body
motions. This solution satisfies ||u||A ≤ C (||fa||l1 + ||fd||l2).
Remark 6.1. Theorem 6.3 is, like Theorem 4.5, a special case of a more general
result in d dimensions with the requirement that fa ∈ S2

1 and that fd ∈ S2
0 .

6.4. Properties of σ(ξ)−1. In the truss model, the nodal potential is a vector and
the symbol is a matrix consisting of q×q blocks, each of size d×d. We can still split
the symbol into components that act on the average fields, and components that act
on the oscillating fields by defining σαβ(ξ) and ταβ(ξ) through the formula (4.12),
but we bear in mind that now σaa ∈ Cd×d, σad ∈ Cd×d(q−1), σda ∈ Cd(q−1)×d), and
σdd ∈ Cd(q−1)×d(q−1). Lemma 6.1 then implies that

(6.7) σaa(ξ) ∼ |ξ|2Id, ||σad(ξ)|| = ||σda(ξ)|| ≤ C|ξ|, σdd(ξ) ∼ Id(q−1),

and we can therefore still define the limit symbol as

(6.8) σ(0)(ξ) :=
[
lim
ε→0

ε2τaa(εξ)
]−1

= lim
ε→0

1
ε2

[
σaa(εξ)− σad(εξ)σdd(0)−1σda(εξ)

]
,

noting that this is now a d × d matrix. Since τaa(ξ) ∼ |ξ|−2Id, it must be the case
that σ(0)(ξ) ∼ |ξ|2Id. To sum up, we have proved the following:

Theorem 6.4. Suppose that σ(ξ) is the symbol of an N -coercive truss lattice. To
lowest order, all blocks of σ(ξ)−1 are identical. In particular, there exists a d × d

matrix σ(0)(ξ), every entry of which is a second order polynomial in ξ, such that
σ(0)(ξ) ∼ |ξ|2Id and

σ(ξ)−1 = Ψaσ
(0)(ξ)−1Ψt

a + O(|ξ|−1), as |ξ| → 0.

Remark 6.2. In every example that we have seen, σ(0)(ξ) is the symbol of an
equilibrium operator of classical elasticity. However, a general statement to this
effect has not yet been proved.
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7. Mechanical frames

The mechanical frame model is appropriate for skeletal structures that are con-
nected but that would turn into mechanisms that can freely deform if considered
as pin-jointed trusses. Lattices A and D in Figure 1.1 belong to this category.
In the frame model, the nodes are rigid and we take the bending stiffness of the
links into account. The nodal potential in this model includes both rotational and
translational degrees of freedom so that in two dimensions, u(m,κ) ∈ C3, in three
dimensions, u(m,κ) ∈ C6 and in d dimensions, u(m,κ) ∈ Cd(d+1)/2. The load
f(m,κ) has the same dimension as u(m,κ) and represents both forces and torques.

The frame model will present new technical obstacles in that the equilibrium oper-
ator acts differently on the rotational and translational degrees of freedom. However,
this difficulty is to some extent offset by the fact that the regularity condition on
the geometry is again simply that the lattice must be connected.

7.1. The model. The local matrices (cf. (3.1)) have the general form

(7.1) A(κ,n,λ) =
[

B(κ,n,λ) C(κ,n,λ)

(C(κ,n,λ))t D(κ,n,λ)

]
,

are of size 2r × 2r, and have rank r, where r = d(d + 1)/2. Castigliano’s theorem
dictates that A(κ,n,λ) must be symmetric, but it is in general not the case that
C(κ,n,λ) = −B(κ,n,λ) or that D(κ,n,λ) = B(κ,n,λ). In the frame model, the direction of
a link is therefore essential (this is not the case for the truss and conduction models).
An example where the struts are considered as Euler beams in two dimensions is
given in Appendix A.3. For an explicit expression for A(κ,m,λ) in the more general
case of Timoschenko beams in three dimensions, see Przemieniecki [24].

A nodal potential u(m, κ) ∈ Cd(d+1)/2 is organized so that

u(m,κ) =
[

ut(m,κ)
ur(m,κ)

]
,

where ut(m, κ) ∈ Cd represents the translational displacement and ur(m,κ) ∈
Cd(d−1)/2 the rotational displacement. Likewise, a load f(m,κ) is decomposed into
a force load f t(m,κ) ∈ Cd and a torque load f r(m,κ) ∈ Cd(d−1)/2, see Fig. 6.1(b).
A cell-wise potential ϕ is decomposed analogously

(7.2) ϕ =




ϕ(1)
...

