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Abstract

A method is presented for the rapid evaluation of electro-static interactions in a dielectric medium containing inclu-

sions with different dielectric properties. The principal observation is that in environments where several potential eval-

uations are required for a fixed geometry, it is advantageous to precompute compressed representations of the inverses

of certain operators. Numerical examples in two dimensions show a speed-up of a factor of 10–100 when compared to

the fastest existing methods. Moreover, the method presented is based on direct (as opposed to iterative) techniques,

making it preferable to existing methods in environments involving ill-conditioned problems.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

We consider the problem of evaluating the electro-static interactions between a number of charged par-

ticles distributed in a domain consisting of two (or more) regions with different dielectric constants, as illus-

trated in Fig. 1. This evaluation problem occurs in many areas of science and engineering and is frequently

the most expensive part of computational simulations. The dielectrics problem that we focus on is com-

monly used to model electrochemical interfaces, semiconductor junctions, the solvation of macromolecules,

ion channels, etc., see, e.g. [3]. Furthermore, the problem we consider is mathematically equivalent to the

conduction problem for a material containing inclusions with different conductivities. It is also very similar
to the problem of solving Stokes� equation for viscous fluid suspensions, see [12,13], and to the problem of

determining the stresses in an elastic body having inclusions with different material properties, see [4,7].
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Fig. 1. The domain X ¼ R2 ¼ X1 [ X2. In the sub-domain Xi, the dielectric constant is ei. In X2, there are M = 3 point particles;

particle number i is located at the position zi 2 R2 and has the electric charge qi. The interface is called C.
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Accelerated solution techniques for the problem described in the previous paragraph tend to fall in two

categories. Methods in the first category (sometimes called ‘‘P3M’’ methods) are based on fast Poisson solv-

ers; these methods interpolate the point charges to a continuous charge density on some mesh imposed on

the domain, and incorporate boundary conditions that enforce the continuity of electric fluxes across the

interfaces between the domains, see e.g. [1,8,16]. Methods in the second category use classical potential the-
ory to rewrite the evaluation problem as a set of two subproblems; (i) determine the induced charges on the

domain interfaces by solving an integral equation, and (ii) evaluate the force on each particle as the sum of

the force resulting from the interaction with the induced charges and the force resulting from all pairwise

interactions with other particles, see [3,12,14].

One feature of the technique based on boundary methods is that it can easily be accelerated in the envi-

ronment where several force calculations need to be performed for a fixed geometry. It was observed in [3],

that in this situation one can pre-compute the inverse of the operator in the integral equation that deter-

mines the induced charges. Once this has been done, the induced forces can be determined through a simple
matrix–vector multiplication. The computational cost for each force evaluation is then O(M2 + N2), where

M is the number of degrees of freedom used in the discretization of the integral operator and N is the num-

ber of charged particles.

In this paper, we demonstrate that further acceleration can be obtained by using multilevel ‘‘fast’’ tech-

niques for both the inversion of the integral operator, and for the evaluation of charge–charge interactions.

The resulting method has a computational complexity of O(M + N) for each force evaluation. We use the

fast multipole method, see [6], to rapidly evaluate the pairwise interactions between the particles and the

fast direct solver of [9] to evaluate the induced charges. While FMM-accelerated methods could be used
for both these tasks, the method of [9] is considerably faster, see Remark 4 and Table 3. Moreover, all

FMM accelerated methods for solving integral equations are based on iterative procedures, which compare

unfavorably with direct methods in terms of sensitivity to ill-conditioning, the possibility of reusing com-

puted data to solve slightly perturbed problems, etc.

The accelerated technique described above has been implemented and tested on a number of two-dimen-

sional problems. We present examples showing that: (i) The break-even point where acceleration techniques

start paying off is less than one thousand particles. (ii) Using boundary integral equations, it is feasible to

achieve solutions that are accurate to ten digits, or more. (This property makes validation of computer cal-
culations very simple.) (iii) Since the complexity of the accelerated method scales linearly with problem size,

very large problems can be solved even on modest computers. We show that at 10 digits accuracy, a prob-

lem involving one hundred thousand particles and a contour discretized into 25,000 nodes can be solved in

a couple of seconds on an ordinary desktop PC.

