
Journal of Computational Physics 205 (2005) 1–23

www.elsevier.com/locate/jcp
A fast direct solver for boundary integral equations in
two dimensions

P.G. Martinsson *, V. Rokhlin

Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, CT 06511, USA

Received 7 May 2004; accepted 5 October 2004

Available online 15 December 2004
Abstract

We describe an algorithm for the direct solution of systems of linear algebraic equations associated with the discret-

ization of boundary integral equations with non-oscillatory kernels in two dimensions. The algorithm is ‘‘fast’’ in the

sense that its asymptotic complexity is O(n), where n is the number of nodes in the discretization. Unlike previous fast

techniques based on iterative solvers, the present algorithm directly constructs a compressed factorization of the inverse

of the matrix; thus it is suitable for problems involving relatively ill-conditioned matrices, and is particularly efficient in

situations involving multiple right hand sides. The performance of the scheme is illustrated with several numerical

examples.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The boundary value problems of classical potential theory are ubiquitous in engineering and physics.

Most such problems can be reduced to boundary integral equations which are, from a mathematical point

of view, more tractable than the original differential equations. Although the mathematical benefits of

such reformulations were realized and exploited in the 19th century, until recently boundary integral

equations were rarely used as numerical tools, since most integral operators upon discretization turn into
dense matrices. In the 1980s, the cost of applying dense matrices resulting from potential theory to arbi-

trary vectors was greatly reduced by the development of ‘‘fast’’ algorithms (Fast Multipole Methods,

panel clustering, wavelets, etc.). Combining fast matrix-vector multiplication techniques with iterative

schemes for the solution of large-scale systems of linear algebraic equations, it became possible to solve
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.10.033

* Corresponding author. Tel.: +1 203 432 1277.

E-mail address: per-gunnar.martinsson@yale.edu (P.G. Martinsson).

mailto:per-gunnar.martinsson@yale.edu 


2 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
well-conditioned boundary integral equations of potential theory in O(n) operations, where n is the num-

ber of unknowns. Today, such combinations are in many environments the fastest and most accurate

numerical solution techniques available. Iterative linear solvers have certain drawbacks though; we briefly

discuss these below.

(1) The number of iterations required by an iterative solver is sensitive to the spectral properties of the

matrix of the system to be solved; for sufficiently ill-conditioned problems, the number of iterations

is proportional to n. Since each iteration (with FMM acceleration) requires O(n) operations, the total

operation count is then proportional to n2. While this is still better than the O(n3) estimate associated

with direct solvers, in many situations O(n2) is not acceptable.

(2) When one needs to solve a collection of problems involving a single matrix and multiple right-hand

sides, the CPU time requirements of most iterative algorithms are close to the time required to solve

one problem multiplied by the number of problems to be solved. With most direct solvers, the situation
is different; once the matrix has been inverted (or factored), applying its inverse to each additional

right-hand side is very inexpensive.

(3) When a collection of linear systems has to be solved whose matrices are in some sense ‘‘close’’ to each

other, iterative algorithms derive little (if any) advantage from the closeness of the matrices.

(4) Most direct schemes for the solution of linear systems are closely related to efficient algorithms for the

construction of their Singular Value Decompositions and certain other matrix factorizations (L-U, Q-

R, etc.). The simplest such scheme is probably the inverse power method with shifts (see, for example,

[6]), which converts any algorithm for the solution of a linear system into an algorithm for the deter-
mination of a prescribed singular value. Iterative techniques do not provide such a capability, except

via the so-called Lanczos schemes, which tend to require a large number of iterations (see, for example,

[14]).

The subject of this paper is a numerical technique that is intended to overcome these shortcomings by

directly producing a compressed (‘‘data-sparse’’) factorization of the inverse of the matrix. When applied

to contour integral equations of potential theory whose kernels are non-oscillatory, the asymptotic com-

plexity of the solver is typically O(n). When applied to problems involving oscillatory kernels, the asymp-
totic complexity deteriorates as the wavenumber increases but the scheme remains viable for objects up to a

few hundred wavelengths in size. The factorization technique described in this paper is a multilevel exten-

sion of the compression technique described in [3]. The machinery underlying these techniques applies gen-

erally to matrices with rank-deficient off-diagonal submatrices; contour integral equations have been chosen

by the authors simply as the most straightforward application.

It is not the purpose of this paper to provide an exhaustive survey of the literature on the subject we are

addressing. A number of researchers have observed that matrices with rank-deficient off-diagonal blocks ad-

mit ‘‘fast’’ factorizations (see [8,9]); others have constructed ‘‘fast’’ algorithms in various environments (see
[1,2,4,5,12]) where the operators in question posses rank-deficient off-diagonal blocks, without using this

property explicitly. However, we observe that the algorithm of this paper is closely related to the scheme de-

scribed in [13]. In fact, our algorithm could be viewed as a modification of the algorithm of [13] that replaces

‘‘elongated’’ objects in two or three dimensions with ‘‘curves’’, extends the class of kernels addressed by [13],

and introduces modifications in the scheme of [13] that are necessary for this extension to work.

The paper is organized as follows: In Section 2 we introduce our notation and list certain facts about

compression of rank-deficient matrices. In Section 3 we demonstrate that the inverse of a matrix with

rank-deficient off-diagonal blocks possesses a data-sparse hierarchical factorization. In Section 4 we present
a generic numerical technique for constructing the factorization described in Section 3. In Section 5 we

show how the generic numerical technique presented in Section 4 can be improved further when applied

to contour integral equations. In Section 6 we illustrate through numerical examples the efficiency of the



P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 3
technique presented in Section 5 when applied to a number of different kernels and contours. In Section 7

we summarize our findings and discuss possible extensions and generalizations.
2. Preliminaries

2.1. Notation

Throughout the paper, we use upper case letters for matrices and lower case letters for vectors and sca-
lars. The canonical unit vectors in Cn are denoted by ej. Given a matrix X 2 Cm�n, we let

X* denote its adjoint (the complex conjugate transpose),

rk(X) denote its kth singular value,

iXi2 denote its l2 operator norm,

iXiF denote its Frobenius norm, and

xj 2 Cm�1 denote its jth column.

Given matrices A, B, C and D we let
AB½ �;
A

C

� �
; and

A B

C D

� �
; ð2:1Þ
denote larger matrices obtained by stringing the blocks A, B, C and D together.

Definition 1. (Permutation vectors) Given a positive integer n, we define
Jn ¼ the set of permutations of the integers f1; . . . ; ng: ð2:2Þ

Given two integers k and n such that 1 6 k 6 n, we define
Jk
n ¼ the set of subsets of size kof elements of Jn: ð2:3Þ
In other words, if J 2 Jk
n, then J is a vector of integers
J ¼ ½j1; . . . ; jk�; ð2:4Þ

where 1 6 jl 6 n and all jl�s are different.