ϕ(κ)


 ∈ Cqd(d+1)/2, where ϕ(κ) =

[
ϕt(κ)
ϕr(κ)

]
∈ Cd(d+1)/2.

7.2. Korn’s inequality. For the frame case, we split a vector ϕ ∈ Cqd(d+1)/2 into
an average translation ϕat ∈ Cd, an average rotation ϕar ∈ Cd(d−1)/2, and an intra-
cell oscillation ϕd ∈ C(q−1)d(d+1)/2 (which contains both rotational and translational
components). To change variables from the node-wise representation (7.2) to the
average/difference representation we have used before, we introduce a matrix Ψat ∈
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Cqd(d+1)/2×d that computes the average translation,

Ψt
atϕ =

1√
q

q∑

κ=1

ϕt(κ),

another matrix Ψar ∈ Cqd(d+1)/2×d(d−1)/2 that computes the average rotation,

Ψarϕ =
1√
q

q∑

κ=1

ϕr(κ),

and then let Ψd ∈ Cqd(d+1)/2×(q−1)d(d+1)/2 be such that Ψ = [Ψat ΨarΨd] ∈ Cqd(d+1)/2×qd(d+1)/2

is a unitary matrix. The core coercivity result is now:

Lemma 7.1. For a connected frame lattice, there exist C < ∞ and c > 0 such that

c
(|ξ|2|ϕat|2 + |ϕar|2 + |ϕd|2

) ≤ 〈ϕ, σ(ξ), ϕ〉 ≤ C
(|ξ|2|ϕat|2 + |ϕar|2 + |ϕd|2

) ∀ ϕ ∈ Cqd(d+1)/2.

Proof: For the frame model, the nullset N is again the space of rigid body motions
but since we now incorporate rotational degrees of freedom in the nodal potential,
a function u ∈ N is uniquely specified by its value at a single node. In other
words, using the notation of Section 5, we have k = 0 as in the conduction problem.
Furthermore, in the frame model, the links are N -rigid (this concept is defined at
the end of Section 5) and thus N -coercivity of the global lattice is a consequence of
the connectivity requirement and Lemma 5.4.

We now proceed as before and set u(m,κ) = ϕ(κ)e−im·ξ. In order to prove the
upper bound, simply use Lemma 5.3 with v(m,κ) = [ϕt

at, 0]t. For the lower bound,
define

lat(ξ) = inf
|ϕ|=1

1
2
〈ϕ, σ(ξ), ϕ〉
|ϕat|2 , and lX(ξ) = inf

|ϕ|=1

1
2
〈ϕ, σ(ξ), ϕ〉
|ϕar|2 + |ϕd|2 .

Since u /∈ N when ξ 6= 0, it is clear that both lat and lX are strictly positive for
ξ 6= 0.

To prove that lX(ξ) ≥ c, it is sufficient to prove that lX(0) > 0 (since Id is
compact). We prove this by contradiction; suppose that lX(0) = 0, then, since the
infimum is taken over a compact set, there would exist a minimizer ϕ′ such that
〈ϕ′, σ(0), ϕ′〉 = 0. By Lemma 3.3, this would mean that the function u′ generated
by ϕ′ would belong to N . Now, since u′ is constant from cell to cell, it could not
have a rotational component, and would have to be a pure translation. But then
ϕ′ar = ϕ′d = 0, which shows that such a minimizer cannot exist.

Finally we need to establish that lat(ξ) ≥ c|ξ|2. Starting with the trivial inequality

〈ϕ, σ(0), ϕ〉 ≥ c inf
v∈N

||u− v||2V1
≥ c inf

v∈N
||uat − vat||2V1

,

this can be proved by taking the same steps as in the corresponding part of the
proof for trusses. ¤

The statement of Lemma 7.1 can be rewritten as Ψσ(ξ)Ψt ∼ L(ξ), where L(ξ) =
diag(|ξ|2Id, Iqd(d+1)/2−d). We note that detL(ξ) = |ξ|2d and then Lemma 2.1 implies
that:
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Corollary 7.2. For the frame problem on a connected lattice, det σ(ξ) ∼ |ξ|2d.