The paper is structured as follows: Section 2 introduces a model problem involving a dielectric interface

and derives an integral equation that describes the induced charges on the interface. Section 3 describes effi-
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cient procedures for solving the equations given in Section 2 numerically. Section 4 presents the results from

several numerical examples and Section 5 summarizes the main findings.
2. A model problem

In this section, we introduce a simple electro-statics problem involving a distribution of point charges in

a two-phase dielectric medium. We describe the problem and derive equations that determine the electro-

static forces on all particles.

The geometry of the problem is shown in Fig. 1; a number of charged particles are distributed in an un-

bounded dielectric medium containing a finite inclusion consisting of a different dielectric medium.When the

system is in electro-static equilibrium, the two dielectric media will be polarized in such a fashion that there

will appear to be a monopole charge distribution – the ‘‘induced’’ charges – on the boundary between the two
media. The electro-static force experienced by any particle can then be viewed as a combination of the force

arising from direct pairwise interactions with the other particles and the force arising from interactions with

the induced charges on the interface.

For notational simplicity, we will in the remainder of this section focus on equations set in two dimen-

sions even though equations in higher dimensions can be handled analogously.

In order to determine the electro-static forces described in the previous paragraph, we need to intro-

duce some notation. We let X ¼ Rd denote the full domain, while X2 denotes the inclusion and

X1 = XnX2, see Fig. 1. The dielectric constant of the domain Xj is ej for j = 1,2. There are M charged
particles with charges qi, located at positions zi 2 X1, for i = 1, . . ., M. We let u denote the electric po-

tential, u(1) its restriction to X1 and u(2) its restriction to X2. When the system is in electro-static equi-

librium, u satisfies the equations
� e1Duð1ÞðxÞ ¼
XM
i¼1

qidðx� ziÞ; x 2 X1; ð1Þ

� e2Duð2ÞðxÞ ¼ 0; x 2 X2. ð2Þ
Letting n denote the outward unit normal of the interface C = oX2, the boundary conditions on C read
uð1ÞðxÞ ¼ uð2ÞðxÞ; x 2 C; ð3Þ

e1
ouð1Þ

on
ðxÞ ¼ e2

ouð2Þ

on
ðxÞ; x 2 C. ð4Þ
The final condition on u is a decay condition at infinity ensuring that the solution has finite total energy. In

two dimensions, the condition is that there must exist a constant c such that
lim
jxj!1

uð1ÞðxÞ � c log jxj
�� �� ¼ 0. ð5Þ
Eqs. (1)–(5) uniquely define the electric potentials u(1) and u(2). (In Eq. (5), it turns out that

c ¼ �
PM

i¼1qi=2pe1, as could be expected.)

The solution of the system (1)–(5) can be decomposed into a sum of a potential caused directly by the

point charges, and another potential caused by the induced charges on the interface C. Formally speaking,

we make the ansatz
u ¼ vþ w; ð6Þ

where v is the potential caused directly by the point-charges,
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vðxÞ ¼ � 1

2pe1

XM
i¼1

qi log jx� zij; ð7Þ
and w is the potential caused by the induced charge distribution r,
wðxÞ ¼
Z
C

� 1

2pe1
log jx� yj

� �
rðyÞdsðyÞ. ð8Þ
The function u defined by (6)–(8) automatically satisfies the conditions (1), (2), (3) and (5). The remain-

ing condition, (4), is used to construct an equation that determines the induced charge distribution r in (8).

To this end, we fix an x 2 C, and note that the derivative of u(1) in the direction of the normal n(x) is given

by the limit
e1
ouð1Þ

on
ðxÞ ¼ lim

y!x;y2X1

e1ruðyÞ � nðxÞ. ð9Þ
It is a standard result in the study of integral equations that under minimal smoothness assumptions on

the boundary, the above limit evaluates as follows:
e1
ouð1Þ

on
ðxÞ ¼ e1

ov
on

ðxÞ � 1

2
rðxÞ þ ½Dr�ðxÞ; ð10Þ
where D denotes the ‘‘double layer operator’’,
½Dr�ðxÞ ¼ � 1

2p

Z
C

nðxÞ � ðx� yÞ
jx� yj2

rðyÞdsðyÞ. ð11Þ
For a discussion of such limits, see [10].