Definition 2. (Submatrix) When we use the term ‘‘submatrix’’ we do not insist that the submatrix must

form a contiguous block. To be precise, we say that B 2 Ck�l is a submatrix of A 2 Cm�n, if there exist per-

mutations I ¼ ½i1; . . . ; ik� 2 Jk
m and J ¼ ½j1; . . . ; jl� 2 Jl

n such that
bpq ¼ aipjq ; for p ¼ 1; . . . ; k; q ¼ 1; . . . ; l: ð2:5Þ
Definition 3. (Neutered rows and columns) Let A be a matrix consisting of p · p blocks,
A ¼
Að1;1Þ � � � Að1;pÞ

..

. ..
.

Aðp;1Þ � � � Aðp;pÞ

2
664

3
775: ð2:6Þ
We refer to the submatrix formed by all blocks on the ith row except the diagonal one, i.e.
Aði;1Þ � � �Aði;i�1Þ Aði;iþ1Þ � � �Aði;pÞ� �
; ð2:7Þ
as the ith neutered row of blocks. A neutered column of blocks is defined analogously.



4 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
2.2. Compression of matrices

In this section we state a theorem on matrix compression that forms the foundation of the matrix fac-

torization technique presented later in this paper. Roughly speaking, the theorem asserts that given a ma-

trix A of rank k, it is possible to pick k of its columns in such a fashion that they form a well-conditioned
basis for the remaining columns. It was first reported in slightly different form in [7].

Theorem 1. Given an arbitrary matrix A 2 Cm�n and an integer k such that 1 6 k < min(m,n), there exists a

(not necessarily unique) matrix T 2 Ck�ðn�kÞ and a permutation J ¼ ½j1; . . . ; jn� 2 Jn such that
A
~2 ¼ ~A1T þ E: ð2:8Þ
Here, ~A1 and ~A2 are matrices formed by the columns of A,
~A1 ¼ ½aj1 ; . . . ; ajk � 2 Cm�k;

~A2 ¼ ½ajkþ1
; . . . ; ajn � 2 Cm�ðn�kÞ;

ð2:9Þ
the elements of the matrix T 2 Ck�ðn�kÞ satisfy
jT ijj 6 1; for 1 6 i 6 k; 1 6 j 6 n� k; ð2:10Þ

and the matrix E 2 Cm�ðn�kÞ satisfies the inequality
kEk2 6 rkþ1ðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kðn� kÞ

p
; ð2:11Þ
where rk+1(A) is the (k + 1)th singular value of A.

Remark 4. (Computational complexity) While Theorem 1 asserts the theoretical existence of a matrix T

and a permutation J with certain properties, it does not address the question of how to determine these

numerically. In fact, the authors are not aware of any algorithm that finds these objects in polynomial time.

However, in [7] an algorithm is presented that finds a matrix T and a permutation J such that all statements
of Theorem 1 still hold, except that (2.10) and (2.11) are replaced by the weaker inequalities
j T ij j6
ffiffiffi
n

p
; for 1 6 i 6 k; 1 6 j 6 n� k ð2:12Þ
and
kEk2 6 rkþ1ðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nkðn� kÞ

p
: ð2:13Þ
When mP n, the computational complexity of this algorithm is typically O(mnk), the same as for the

pivoted QR-factorization. In rare cases, the computational complexity may be somewhat larger but it never

exceeds O(mn2).

Observation 5. (Column compression) When applied to a matrix A 2 Cm�n of rank k, Theorem 1 asserts

that there exists a well-conditioned column operation that leaves k of the columns of A unchanged while

mapping the remaining n � k columns to zero. More specifically, let us define
R ¼ PJ
I �T

0 I

� �
2 Cn�n; ð2:14Þ
where T and J are defined in Theorem 1 and the permutation matrix PJ is defined by
PJ ¼ ½ej1 ; . . . ; ejn � 2 Cn�n: ð2:15Þ



P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 5
Then
AR ¼ ACS0½ � 2 Cm�n; ð2:16Þ

where the ‘‘column skeleton’’ ACS, is formed by k of the columns of A;
ACS ¼ ½aj1 ; . . . ; ajk � 2 Cm�k: ð2:17Þ
Moreover, by virtue of (2.10) and the identity
R�1 ¼
I T

0 I

� �
P �
J ; ð2:18Þ
it is clear that
kRkF 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ kðn� kÞ

p
; and kR�1kF 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ kðn� kÞ

p
: ð2:19Þ
Observation 6. (Row compression) The argument of Observation 5 can equally well be applied to the rows
of a matrix A 2 Cm�n of rank k. Thus, there exists a matrix L 2 Rm�m such that
LA ¼
ARS

0

� �
2 Cm�n; ð2:20Þ
where the ‘‘row skeleton’’ ARS 2 Ck�n is formed by k of the rows of A and
kLkF 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ kðm� kÞ

p
and kL�1kF 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ kðm� kÞ

p
: ð2:21Þ
3. Analytical apparatus

Consider a p · p block matrix
A ¼
Að11Þ � � � Að1pÞ

..

. ..
.

Aðp1Þ � � � AðppÞ

2
664

3
775; ð3:1Þ
such that any neutered row or column of blocks is rank-deficient. In this section we derive compressed fac-

torizations of the inverse of such a matrix. Lemmas 2 and 3 provide factorizations for the case p = 2. Obser-

vation 8 extends the results of Lemma 3 to a general p. Observation 9 introduces hierarchical factorizations

that further improve the efficiency.
Lemma 2 below asserts that for a given 2 · 2 block matrix with rank-deficient off-diagonal blocks, there

exist well-conditioned row- and column-operations that (i) introduce zeros in the off-diagonal blocks and

(ii) leave the remaining elements in the off-diagonal blocks untouched.

Lemma 2. Let A be a non-singular matrix
A ¼ Að11Þ Að12Þ

Að21Þ Að22Þ

" #
2 CðnþmÞ�ðnþmÞ; ð3:2Þ
where Að11Þ 2 Cn�n;Að22Þ 2 Cm�m and the off-diagonal blocks Að12Þ 2 Cn�m;Að21Þ 2 Cm�n have rank

k < min(m,n). Then there exist matrices R; L 2 Cn�n such that



A

6 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
L 0

0 I

" #
Að11Þ Að12Þ

Að21Þ Að22Þ

" #
R 0

0 I

" #
¼

X 11 X 12 Að12Þ
RS

X 21 X 22 0

Að21Þ
CS 0 Að22Þ

2
664

3
775: ð3:3Þ
Here, the matrix Að12Þ
RS 2 Ck�m consists of k of the rows of A(12) and the matrix Að21Þ

CS 2 Cm�k consists of k of the

columns of A(21). Moreover, X 11 2 Ck�k;X 12 2 Rk�ðn�kÞ;X 21 2 Rðn�kÞ�k;X 22 2 Rðn�kÞ�ðn�kÞ, and the matrices R
and L satisfy (2.19) and (2.21), respectively.