7.3. Well posedness of the equilibrium equation. In this section we specify
under what conditions on the load f , the equilibrium equation

(7.3)
{

Au = f ,
||u||A < ∞,

is well-posed. As in sections 4.3 and 6.3, the conditions depend on the dimension.
The proofs are exactly analogous to the corresponding proofs in Section 4.3 and are
omitted.

Theorem 7.3. (a) In two dimensions, suppose that |m|fat(m) ∈ l1,
∑

f(m, κ) = 0,
far ∈ l2, fd ∈ l2, and that the lattice is connected. Then (7.3) has a solu-
tion u which is unique up to rigid body motions. This solution satisfies ||u||A ≤
C (||mfat(m)||l1 + ||far||l2 + ||fd||l2).
(b) In three (and higher) dimensions, suppose that fat ∈ l1, far ∈ l2, fd ∈ l2, and
that the lattice is connected. Then (7.3) has a solution u which is unique up to rigid
body motions. This solution satisfies ||u||A ≤ C (||fat||l1 + ||far||l2 + ||fd||l2).
Remark 7.1. Theorem 7.3 is, like Theorem 4.5, a special case of a more general
result in d dimensions with the requirement that fat ∈ S2

1 and that |far|+|fd| ∈ S2
0 .

7.4. Properties of σ(ξ)−1. For frame lattices, the matrix σ(ξ)−1 has a rather more
complicated singular behavior than the previous models that we have studied. We
define σat,at(ξ), σat,ar(ξ), et.c. in the natural fashion and set
(7.4)

σ(0)(ξ) := lim
ε→0

1
ε2

(
σat,at(εξ)− [σat,ar(εξ) σat,d(εξ)]

[
σar,ar(0) σar,d(0)
σd,ar(0) σd,d(0)

]−1 [
σar,at(εξ)
σd,at(εξ)

])

which is a d×d matrix of second order polynomials. Mimicking the proof of Theorem
4.9 it is simple to prove that Lemma 7.1 implies the following result:

Theorem 7.4. Suppose that σ(ξ) is the symbol of a connected frame lattice and
that σ(0)(ξ) is given by (7.4). Then

σ(ξ)−1 = Ψatσ
(0)(ξ)−1Ψt

at + O(|ξ|−1).

The matrix σ(0)(ξ) has polynomial entries and satisfies σ(0)(ξ) ∼ |ξ|2Id.

Remark 7.2. The limit symbol σ(0)(ξ) corresponds to the symbol of a classical
elasticity operator. This operator specifies how the translational degrees of free-
dom are related to the applied force field when these fields are averaged over many
cells. For the more general case where torque loads are present, and the rotational
displacements are sought, the corresponding relationship is a mixed order equation
that corresponds to a micro-polar equation of elasticity. The details of how to derive
such an equation are given [19].
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7.5. When to use the frame model. We note that even when a lattice happens
to be non-degenerate when considered as a truss, it may still be necessary to model
it as a frame in order to attain a specified accuracy. In order to determine the
modelling error incurred by neglecting the bending stiffness, we consider first the
complete equilibrium equation in the frame model, Au = f , where u = [ut, ur]
contains both translational and rotational components and f = [f t, f r] both force
and torque loads. We split A into different parts representing axial and bending
stiffnesses, taking into account the fact that the bending stiffness is lower than the
axial stiffness by a factor of β2, where β = diameter/length is the slenderness ratio
of a typical strut,

(7.5)

([
Aaxial

tt 0
0 0

]
+ β2

[
Abending

tt Abending
tr

Abending
rt Abending

rr

]) [
ut

ur

]
=

[
f t

f r

]
.

The operator Aaxial
tt is the stiffness operator in the truss model which we assume to

be invertible (if it is not, the frame model must be used). If there is no torque load,
we can eliminate ur whence
(7.6)

ut =
[
Aaxial

tt + β2Abending
tt − β2Abending

tr (Abending
rr )−1Abending

rt

]−1
f t =

[
Aaxial

tt

]−1
f t+O(β2).

Since β is small, it seems safe to drop the O(β2)-term and model the material as
a pin-jointed truss. However, to ascertain that this is truly justified, one should
verify that the smallest eigenvalue (as opposed to the individual elements) of Aaxial

tt

is sufficiently much larger than β2. This can easily be done in the Fourier setting
since there, the relevant operators all have compact support.