Similarly, we find that
e2
ouð2ÞðxÞ

on
¼ e2

ov
on

ðxÞ þ e2
e1

1

2
rðxÞ þ e2

e1
½Dr�ðxÞ. ð12Þ
In view of (10) and (12), we find that (4) is satisfied if and only if the induced charge distribution r satisfies
� e1 þ e2
2ðe1 � e2Þ

rðxÞ þ ½Dr�ðxÞ ¼ �e1
ov
on

ðxÞ; x 2 C; ð13Þ
where v is defined by (7). We remark that Eq. (13) is an example of what is called a ‘‘second kind Fredholm

equation’’ and that such equations typically are very benign; for instance, it is known that (13) has a unique

solution whenever e1 6¼ e2, see [11]. Moreover, in most situations of practical interest, the ratio between the

largest and the smallest singular values (the ‘‘condition number’’) of (13) tends to be small, which is very

beneficial when the equation is discretized and solved numerically. (An important exception is the case
where e2�e1, discussed in Remark 2.)

Once the induced charge distribution r has been determined by solving (13), the electro-static force act-

ing on particle i is given by the formula
F i ¼ F ðparticlesÞ
i þ F ðinducedÞ

i ; ð14Þ

where
F ðparticlesÞ
i ¼

X
i6¼j

qiqj
2pe1

zi � zj
jzi � zjj2

; ð15Þ
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and
F ðinducedÞ
i ¼ �qirwðziÞ ¼

qi
2pe1

Z
C

zi � y

jzi � yj2
rðyÞdsðyÞ. ð16Þ
Remark 1 (Generalizations). For clarity, the solution technique described in this section was presented in

the simplest possible setting. It can without difficulty be extended to environments involving:

(1) Particles with other types of charges (e.g., dipole charges).

(2) Several inclusions (possibly with different dielectric constants).

(3) Inclusions that contain charged particles.

(4) Different boundary conditions (e.g., condition (5) can be replaced by periodic boundary conditions).

It is also possible to replace the Laplace equation by any other equation that has a translation invariant

fundamental solution with an appropriate singularity at the origin (examples include Helmholtz� equation,
Yukawa, etc). The numerical technique to be described in Section 3 works well under any of the

generalizations 1–4 but it cannot handle problems with highly oscillatory fundamental solutions. In

particular, for certain wave propagation problems, other techniques would be needed.
Remark 2 (High contrast ratios). Some complications arise when Eq. (13) is to be solved for an inclusion

for which e2 is much larger than e1. The condition number of (13) then scales as e2/e1 and care must be taken

to avoid incurring numerical errors, see [17]. Since we use direct methods to solve (13), this is less of a con-

cern than it would have been if iterative methods had been used. However, if e2/e1 is truly very large, it may

be necessary to reformulate Eq. (13) slightly in order to avoid incurring prohibitively large round-off errors,

see [5]. Table 4 gives quantitative numbers for a particular geometry. (We note that the case where e2 � e1
presents no difficulties, and that the case e1 � e2 is extremely benign; in fact, as e2 ! e1, the condition num-

ber of (13) approaches 1, and iri! 0.)
3. Numerical solution techniques

In this section, we discuss numerical techniques for solving the electro-statics problem described in Sec-

tion 2. The goal is to compute the electric forces specified by Eq. (14), given a set of particle positions and

charges fzi; qig
M
i¼1, two dielectric constants e1 and e2 and an interface C. We do this by performing the fol-

lowing four steps:

(1) Evaluate ov/on on C, where v is given by (7).
(2) Solve Eq. (13) to determine the induced charges.

(3) Evaluate the forces caused by the induced charges, cf. (15).

(4) Evaluate the forces caused by particle–particle interactions, cf. (16).

While the question of how to discretize the integral equation (13) is generally very important, it is not the

focus of the current work. For now, we simply assume that it has somehow been discretized using a Ny-

ström method on the points fxigNi¼1 � C, and note that such schemes are in most environments stable

and highly accurate, see [2].
The evaluation of the sum (16) in Step (4) is a well-known numerical problem. If N is small, it is simply

solved by direct evaluation using O(N2) operations. If N is large, the Fast Multipole Method, see [6], solves

this problem in O(N) operations.