Proof. Due to Observations 5 and 6, there exist matrices R; L 2 Cn�n such that
LAð12Þ ¼ Að12Þ
RS

0

" #
and Að21ÞR ¼ Að21Þ

CS 0
h i

; ð3:4Þ
where Að12Þ
RS and Að21Þ

CS are submatrices of A(12) and A(21), respectively. The identity (3.3) now follows by

partitioning
L ¼
L1

L2

� �
; where L1 2 Ck�n; L2 2 Cðn�kÞ�n;

R ¼ R1 R2½ �; where R1 2 Cn�k; R2 2 Cn�ðn�kÞ;

ð3:5Þ
and setting
X 11 ¼ L1A
ð11ÞR1 2 Ck�k;

X 12 ¼ L1A
ð11ÞR2 2 Ck�ðn�kÞ;

X 21 ¼ L2A
ð11ÞR1 2 Cðn�kÞ�k;

X 22 ¼ L2A
ð11ÞR2 2 Cðn�kÞ�ðn�kÞ: �

ð3:6Þ
The following lemma uses the results of Lemma 3 to reduce the problem of factoring the inverse of the

matrix A in (3.2) to the problem of factoring the inverse of the smaller matrix ~A in (3.8).

Lemma 3. Let A, X11, X12, X21, X22, A
ð12Þ
RS and Að21Þ

CS be as in Lemma 2. Provided that the matrix X22 in (3.3) is

non-singular, there exist matrices B 2 Cn�k;C 2 Ck�n and D 2 Cn�n such that
A�1 ¼
B 0

0 I

� �
~A
�1 C 0

0 I

� �
þ

D 0

0 0

� �
; ð3:7Þ
where
~A ¼
~A
ð11Þ

Að12Þ
RS

Að21Þ
CS Að22Þ

" #
2 CðkþmÞ�ðkþmÞ ð3:8Þ
and
~ð11Þ ¼ X 11 � X 12X�1
22 X 21 2 Ck�k: ð3:9Þ



P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 7
Proof. We let L1, L2, R1 and R2 be defined by (3.5). Inverting both sides of Eq. (3.3), we obtain the identity
A�1 ¼
R1 R2 0

0 0 I

� � X 11 X 12 Að12Þ
RS

X 21 X 22 0

Að21Þ
CS 0 Að22Þ

2
64

3
75

�1
L1 0

L2 0

0 I

2
64

3
75: ð3:10Þ
Since X22 is non-singular,
X 11 X 12 Að12Þ
RS

X 21 X 22 0

Að21Þ
CS 0 Að22Þ

2
64

3
75

�1

¼
Ik 0

�X�1
22 X 21 0

0 Im

2
64

3
75 X 11 � X 12X�1

22 X 21 Að12Þ
RS

Að21Þ
CS Að22Þ

" #�1

Ik �X 12X�1
22 0

0 0 Im

" #
þ

0 0 0

0 X�1
22 0

0 0 0

2
64

3
75:

ð3:11Þ
Now we obtain (3.7) by combining (3.10) and (3.11) and setting
B ¼ R1 � R2X�1
22 X 21 2 Cn�k;

C ¼ L1 � X 12X�1
22 L2 2 Ck�n;

D ¼ R2X�1
22 L2 2 Cn�n: �

ð3:12Þ
Remark 7. (Symmetric factorizations) It is possible to force the factorization (3.7) to be symmetric in the

sense that R = L* (which does not imply that C = B* unless A itself is Hermitian). To this end, we define L

and JR as the matrix and index vector that compress the rows of the matrix ½Að12ÞAð21Þ� � 2 Rn�2m (rather

than the rows of A(12) alone), and set R = L* and JC = JR. This modification typically results in a poorer

compression ratio but may dramatically improve the conditioning of the transformation matrices, as

discussed in Section 4.4.

Observation 8. (One-level compression of a block matrix) Consider a matrix
A ¼
Að11Þ � � � Að1pÞ

..

. ..
.

Aðp1Þ � � � AðppÞ

2
664

3
775 2 Cpn�pn; ð3:13Þ
where AðijÞ 2 Cn�n for i,j = 1, . . ., p. We assume that any neutered row or column of blocks has rank at most

k. Through p applications of Lemma 3, it is possible to reduce the problem of inverting A to the problem of

inverting the smaller matrix
~A ¼
~A
ð11Þ � � � ~A

ð1pÞ

..

. ..
.

~A
ðp1Þ � � � ~A

ðppÞ

2
664

3
775 2 Cpk�pk; ð3:14Þ
where ~A
ðijÞ 2 Ck�k for i,j = 1, . . ., p, and ~AðijÞ is a submatrix of A(ij) whenever i 6¼ j.



8 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
More specifically, applying Lemma 3 to each of the p diagonal blocks of A, we obtain the factorization
Fig. 1.

Lemm

been c
A�1 ¼

B1 0 � � � 0

0 B2 0

..

. ..
.

0 0 � � � Bp

2
66664

3
77775~A

�1

C1 0 � � � 0

0 C2 0

..

. ..
.

0 0 � � � Cp

2
66664

3
77775þ

D1 0 � � � 0

0 D2 0

..

. ..
.

0 0 � � � Dp

2
66664

3
77775; ð3:15Þ
where Bi 2 Cn�k;Ci 2 Ck�n and Di 2 Cn�n, for i = 1, . . ., p.
The single-level matrix compression is illustrated graphically in Fig. 1.

Observation 9. (Hierarchical compression of a block matrix) Observation 8 reduces the problem of inver-
sion of a block matrix with rank-deficient neutered rows and columns to the problem of inversion of a

block matrix with smaller blocks. If by clustering these smaller blocks, we can create a matrix with off-

diagonal rank-deficiencies, then the process can be repeated recursively to further improve the compression.

More specifically, let us change notation so that the objects labeled A, ~A and k in Observation 8 are now

labeled A(1), ~A(1) and k1, respectively. Eq. (3.15) then reads
Að1Þ� ��1 ¼ Bð1Þ ~A
ð1Þ� 	�1

Cð1Þ þ Dð1Þ; ð3:16Þ
where B(1), C(1), D(1) are block diagonal matrices whose p diagonal blocks are of sizes n · k1, k1 · n,

n · n, respectively. We then cluster the blocks of the matrix ~A(1) to form a matrix A(2) with (p/
2) · (p/2) blocks of size 2k1 · 2k1 and apply the factorization (3.16) to it, thus obtaining a telescoped

factorization
Að1Þ� ��1 ¼ Bð1Þ Bð2Þ ~A
ð2Þ� 	�1

Cð2Þ þ Dð2Þ
� �

Cð1Þ þ Dð1Þ: ð3:17Þ
Here, A(2),B(2),C(2),D(2) are all block matrices with (p/2) · (p/2) blocks. Letting k2 denote the rank of the

neutered rows and columns of A(2), the blocks of ~A(2) have size k2 · k2, while B(2), C(2), D(2) are diagonal

block matrices with diagonal blocks of sizes 2k1 · k2, k2 · 2k1 and 2k1 · 2k1, respectively. This process

can be continued until no further clustering is advantageous.

The multi-level matrix compression is illustrated graphically in Fig. 2.

Remark 10. (Adjoint of the inverse) Obviously, the factorizations (3.15) and (3.17) provide a mechanism

for the accelerated application of both A�1 and [A�1]*.