8. Summary

We have investigated the equations associated with three different physical mod-
els: thermostatic equilibrium on lattices and elastostatic equilibrium on mechanical
truss and frame lattices. The three models are summarized in Table 1. For each
model, we proved that a version of Korn’s inequality holds for the case of an infinite
periodic domain provided that the micro-structure satisfies certain geometric con-
straints (for conduction and mechanical frame problems, the constraint is proven
minimal). We used this inequality to formulate conditions under which the lattice
equilibrium equation is well-posed for each of the three models and described the
nature of the inverse operator.

The results presented are essential in the design of efficient numerical methods, see
[18]. They can also be used to construct a fundamental solution to the equilibrium
equation, which can then be used to study equations on finite domains by means of
discrete boundary equations, see [21] and [25]. Finally, they are fundamental to an
analysis of the asymptotic behavior of the solution of the lattice equations as the
lattice cell size tends to zero, see [19].
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Model: Conduction Mechanical truss Mechanical frame
Potential: Temperature Displacement Displacement and rotation
Load: Heat source/sink Force Force and torque
Dim. of potential: 1 d d(d + 1)/2
Rank(A(κ,n,λ)) 1 1 d(d + 1)/2
Nullspace N : Constants Rigid body motions Rigid body motions
Non-deg. condition: Connectivity N -coercivity Connectivity

Table 1. Different lattice models; d is the dimension of the sur-
rounding space and A(κ,n,λ) is the local stiffness matrix.
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Appendix A. Model problems

A.1. Conduction in a multi-atomic lattice. Consider heat conduction on the
square lattice with X-braces labelled B in Figure 1.1. This lattice has two types
of nodes, those of “type 1” that connect to eight links, and those of “type 2” that
connect to four. Let u(m, 1) and u(m, 2) denote the temperatures of the respective
nodes in cell m ∈ Z2 and let f(m, 1) and f(m, 2) denote external heat sources
(so that u(m) = [u(m, 1), u(m, 2)]t and f(m) = [f(m, 1), f(m, 2)]t). When the
horizontal and vertical links have conductivity 1, and the diagonal ones conductivity
α, the equilibrium equations read

f(m, 1) =
[
4u(m, 1)− u(m− e1, 1)− u(m + e1, 1)− u(m− e2, 1)− u(m + e2, 1)

]
+

α
[
4u(m, 1)− u(m, 2)− u(m− e1, 2)− u(m− e2, 2)− u(m− e1 − e2, 2)

]
,

f(m, 2) =α
[
4u(m, 2)− u(m, 1)− u(m + e1, 1)− u(m + e2, 1)− u(m + e1 + e2, 1)

]
,

where e1 = [1, 0]t and e2 = [0, 1]t. The symbol of this system is

σ(ξ) =
[

4− eiξ1 − e−iξ1 − eiξ2 − e−iξ2 + 4α −α(1 + eiξ1 + eiξ2 + ei(ξ1+ξ2))
−α(1 + e−iξ1 + e−iξ2 + e−i(ξ1+ξ2)) 4α

]
.

Using the relation −eiθ + 2− e−iθ = 4 sin2(θ/2) we find that

detσ(ξ) = 16α
(
1 +

α

2

)(
sin2 ξ1

2
+ sin2 ξ2

2

)
+ 4α2

(
sin2 ξ1 + ξ2

2
+ sin2 ξ1 − ξ2

2

)

= 4α(1 + α)|ξ|2 + O(|ξ|4).
The inverse symbol is then given by

[σ(ξ)]−1 =
1

det σ(ξ)

[
4α α

(
1 + eiξ1 + eiξ2 + ei(ξ1+ξ2)

)
α

(
1 + e−iξ1 + e−iξ2 + e−i(ξ1+ξ2)

)
4 sin2 ξ1

2 + 4 sin2 ξ2
2 + 4α

]
.
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Since detσ(ξ) ≥ c|ξ|2 for some constant c > 0, the inverse exists for any ξ 6= 0, and
near the origin the inverse symbol has the singularity

σ(ξ)−1 =
1

(1 + α)|ξ|2
[

1 1
1 1

]
+

1
2(1 + α)|ξ|2

[
0 iξ1 + iξ2

−iξ1 − iξ2 0

]
+ O(1),

where O(1) stands for a function of ξ that remains uniformly bounded as |ξ| → 0.