294 P.-G. Martinsson / Journal of Computational Physics 211 (2006) 289–299
When the Nyström method is used to discretize (13), the evaluation problems in Steps (1) and (3)

are almost entirely analogous to the evaluation problem in Step (4) (the only difference being that the

set of evaluation points is different from the set of source points). If direct calculations are used,

O(NM) arithmetic operations are required; if the FMM is used, only O(N + M) operations are

required.
It remains to discuss Step (2). If Eqs. (1)–(5) need to be solved only once, it is well-understood how

to efficiently solve the system of equations obtained when Eq. (13) is discretized: If N is small, use

Gaussian elimination, otherwise use an iterative solver (such as GMRES, see [15]) combined with a fast

method for applying the integral operator to a vector, such as, e.g., the fast multipole method. A ques-

tion that seems to be less well-understood is how to accelerate Step (2) in an environment where the

interface C is fixed (or changes only infrequently) while Eqs. (1)–(5) need to be solved for several

distributions fzi; qig
M
i¼1 of charged particles. It was observed in [3] that in this environment, it is advan-

tageous to pre-compute the inverse of the matrix associated with Eq. (13), since then a simple matrix–
vector multiplication is all that is needed to determine the induced charges in Step (2). The main point

of the current work is to illustrate that by using a fast inversion technique presented in [9], this step can

be accelerated further by computing a compressed version of this inverse that can be applied to a vec-

tor using O(N) arithmetic operations.

Remark 3. The proposed method has a potential drawback in that it forces us to choose the discretization

points fxigNi¼1 at the time of the pre-computation. This could potentially cause a problem if (say during the

course of a particle simulation) a particle position zi happens to get close to the interface. If the particle is

only moderately close, the problem can be addressed by placing an image charge at the opposite side of the

interface. Should the method of image charges not be sufficient, it is possible to cheaply update the

computed inverse to incorporate a locally more refined mesh.
Remark 4 (Comparison with FMM). Instead of using the fast inversion scheme of [9] to compute the

induced charges in Step (2), it is possible to use an iterative solver in combination with a fast algorithm

for applying the operator in (13) such as the fast multipole method, see [14]. Both approaches have a com-

putational complexity of O(N + M), but it is our experience that the method using a pre-computed inverse

is significantly faster in typical environments (see Table 3 for a numerical comparison). However, in situ-
ations where the geometry changes frequently, iterative solvers have an advantage in that they do not rely

on any pre-computation.
Remark 5 (Accelerated FMM). In an environment where pre-computation is possible, one can construct

very fast algorithms for applying the original operator to a vector. Such methods could alternatively be
used to accelerate Step (2) and would then result in a method that is about as fast as the direct method

proposed here provided that Eq. (13) is very well-conditioned, see Table 3. However, there are few obvious

advantages to such an approach.
4. Numerical experiments

In this section, we illustrate through numerical examples the relative performance of the numerical tech-

niques for solving Eqs. (1)–(5) that were discussed in Section 3. We consider only the environment where

the interface C is fixed and some pre-computation of the inverse of the matrix associated with (13) can be

performed.
We compared three different combinations of acceleration techniques for performing the calculations re-

ferred to as Steps (1), (2), (3) and (4) in Section 3. The gradient calculations of Steps (1), (3) and (4) were

done either via direct computations, or via the FMM. The problem of determining the induced charges in
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Step (3) was solved either by multiplying by the full inverse of the matrix associated with Eq. (13), or by

multiplying by the compressed inverse. We considered the following combinations:
Steps (1), (3), (4)
 Step (2)
Method I
 Direct calculation
 Full inverse
Method II
 Direct calculation
 Compressed inverse

Method III
 FMM
 Compressed inverse
Letting ta denote the CPU time required for method a, we expect that
tI ¼ OðN 2 þM2Þ;
tII ¼ OðN 2 þ NMÞ;
tIII ¼ OðN þMÞ;
where N denotes the number of point charges, and M denotes the number of points used to discretize the

interface.
Eq. (13) was discretized using the Nyström method with the trapezoidal rule. We considered smooth

contours only, meaning that this method has an exponential rate of convergence (note that the kernel in

(11) is in fact smooth), see [14]. In the tests presented, the discretization error was less than 10�10, provided

that all charged particles were separated from the interface by at least a distance of 5h, where h is the dis-

tance between discretization nodes on the contour. Some experiments were run at a relative accuracy of

10�5, in which case an interface-particle separation of 2.5h was sufficient.

The algorithms were implemented in Fortran 77 and run on a desktop PC with a 2.8 GHz Pentium IV

processor and 512 Mb of RAM memory.
4.1. A simple channel-type geometry

In the experiments presented in this section, Eqs. (1)–(5) were solved to a relative accuracy of 10�10 on
the geometry shown in Fig. 2. The CPU times required by the three methods under consideration are shown

in Table 1. The table shows that if N and M are both on the order of hundreds, the acceleration techniques

presented here are not helpful. However, if either of these numbers exceed about 1000, the savings very

rapidly become significant. (At lower accuracies, the break-even points are of course lower.)