Remark 11. (Block sizes) In Observations 8 and 9, it was assumed that all blocks within one of the matri-

ces A, ~A, A(1), A(2), . . ., have the same size. This assumption was made for notational convenience only and

is in no way essential to the results.
Step 1 Step 2 Step 3

A 3 · 3 matrix ½AðijÞ�3i;j¼1 is compressed in three steps, cf. Observation 8. In step j = 1, 2, 3, the single-block compression of

a 3 is applied to compress the interaction between A(jj) and the rest of the matrix. Black blocks represents entries that have not

hanged beyond row and column permutations and gray represents entries that have been updated but are not (necessarily) zero.



Compress Compress Compress
Cluster Cluster

Fig. 2. An 8 · 8 block matrix is compressed through a three-level compression scheme in the vein of Observation 9. The gray scale

coding is the same as in Fig. 1.

P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 9
4. An algorithm for the computation of a compressed inverse

In Section 3 we demonstrate the existence of a compact factorization of the inverse of any block matrix

whose neutered rows and columns of blocks are rank-deficient. In this section, we describe a numerical

scheme for the construction of such factorizations, and estimate its efficiency.

Remark 12. The inversion scheme presented in this section is fairly generic, depending only on the ranks of
off-diagonal blocks of the matrix to be inverted. In situations where the structure of the matrix is known,

further improvements are possible. For instance, when applied to a dense n · n matrix resulting from the

discretization of a contour integral operator, the generic algorithm of this section requires O(n2) arithmetic

operations to construct its inverse, while the customized technique presented in Section 5 requires

O(n log2 n) operations or less, depending on the integral operator.
4.1. Single block compression

Lemmas 2 and 3 assert that the inverse of a 2 · 2 block matrix of the form (3.2) can be factored in the

compressed form (3.7). The quantities ~A(11), R, L, A
ð12Þ
RS and Að21Þ

CS that appear in (3.7) can be determined by

taking the following steps:

(1) Determine a matrix L 2 Cn�n and a permutation JR 2 Jk
n such that
LAð12Þ ¼ Að12Þ
RS

0

" #
;

where Að12Þ
RS is formed by the k rows of A(12) specified by JR, as described in Observation 6.

(2) Determine a matrix R 2 Cn�n and a permutation JC 2 Jk
n such that
Að21ÞR ¼ Að21Þ
CS 0

h i
;

where Að21Þ
CS is formed by the columns of A(21) specified by JC, as described in Observation 5.



10 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
(3) Partition R and L as specified in (3.5) and form the blocks Xij as in (3.6).

(4) Compute ~A(11), B, C and D using the formulas (3.9) and (3.12).

Steps (1) and (2) require O(mnk) floating point operations while steps (3) and (4) require O(n3) opera-

tions. The total cost is thus O(mnk + n3).
4.2. Single-level compression

Let A denote a matrix consisting of p · p blocks, each of size n · n, in which every neutered row or col-
umn has rank k such that k < n. Observation 8 states that such a matrix can be factored in the sparse form

(3.15). This factorization contains the entities Bi, Ci, Di, ~A(ij) for i,j = 1, . . ., p, which can be computed

through p applications of the single-block compression technique of Section 4.1 – one application for each

diagonal block. Each one of the p steps requires O(pkn2 + n3) floating point operations resulting in a total

computational cost of O(p2kn2 + pn3).

Remark 13. The off-diagonal blocks of the compressed matrix ~A are never explicitly computed. Instead,

the block ~A
ðijÞ 2 Ck�k is specified by giving the index vectors J ðiÞR ; J ðjÞC 2 Jkn that define the rows and

columns of AðijÞ 2 Ck�k, whose intersections form ~A(ij). (Here J ðiÞR is the index vector obtained when

compressing the ith row of blocks and J ðjÞC is the index vector obtained when compressing the jth
column of blocks.)
4.3. Multi-level compression

The single-level technique compresses a block matrix A to form another block matrix ~A with smaller

blocks. Now, if by clustering blocks, we can create rank-deficiencies in the neutered rows and columns

of ~A, then the single-level technique can be applied recursively. The algorithmic implementation entirely fol-

lows the description in Observation 9.

When estimating the computational cost for the multi-level technique we use r = 1, . . ., R as an index for

the levels (with r = 1 being the finest level), we let pr denote the number of blocks on level r, nr the average

block size and kr the average rank. The cost for step r is then
tr � krp2r n
2
r þ prn

3
r : ð4:1Þ
We assume that prkr P nr so that the second term is dominated by the first. Using that prkr = pr+1nr+1,
we then find that the total cost for all R steps is
T �
XR
r¼1

tr �
XR
r¼1

prþ1prnrþ1n2r : ð4:2Þ
At each level, the number of blocks is cut in half, so
pr ¼
p1
2r�1

: ð4:3Þ
We let cr = nr+1/2nr denote the compression ratio so that
nr ¼ ð2cr�1Þ � � � ð2c1Þn1: ð4:4Þ

Assuming that there exists a constant c such that cr 6 c, we obtain the bound
nr 6 ð2cÞr�1n1: ð4:5Þ



P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 11
Combining (4.2), (4.3) and (4.5), we find that the total cost is
T �
XR
r¼1

p1
2r

p1
2r�1

ð2cÞrn1ð2cÞ2r�2n21 � p21n
3
1

XR
r¼1

2c3
� �r

: ð4:6Þ
We assume that c <
ffiffiffi
43

p
¼ 0:7937 � � � so that the sum is bounded by (1 � 2c3)�1. Letting N denote the size of

the matrix we find that N = p1n1 and thus
T � N 2n1: ð4:7Þ

The assumption that (4.5) holds for some c < 0.7939� � � is valid in many environments relating to discret-

ization of contour integral equations. We will return to this point in Section 6.

4.4. Conditioning

All factorizations computed in this section are variations of (3.15). For this formula to be of practical
use, the matrices Bi, Ci and Di must not be excessively large (in say the l2 operator norm) and the condition

number of ~A has to be similar to that of A. The formulas (3.12) imply that this is true if kX�1
22 k2 is of mod-

erate size (since (2.19) and (2.21) assert that R and L are well-conditioned). Under the assumptions of this

section (that the global matrix be non-singular and the off-diagonal blocks have low rank) it is not possible

to prove any such bound.

However, in the context of contour integral equations, the problem can largely be avoided by enforcing

that the compression be symmetric in the sense of Remark 7. The reason is that the diagonal blocks of the

original matrix tend to have the form
Að11Þ ¼ Dþ E; ð4:8Þ

where D is a positive definite Hermitian matrix and E is ‘‘small’’ compared to D in operator norm. Since

R2 ¼ L�
2 when symmetry is enforced, we find that, cf. (3.6),
X 22 ¼ L2ðDþ EÞL�
2 ¼ ðL2D1=2ÞðL2D1=2Þ� þ L2EL�

2: ð4:9Þ

Here, the first term is well-conditioned, and the second has at most a few non-small singular values. Thus, it

is very unlikely that the sum of the two matrices should have any small singular values. Furthermore,

should such a coincidence happen, the algorithm detects it and avoids the problem by locally re-partition-

ing the matrix.