A.2. A multi-atomic truss lattice. We consider the same lattice as in Section
A.2 but now we model it as a mechanical truss. We give the horizontal and vertical
bars stiffness 1, the diagonal ones stiffness α and set e1 = [1, 0]t, e2 = [0, 1]t,
e3 = (1/

√
2)[1, 1]t and e4 = (1/

√
2)[1,−1]t. Then the equilibrium equation reads,

cf. (6.1),

f(m, 1) = e1e
t
1

(−u(m− e1, 1) + 2u(m, 1)− u(m + e1, 1)
)
+

e2e
t
2

(−u(m− e2, 1) + 2u(m, 1)− u(m + e2, 1)
)
+

e3e
t
3

(−u(m− e1 − e2, 2) + 2u(m, 1)− u(m, 2)
)
+

e4e
t
4

(−u(m + e1 − e2, 2) + 2u(m, 1)− u(m− e1 + e2, 2)
)
,

f(m, 2) = e3e
t
3

(−u(m, 1) + 2u(m, 2)− u(m + e1 + e2, 1)
)
+

e4e
t
4

(−u(m + e1, 1) + 2u(m, 2)− u(m + e2, 1)
)
.

The symbol is now given by

σ(ξ) =
[

[σ(ξ)]11 [σ(ξ)]12

[σ(ξ)]t12 [σ(ξ)]22

]

where

[σ(ξ)]11 =
[

4 sin2 ξ1
2 + 2α 0
0 4 sin2 ξ1

2 + 2α

]
,

[σ(ξ)]12 = − α

2

[
1 + eiξ1 + eiξ2 + ei(ξ1+ξ2) 1− eiξ1 − eiξ2 + ei(ξ1+ξ2)

1− eiξ1 − eiξ2 + ei(ξ1+ξ2) 1 + eiξ1 + eiξ2 + ei(ξ1+ξ2)

]
,

[σ(ξ)]22 =
[

2α 0
0 2α

]
.

Computing σ(0)(ξ) using (6.8) we find that

σ(0)(ξ) =
[

(1 + α/2)ξ2
1 + (α/2)ξ2

2 αξ1ξ2

αξ1ξ2 (α/2)ξ2
1 + (1 + α/2)ξ2

2

]
.

The lowest order system of homogenized equations is thus

−(
(1 + α/2)∂2

1 + (α/2)∂2
2

)
u1 − (α∂1∂2)u2 = f1,

−(α∂1∂2)u1 −
(
(α/2)∂2

1 + (1 + α/2)∂2
2

)
u1 = f2.

These are equations of two-dimensional elasticity for any α > 0. If α = 1, we get the
equations of an isotropic medium (in plane stress) with Young’s modulus 4/3 and
Poisson’s ratio 1/3. Note that if we model an actual physical truss, the isotropic
case corresponds to one where the diagonal bars have a cross-sectional area that is
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√
2 smaller than the horizontal and vertical ones (since axial stiffness scales as area

divided by length).

A.3. A mono-atomic frame lattice. We consider the square lattice labelled A
in Figure 1.1. Modelling the struts as Euler beams with Young’s modulus E, cross-
sectional area A, length L and moment of intertia I, the stiffness matrix for a
horizontal link is, cf. (7.1),

(A.1) A(1,[1,0],1) =




AE
L 0 0 −AE

L 0 0
0 12EI

L3
6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 −6EI

L3
2EI
L

−AE
L 0 0 AE

L 0 0
0 −12EI

L3 −6EI
L2 0 12EI

L3 −6EI
L2

0 6EI
L2

2EI
L 0 −6EI

L3
4EI
L




.

The symbol for this lattice is then

σ(ξ) =




EA
L 4 sin2 ξ1

2 + 12EI
L3 4 sin2 ξ2

2 0 12EI
L2 i sin ξ2

0 EA
L 4 sin2 ξ2

2 + 12EI
L3 4 sin2 ξ1

2 −12EI
L2 i sin ξ1

−12EI
L2 i sin ξ2

12EI
L2 i sin ξ1

4EI
L (4 + cos ξ1 + cos ξ2)


 ,

and the limit symbol, cf. (7.4),

σ(0)(ξ) =
[

EA
L ξ2

1 + 6EI
L3 ξ2

2
6EI
L3 ξ1ξ2

6EI
L3 ξ1ξ2

EA
L ξ2

2 + 6EI
L3 ξ1

2

]
.
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