The approach of this paper requires some pre-computation. The corresponding CPU times are presented

in Table 2.

Table 3 gives the time required for an FMM-accelerated matrix–vector multiply and the time required to

apply the compressed inverse to a vector at a number of different problem sizes; note that the former is
much larger than the latter, see Remark 4. Table 3 also reports the CPU times required for a matrix–vector

multiply using an FMM accelerated via pre-computation, as discussed in Remark 5. (The actual algorithm

used here has not yet been published.)

The CPU time requirements reported are entirely independent of the values of the dielectric con-

stants e1 and e2. However, these numbers do influence the condition number of the equations that

we solve, and thus the precision of the computed results, see Remark 2. Table 4 reports the numerical

errors incurred in the accelerated inversion of (13) for a range of different ratios e2/e1. These numbers

show that since we use direct methods, even quite ill-conditioned problems can be solved rapidly and
accurately.
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Fig. 2. (a) Geometry containing two inclusions of a material with a different dielectric constant. Outside the inclusions, 10,000 charged

particles are placed. (b) A close-up of the top of the ‘‘channel’’ between the inclusions.

Table 1

ta denotes the CPU time (in seconds) required to solve Eqs. (1)–(5) using method a = I, II, III at a relative accuracy of 10�10

M N = 100 N = 1000 N = 10,000 N = 100,000

tI tII tIII tI tII tIII tIII tIII

400 2.1e � 3 3.9e � 3 2.1e � 2 2.2e � 2 2.4e � 2 7.0e � 2 3.7e � 1 2.6e + 0

800 5.3e � 3 8.5e � 3 2.7e � 2 3.6e � 3 4.0e � 2 8.0e � 2 4.1e � 1 2.6e + 0

1600 1.6e � 2 1.1e � 2 3.8e � 2 6.8e � 2 6.6e � 2 9.2e � 2 4.1e � 1 2.7e + 0

3200 5.4e � 2 1.8e � 2 5.7e � 2 1.5e � 1 1.1e � 1 9.8e � 2 4.3e � 1 2.8e + 0

6400 (1.9e � 1) 3.2e � 2 9.1e � 2 (3.4e � 1) 2.1e � 1 1.2e � 1 4.8e � 1 2.8e + 0

12,800 (7.4e � 1) 5.8e � 2 1.6e � 1 (1.0e � 0) 4.1e � 1 1.7e � 1 5.4e � 1 2.8e + 0

25,600 (2.9e + 0) 1.1e � 1 3.1e � 1 (3.4e + 0) 8.4e � 1 2.8e � 1 6.5e � 1 3.0e + 0

51,200 (1.2e + 1) (1.9e � 1) 5.8e � 1 (1.4e + 1) 1.7e + 0 5.1e � 1 8.3e � 1 3.1e + 0

102,400 (4.6e + 1) (3.3e � 1) 1.2e + 0 (4.8e + 1) 3.4e + 0 9.8e � 1 1.3e + 0 3.6e + 0

Numbers in parenthesis are extrapolated.
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4.2. A domain with several inclusions

In the experiments presented in this section, Eqs. (1)–(5) were solved to a relative accuracy of 10�5 on

three geometries with 16, 32, and 64 dielectric inclusions, respectively. The last one is shown in Fig. 3.

The three geometries were discretized using, respectively, M = 6400, 12,800, 25,600 points. Morever,



Table 2

ta,pre-comp denotes the CPU time (in seconds) required for pre-computation when using method a = I, II. ta,solve denotes the CPU time

needed to solve Eq. (13) when using method a = I, II

M 400 800 1600 3200 6400 12,800 25,600 51,200 102,400

tI,pre-comp 4.0e � 1 3.3e + 0 2.8e + 1 2.2e + 2 (1.7e + 3) (1.4e + 4) (1.1e + 5) (8.8e + 5) (7.1e + 6)

tI,solve 8.0e � 4 3.2e � 3 1.2e � 2 4.8e � 2 (1.9e � 1) (7.7e � 1) (3.1e + 0) (1.2e + 1) (4.9e + 1)

tII,pre-comp 4.1e � 1 8.4e � 1 1.1e + 0 1.2e + 0 1.4e + 0 1.9e + 0 2.9e + 0 4.7e + 0 9.5e + 0

tII,solve 2.5e � 3 5.5e � 3 6.2e � 3 8.0e � 3 1.2e � 2 1.9e � 2 3.4e � 2 6.1e � 2 1.2e � 1

Note that these times are the same for methods II and III. Numbers in parenthesis are extrapolated.