4.5. Error estimation

Given a prescribed accuracy e, the numerical scheme presented in this section solves the equation
Au ¼ f ð4:10Þ

by constructing an approximation Ae that satisfies
kA� Aek2 6 e ð4:11Þ

and is such that the approximate solution ue ¼ A�1

e f can be computed fast. The error in u satisfies
u� ue ¼ A�1 � A�1
e

� �
f ¼ A�1

e Ae � Að ÞA�1f ¼ A�1
e Ae � Að Þu: ð4:12Þ
The relative error is therefore bounded as follows:
ku� uek
kuk 6 kA�1

e Ae � Að Þk2 6 ekA�1
e k2: ð4:13Þ



12 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
While the algorithm cannot possibly control kA�1
e k2, this quantity can be computed cheaply using power

iteration, see Remark 10. Thus, an assured bound for the relative error can be computed à posteriori.
5. An accelerated algorithm applicable to contour integral equations

The bulk of the computational cost of the matrix compression technique presented in Section 4 consists

of the cost of determining index vectors and transformation matrices that compress the neutered rows and

columns. When the matrix under consideration is a discrete approximation of a contour integral operator,

it is possible to determine these quantities through an entirely local operation whose cost only depends on

the size of the diagonal block to be compressed (i.e., not on the size of the rest of the matrix). This is pos-

sible since the column and row operations employed in the present matrix compression technique do not

update the elements of the off-diagonal blocks, as discussed in Remark 13.
This section is structured as follows: In Section 5.1 we describe a single-block compression technique for

the boundary integral equations associated with Laplace�s equation in two dimensions that is faster than

the generic single-block technique of Section 4.1. In Section 5.2 we describe single and multi-level tech-

niques for contour integral equations obtained by repeated application of the single-block compression

technique of Section 5.1. Section 5.3 discusses generalizations of the technique to other equations of poten-

tial theory.

Remark 14. (Numerically rank-deficient matrices) In this section, we say that a matrix has rank k

provided that it has only k singular values that are larger than some preset accuracy. In other words, we do

not distinguish between what is sometimes called ‘‘numerical rank’’ and actual rank.
5.1. Single-block compression

The following observation summarizes the principle finding of this section:

Observation 15. Let the matrix A in (3.2) represent the discretization of the integral operator
Fig. 3.

drawn
Z
C
Kðx; yÞuðyÞdsðyÞ; for x 2 C; ð5:1Þ
where C = C1 + C2 is a contour (Fig. 3 shows one example), the block structure of A corresponds to the

partitioning of C (so that, e.g., A(12) represents evaluation on C1 of the potential generated by a charge dis-

tribution on C2), and K is the kernel of a single and/or double layer potential for the Laplace operator. Then

under very mild assumptions on the contour C, the factorization (3.3) can be computed using O(n3) floating

point operations, where n is the number of points used in the discretization of C1.
Γ1

Γ2

(a)

Γ

∧
Γ

1

2

Γext

(b)

A contour C. In figure (a), the partitioning C = C1 + C2 is shown with C1 drawn with a bold line. In figure (b) the contour Ĉ2 is

with a thin solid line and Cext with a dashed line.



P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 13
The idea behind the construction alluded to in Observation 15 is simple: Instead of compressing the

interaction between C1 and C2, it is sufficient to compress the interaction between C1 and a small contour

Ĉ2, formed by the union of an artificial circular contour enclosing C1 and the part of C2 that is inside this

circle (as shown in Fig. 3(b)). The reason is that by virtue of Green�s theorem, any potential field generated

by charges on C2 can equally well be generated by charges on Ĉ2. Finally we note that if C1 is discretized
using n nodes, then typically Ĉ2 can be discretized using O(n) nodes, yielding a total cost for the procedure

of O(n3).

The remainder of this subsection is devoted to substantiating Observation 15. We start by introducing

some notation; let Ccirc denote the circle in Fig. 3(b) and let Cext denote the part of C2 outside of Ccirc. Fur-

thermore, let SC2!C1
denote the integral operator that evaluates a potential on C1 caused by a charge dis-

tribution on C2. In other words, SC2!C1
acts on a charge distribution u as follows:
½SC2!C1
u�ðxÞ ¼

Z
C2

Kðx; yÞuðyÞdsðyÞ; for x 2 C1: ð5:2Þ
Observation 15 rests on the following claim:

Lemma 4. Let H 2 Cn�n0 denote the matrix discretizing SCcirc!C1
, and let the index vector JR 2 Jkn and the

transformation matrix L be such that they compress H in the sense of Observation 6. Then JR and L also

compress the matrix B 2 Cn�m that approximates the operator SCext!C1
.

Sketch of proof. It is sufficient to prove that there exists a matrix W 2 Cn0�m with moderate l2 operator

norm such that
B ¼ HW : ð5:3Þ

(The matrix W is the matrix that maps a charge distribution on Cext to an equivalent charge distribution on

Ccirc.) Now, Eq. (5.3) is the discrete approximation of the operator relation
SCext!C1
¼ SCcirc!C1

SCcirc!Ccirc

� ��1
SCext!Ccirc

h i
: ð5:4Þ
The matrixW in (5.3) corresponds to the operator in square brackets in (5.4). That this operator is bounded

is a consequence of Green�s theorem. h

5.2. Single- and multi-level compression

The generic single- and multi-level compression techniques of Sections 4.2 and 4.3 were obtained by re-

peated application of the single-block technique described in Section 4.1. Single- and multi-level techniques

for contour integral equations are analogously obtained by repeated application of the single-block tech-

nique of Section 5.1.

It remains to estimate the computational cost of the accelerated compression technique. By virtue of

Observation 15, the cost for a single level compression at level r = 1, . . ., R is now
tr � prn
3
r ; ð5:5Þ
where pr denotes the number of clusters on level r and nr is the (average) cluster size (the corresponding

estimate for the non-accelerated compression technique is given in (4.1)). We next use that nr is propor-

tional to the rank of interaction kr between a cluster on level r and the rest of the world (to be precise,

nr = 2kr�1 � 2kr). For the integral equations associated with Laplace�s equation, kr is for a typical contour

bounded by the logarithm of the number of points in the original discretization of a cluster on level r so that
kr � C logð2r�1n1Þ � C0 r þ log n1ð Þ; ð5:6Þ