Table 3

tFMM is the time (in seconds) required for an FMMmatrix–vector multiply on the contour in Fig. 2, while tII,solve is the time required to

apply the compressed inverse to a vector (both at a relative accuracy of 10�10)

M 1600 3200 6400 12,800 25,600 51,200 102,400

tFMM 1.8e � 2 2.7e � 2 5.4e � 2 1.1e � 1 2.2e � 1 4.5e � 1 8.8e � 1

tII,solve 6.2e � 3 8.0e � 3 1.2e � 2 1.9e � 2 3.4e � 2 6.1e � 2 1.2e � 1

tFMM,acc 1.2e � 3 2.2e � 3 3.9e � 3 7.4e � 3 1.5e � 2 2.8e � 2 5.5e � 2

tFMM,acc is the time required for a matrix–vector multiply using an accelerated FMM, as described in Remark 5.

Table 4

The condition number c of Eq. (13) is reported for a range of ratios between the dielectric constants e1 and e2

e2/e1 1.0e � 9 1.0e � 6 1.0e � 3 1.1e + 0 1.0e + 3 1.0e + 6 1.0e + 9

c 1.0e + 1 1.0e + 1 1.0e + 1 1.1e + 0 1.9e + 3 1.9e + 6 1.9e + 9

E 8.0e � 9 8.0e � 9 8.0e � 9 3.8e � 10 2.9e � 7 3.0e � 4 2.9e � 1

For each ratio, we also report the error E ¼ maxf jA�1f � A�1
e f j=jA�1f j which indicates how far the computed approximate inverse A�1

e

is from the exact inverse A�1. All experiments in this table relate to the contour shown in Fig. 2, which was discretized into 25,600

points.
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N = 25,000, 50,000, 100,000 charged particles were placed outside the inclusions. The CPU times required
to determine the forces on all particles using Method III are given in Table 5, from which it is easily seen

that the CPU times scale linearly with problem size.

We remark that when a contour takes on an ‘‘area-filling’’ character like the contours in this exam-

ple, the simple compression algorithm used here requires O(M3/2) arithmetic operation to pre-compute

the inverse of the matrix. Once the inverse has been computed, its application to a vector is still very

cheap, as Table 5 shows. (Moreover, we expect that more sophisticated inversion techniques that are

currently under development will soon reduce the cost of the pre-computation from O(M3/2) to O(M

logM).)
5. Conclusions

In this paper, we investigated the usefulness of fast direct methods as a technique for evaluating the

forces on a collection of charged particles distributed in a multi-phase dielectric medium. The basic idea

is that by expending some computational effort analyzing a given geometry, it becomes possible to perform

force-evaluations very rapidly. Through numerical examples, we demonstrated that two-dimensional prob-
lems involving tens of thousands of charged particles and geometries that require tens of thousands of
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Fig. 3. (a) A domain with 64 dielectric inclusions. The interface was discretized usingM = 25,600 points and N = 100,000 point charges

were randomly distributed inside the rectangular box. Due to the number of particles, they are not shown in (a), but a close-up of the

particle distribution is given in (b).
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discretization points can be solved in about one second on a 2.8 GHz desktop PC (at a relative accuracy of

10�10).

The techniques considered here can easily be extended to the solution of other Laplace-type problems
(heat conduction, elasticity, Yukawa, etc.) on domains involving piecewise constant material properties.

We expect this method to outperform existing methods in those situations where multiple problems need

to be solved for a given geometry.



Table 5

The table shows the CPU time (in seconds) required for solving Eqs. (1)–(5) on geometries like the one shown in Fig. 3 at a relative

accuracy of 10�5

M N tIII tIII,pre-comp tIII,solve

6400 25,000 9.4e � 1 1.7e + 1 5.4e � 2

12,800 50,000 1.8e + 0 4.6e + 1 1.2e � 1

25,600 100,000 3.8e + 0 1.9e + 2 4.2e � 1

tIII is the time required to determine all forces, tIII,pre-comp is the time required for pre-computation and tIII,solve is the time required to

solve Eq. (13). (Note that tIII,solve is included in tIII.)
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At this point, the techniques presented have been fully developed only in two dimensions. The extension

to geometries involving surface interfaces in three dimensions is under way and will be reported at a later

date.
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