14 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
where n1 is the number of points inside a cluster on the finest level, and C and C 0 are numbers that do not

depend on r. Using that pr = p1/2
r�1, we then find that the total cost for all R steps is given by
T �
XR
r¼1

prn
3
r �

XR
r¼1

prk
3
r �

XR
r¼1

p1
2r

r þ log n1ð Þ3 � p1 log n1ð Þ3: ð5:7Þ
On the finest level, we partition the contour so that there are a small, fixed, number of points in each

cluster. (In practise, using n1 between 30 and 50, depending on the desired accuracy, works well.) We then

find that p1 � N, where N denotes the total number of points in the discretization. Thus,
T � N : ð5:8Þ
Remark 16. The single-block compression technique described in Observation 15 requires the algorithm to

determine which of the nodes of C2 lie inside the artificial circle Ccirc. If this search would be done by brute

force, the computational cost for a single level solve would include a term p2r n
2
r , cf. (5.5). Even though the

constant in front of this term is small, it would dominate the computation for large problems (in our

implementation, this would happen for N P 25000). One solution to this problem is to perform the search

via a hierarchical search tree; the estimate (5.5) then remains valid.
5.3. Generalizations

The technique presented in Section 5.1 for Laplace�s equation is readily applicable to other equations of
classical potential theory; Helmholtz, Yukawa, Shrödinger, Maxwell, Stokes, elasticity, etc. The only com-

plication occurs when working with equations that may have resonances. In such cases, it is possible that

the operator of self-interaction for the artificial circle (the operator SCcirc!Ccirc
in (5.4)) has a non-trivial null-

space. This complication can be rectified by letting the artificial charges on Ccirc consist of both monopoles

and dipoles. Alternatively, it is possible to consider only one type of charges but placing them on two con-

centric circles instead of a single one.

When applied to oscillatory problems such as Helmholtz� and Maxwell�s equations, the efficiency of the

technique deteriorates when the wave number increases since then the compression rate deteriorates as the
blocks grow larger (in other words, the assumption (4.5) no longer holds). In practice, it appears that

the method experiences very few problems for objects smaller than about 50 wavelengths. After that, the

computational complexity increases superlinearly with the problem size although the technique remains

viable for equations set on contours a few hundred wavelengths in size. This effect will be illustrated in

the numerical examples in Section 6.1.

Finally we remark that the scheme has O(n logj n) complexity when applied to integral equations defined

on one-dimensional curves in any dimension. The fact that we have so far only discussed equations embed-

ded in two space dimensions is simply that contour integral equations associated with boundary value prob-
lems in two dimensions is the most common source of such equations.
6. Numerical examples

In this section we present the results of a number of numerical experiments performed to assess the effi-

ciency of the numerical scheme presented in Sections 4 and 5. In every experiment, we compute a com-

pressed factorization of the inverse of the matrix resulting from Nyström discretization of one of the
following three integral equations:



P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 15
� 1

2
uðxÞ þ 1

2p

Z
C

nðyÞ � ry log j x� y j
� �

uðyÞdsðyÞ ¼ f ðxÞ; x 2 C; ð6:1Þ

Z
C
log j x� y j½ �uðyÞdsðyÞ ¼ f ðxÞ; x 2 C; ð6:2Þ

	2iuðxÞ þ
Z
C

nðyÞ � ry þ ik
� �

H 0ðk j x� y jÞ
� �

uðyÞdsðyÞ ¼ f ðxÞ; x 2 C; ð6:3Þ
where n(y) is the outward pointing unit normal of C at y and H0(x) = J0(x) + iY0(x) is the Hankel function

of zeroth order. Eqs. (6.1) and (6.2) are the double and single layer equations associated with Laplace

Dirichlet problems, and (6.3) is an equation associated with the Helmholtz Dirichlet problem with wave

number k. In Eqs. (6.1) and (6.3), the top sign in front of the first term refers to exterior problems and

the lower sign refers to interior problems.

The kernel in (6.1) is smooth and the equation was discretized using the trapezoidal rule (which is expo-

nentially convergent on a smooth contour). The Eqs. (6.2) and (6.3) involve log-singular kernels that were

discretized using the modified trapezoidal quadrature rules of [10] of orders 6 and 10, respectively. The
algorithm was implemented in Fortran 77 and the experiments were run on a 2.8 GHz Pentium 4 desktop

with 512Mb of RAM memory.

When presenting the numerical results, we use the following notation:

R the number of levels in the multi-level solver,

Nstart the size of the discrete problem at the start,

Nfinal the size of the compressed problem,

ttot the total CPU time (in seconds),

tsolve the CPU time required to apply the factorized inverse (in seconds),
ctop the condition number of the compressed matrix,

rmin the smallest singular value of the original matrix,

M the amount of memory used (in MB),

Eactual the relative error in u, Eactual = iue � ui/iui,
Eres the relative residual error, Eres = iAue � fi/ifi,

In each experiment, the right hand side f was the Dirichlet data corresponding to a potential field gen-

erated by a few randomly placed point charges. Since the exact potential field was known, we could com-

pare the potential field generated by the numerical solution to the exact one. We did this at J random points
on a circle enclosing C and separated from C by one quarter of its radius. Letting fvðjÞgJj¼1 denote the exact

potential and fvðjÞe gJj¼1 denote the potential generated by ue, we define the relative l2-norm error in the po-

tential as Epot = iv � vei/ivi.
6.1. Example: a smooth contour

In this subsection we present results pertaining to the smooth contour shown in Fig. 4. The contour was

discretized using between 800 and 102 400 points and the integral equations associated with exterior Dirich-
let problems were solved. Tables 1–3 present the results for the kernels (6.1)–(6.3), respectively. As a refer-

ence, we give in Table 4 the timings for highly optimized implementations of the LU-factorization, direct

matrix-vector multiplication and FMM-accelerated matrix-vector multiplication.

For the two Laplace problems considered, we see that both the computational cost and the memory

requirement scale more or less linearly with the problem size, as expected. We recall that this expectation

was based on the postulate that for Laplace problems, the interaction rank between adjacent clusters de-

pend only very weakly (logarithmically) on their size. Fig. 5 illustrates this point; it shows that after two



Table 1

Computational results for the double layer potential (6.1) associated with an exterior Laplace Dirichlet problem on the contour shown

in Fig. 4

Nstart Nfinal ttot tsolve Eactual Eres Epot ctop rmin M

400 301 5.3e�01 2.9e�03 2.3e�10 4.7e�10 3.0e�06 4.3e+00 1.3e�02 4.2e+00

800 351 9.6e�01 4.1e�03 2.5e�10 2.2e�10 6.3e�10 9.1e+00 1.2e�02 6.5e+00

1600 391 1.6e+00 6.3e�03 1.4e�10 1.3e�10 1.6e�10 1.6e+01 1.2e�02 9.2e+00

3200 391 1.8e+00 8.5e�03 – 6.6e�11 3.7e�10 3.2e+01 1.2e�02 1.1e+01

6400 391 2.2e+00 1.2e�02 – 5.9e�11 8.9e�11 7.7e+01 1.2e�02 1.4e+01

12 800 390 2.6e+00 1.9e�02 – 3.6e�11 5.9e�11 1.4e+02 1.2e�02 2.1e+01

25 600 391 3.9e+00 3.4e�02 – 2.7e�11 4.7e�10 2.1e+02 – 3.5e+01

51 200 393 6.5e+00 6.5e�02 – 2.5e�11 5.3e�11 2.0e+02 – 6.3e+01

102 400 402 1.3e+01 1.2e�01 – 2.0e�11 – 1.1e+03 – 1.2e+02

Fig. 4. A smooth contour. The length of the contour is roughly 5.1 and its horizontal width is 2.

Table 2

Computational results for the single layer potential (6.2) associated with an exterior Laplace Dirichlet problem on the contour shown

in Fig. 4

Nstart Nfinal ttot tsolve Eactual Eres Epot ctop rmin M

400 253 4.1e�01 1.9e�03 4.6e�09 2.7e�09 1.6e�04 2.2e+01 3.5e�02 3.1e+00

800 306 8.2e�01 3.3e�03 7.5e�09 9.9e�09 2.4e�06 1.6e+02 2.9e�04 5.4e+00

1600 353 1.6e+00 6.2e�03 4.9e�09 6.3e�09 1.6e�09 1.5e+02 1.4e�04 8.6e+00

3200 369 2.3e+00 9.7e�03 – 2.5e�07 1.2e�10 2.1e+02 4.2e�05 1.2e+01

6400 379 3.2e+00 1.6e�02 – 1.3e�08 6.8e�12 2.6e+02 2.1e�05 1.8e+01

12 800 395 4.8e+00 2.7e�02 – 1.7e�08 3.4e�12 2.8e+02 2.7e�06 2.9e+01

25 600 409 7.7e+00 4.8e�02 – 3.6e�08 1.4e�11 3.5e+02 2.7e�07 5.0e+01

51 200 419 1.4e+01 9.0e�02 – 2.7e�07 – 3.7e+02 3.5e�07 9.1e+01

102 400 429 3.6e+01 1.7e�01 – 1.6e�08 – 5.2e+02 – 1.7e+02

Table 3

Computational results for the kernel (6.3) associated with an exterior Helmholtz Dirichlet problem on the contour shown in Fig. 4

k Nstart Nfinal ttot tsolve Eactual Eres Epot ctop rmin M

21 800 435 1.5e+01 3.3e�02 2.7e�07 9.7e�08 7.1e�07 4.1e+03 6.5e�01 1.3e+01

40 1600 550 3.0e+01 6.7e�02 1.6e�07 6.2e�08 4.0e�08 6.1e+03 8.0e�01 2.5e+01

79 3200 683 5.3e+01 1.2e�01 – 5.3e�08 3.8e�08 2.1e+04 3.4e�01 4.5e+01

158 6400 870 9.2e+01 2.0e�01 – 3.9e�08 2.9e�08 4.0e+04 3.4e�01 8.2e+01

316 12 800 1179 1.8e+02 3.9e�01 – 2.3e�08 2.0e�08 4.2e+04 3.4e�01 1.6e+02

632 25 600 1753 4.3e+02 7.5e+00 – 1.7e�08 1.4e�08 9.0e+04 3.3e�01 3.5e+02

1264 51 200 2864 (1.5e+03) (2.3e+02) – 9.5e�09 – – – 8.3e+02

The Helmholtz parameter was chosen to keep the number of discretization points per wavelength constant at roughly 45 points per

wavelength (resulting in a quadrature error about 10�12). The times in parenthesis refer to experiments that did not fit in RAM.

16 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23



Table 4

Timings (in seconds) for highly optimized implementations of the LU-factorization, matrix-vector multiplication and FMM

accelerated matrix-vector multiplication

N 400 800 1600 3200 6400 12 800 25 600 51 200 102 400

tLU 2.8e�02 2.0e�01 1.6e+00 1.3e+01 (1.0e+02) (8.3e+02) (6.7e+03) (5.3e+04) (4.3e+05)

tmult 7.5e�04 2.9e�03 1.2e�02 4.8e�02 (1.9e�02) (7.7e�01) (3.1e+00) (1.2e+01) (4.9e+01)

tFMM 3.8e�03 8.0e�03 1.6e�02 3.0e�02 6.0e�02 1.2e�01 2.4e�01 4.8e�01 9.6e�01

The FMMwas run at a relative accuracy of 10�10 with the same kernel as in the Eq. (6.2). The numbers in parenthesis are extrapolated.

P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 17
rounds of compression, almost the only nodes that have survived are the ones near the border to the neigh-

boring clusters. The figure also illustrates that the algorithm detects the need to keep more nodes in the

interior of those clusters that run close to other clusters. (For an example of a situation where the Eq.

(6.1) needs to be discretized using a large number of nodes in spite of the fact that the contour is uncom-

plicated, see [11].)

Since the scheme presented in this paper relies on rank-considerations only, it works for oscillatory prob-

lems with low wave numbers but it eventually fails as the wavenumber is increased. Table 5 illustrates this

point by showing how the compression ratios deteriorate as the wavenumber k in Eq. (6.3) is increased from
1 to 1200. However, the authors were surprised to find that the method remains viable up to objects about

200 wavelengths across, as indicated in Table 3.

Remark 17. (Comparison with the fast multipole method) From Tables 1 and 4, we see that a single FMM

matrix-vector multiply is about 15–20 times faster than a matrix inversion. Thus, if an iterative solver
requires less than 15–20 iterations to solve Eq. (6.1), this would beat the direct method for a single solve.

However, once the inverse has been computed, it can be applied to additional right hand sides in about one

tenth of the time required for a single FMM accelerated matrix-vector multiply.
6.2. A rippled contour that almost self-intersects

In this subsection we present results pertaining to the rippled contour shown in Fig. 6. The contour was

discretized using between 800 and 102 400 points and integral equations associated with exterior Dirichlet

problems were solved. The number of ripples in the experiments increase with the number of discretization

nodes in such a fashion that there are roughly 80 nodes for each wavelength. Tables 6–8 present the results

for the kernels (6.1)–(6.3), respectively.

We see that the asymptotic complexity of the algorithm remains essentially the same as for the smooth
contour shown in Fig. 4. However, the constants involved are larger since more degrees of freedom are re-

quired to resolve the contour at the finest levels.
Fig. 5. The points left after two rounds of compression of the contour shown in Fig. 4. The crosses mark the boundary points between

adjacent clusters.



Table 5

Deterioration of compression rates for large wavenumber Helmholtz problems

k c1 c2 c3 c4 c5 c6 c7 c8 Nfinal M

1 0.68 0.58 0.54 0.55 0.58 0.64 0.64 0.72 512 167

100 0.72 0.56 0.55 0.56 0.60 0.68 0.72 0.82 777 197

500 0.72 0.58 0.58 0.62 0.68 0.76 0.84 0.91 1522 303

The table shows the compression ratio cj, see (4.4), at each of the levels j = 1, . . ., 8 for theHelmholtz kernel (6.3) on the smooth contour in

Fig. 4, discretized withN = 25 600 points. The three rows correspond to wave numbers k = 1, 100, 500. The second to last column shows

the number of degrees of freedom left on the finest level and the last column shows the total memory requirement (in MB).

Fig. 6. (a) A rippled contour. (b) A close-up of the area marked by a dashed rectangle in (a). The horizontal axis of the contour has

length 1 and the number of ripples change between the different experiments to keep a constant ratio of 80 discretization nodes per

wavelength.

Table 6

Computational results for the double layer potential (6.1) associated with an exterior Laplace Dirichlet problem on the rippled contour

shown in Fig. 6

Nstart Nfinal ttot tsolve Eactual Eres Epot ctop rmin M

400 171 2.3e�01 1.0e�03 1.5e�10 1.1e�10 1.3e�07 7.4e+00 1.1e�01 1.5e+00

800 228 3.5e�01 1.0e�02 1.9e�10 1.3e�10 3.8e�08 9.7e+00 7.6e�02 3.0e+00

1600 306 7.3e�01 5.8e�03 1.3e�10 1.6e�10 5.5e�08 1.6e+01 5.2e�02 6.2e+00

3200 386 2.2e+00 8.5e�03 – 1.4e�10 7.5e�08 3.1e+01 3.9e�02 1.2e+01

6400 460 4.4e+00 1.7e�02 – 7.2e�11 8.2e�08 7.0e+01 3.3e�02 2.1e+01

12 800 536 9.6e+00 3.5e�02 – 5.9e�11 3.7e�08 1.4e+02 2.9e�02 4.0e+01

25 600 597 2.0e+01 7.6e�02 – 2.0e�11 1.4e�09 2.2e+02 – 7.6e+01

51 200 641 4.0e+01 1.5e�01 – 2.9e�11 – 6.2e+02 – 1.5e+02

102 400 688 (1.8e+01) 3.9e�01 – 1.2e�11 – 7.8e+02 – 2.9e+02

Table 7

Computational results for the single layer potential (6.2) associated with an exterior Laplace Dirichlet problem on the rippled contour

shown in Fig. 6

Nstart Nfinal ttot tsolve Eactual Eres Epot ctop rmin M

400 176 2.4e�01 9.2e�04 2.1e�09 1.7e�09 2.4e�05 1.6e+02 5.5e�04 1.6e+00

800 220 3.9e�01 3.8e�03 1.6e�08 3.0e�08 8.0e�06 1.1e+03 1.0e�05 3.1e+00

1600 256 6.9e�01 5.3e�03 5.2e�09 7.0e�09 9.8e�08 2.8e+02 1.6e�05 5.3e+00

3200 286 1.3e+00 7.6e�03 – 7.0e�09 1.6e�08 3.3e+02 1.2e�05 9.1e+00

6400 314 2.5e+00 1.4e�02 – 1.5e�07 2.3e�09 7.5e+02 2.1e�06 1.6e+01

12 800 342 4.6e+00 2.8e�02 – 2.4e�08 1.5e�09 4.7e+02 1.7e�07 2.9e+01

25 600 362 8.8e+00 6.2e�02 – 2.3e�08 2.2e�09 1.1e+03 9.7e�08 5.5e+01

51 200 374 1.7e+01 1.2e�01 – 2.1e�08 – 1.8e+03 3.1e�08 1.1e+02

102 400 386 (8.1e+0) 2.3e�01 – 1.5e�07 – 3.1e+03 – 2.1e+02

18 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23



Table 8

Computational results for the kernel (6.3) associated with an exterior Helmholtz Dirichlet problem on the rippled contour shown in

Fig. 6

k Nstart Nfinal ttot tsolve Eactual Eres Epot ctop rmin M

7 400 224 2.9e+00 9.0e�03 1.4e�07 6.9e�08 9.4e�07 1.2e+04 7.9e�01 3.2e+00

15 800 320 7.7e+00 1.9e�02 1.6e�07 7.4e�08 1.2e�07 3.9e+03 7.9e�01 8.2e+00

29 1600 470 2.1e+01 4.6e�02 – 6.7e�08 8.1e�08 7.4e+03 7.8e�01 2.0e+01

58 3200 704 6.1e+01 1.1e�01 – 5.2e�08 6.4e�08 1.2e+04 8.0e�01 5.0e+01

115 6400 1122 1.4e+02 2.9e�01 – 4.8e�08 7.5e�08 1.4e+04 8.0e�01 1.3e+02

230 12 800 1900 (4.7e+02) (2.5e+01) – 5.5e�08 7.5e�08 8.8e+04 8.0e�01 3.4e+02

461 25 600 3398 – – – – – – – 9.8e+02

The Helmholtz parameter k was chosen to keep the number of discretization points per wavelength constant at roughly 55 points per

wavelength (resulting in a quadrature error about 10�12). The times in parenthesis refer to experiments that did not fit in RAM.

Fig. 7. A contour the shape of a smooth pentagram. Its diameter is 2.5 and its length is roughly 8.3.

P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 19
6.3. An interior problem close to a resonance

In this section we present results pertaining to interior Dirichlet problem on the contour shown in Fig. 7.

While interior and exterior Laplace Dirichlet problems are quite similar in nature, the corresponding Helm-
holtz Dirichlet problems are fundamentally different in that the interior problem possesses resonances while

the exterior does not. We will therefore focus exclusively on interior Helmholtz problems.

We present the results of two computational experiments, both relating to the Helmholtz kernel (6.3). In

the first experiment, we scan a range of wave numbers k between 99.9 and 100.1. For each wave number, we

computed the smallest singular value rmin of the integral operator using the iteration technique described in

Section 4.5. The resulting graph of rmin versus k, shown in Fig. 8, clearly indicates the location of each

resonance in this interval. The second experiment consists of factoring the inverse of the matrix correspond-

ing to k = 100.0110276� � � for which rmin = 0.00001366� � �. The results, shown in Table 9, illustrate
that the method does not experience any difficulty in factoring the inverse of a reasonably ill-conditioned

matrix. In particular, the table shows that the factorization matrices B(j), C(j) and D(j), see (3.17), are

well-conditioned.

6.4. A contour resembling an area integral

The final numerical experiment that we present is included to demonstrate that the efficiency of the fac-

torization scheme deteriorates when it is applied to a curve for which the physical distance between two



99.9 99.92 99.94 99.96 99.98 100 100.02 100.04 100.06 100.08 100.1

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 8. Plot of rmin versus k for an interior Helmholtz problem on the contour shown in Fig. 7. The values shown were computed using

the iteration technique of Section 4.5 applied to a matrix of size N = 6400. Each point in the graph required about 60 s of CPU time.

Table 9

Details of the computation for the Helmholtz kernel (6.3) associated with an interior Dirichlet problem on the smooth pentagram

shown in Fig. 7 for the case N = 6400 and k = 100.011027569� � �
j pj nj cj tj iC(j)i1 iB(j)i1 iD(j)i1

1 128 50.00 0.76 15.50 1.12e+00 1.12e+00 4.20e�02

2 64 76.00 0.59 14.32 3.27e+01 3.27e+01 1.75e+00

3 32 89.72 0.60 8.94 1.63e+01 1.62e+01 9.28e�01

4 16 107.00 0.64 6.27 9.09e+00 9.17e+00 2.41e+00

5 8 138.00 0.72 5.97 7.32e+00 7.31e+00 3.64e+00

6 4 199.50 0.80 7.76 3.22e+00 3.23e+00 3.86e+00

For each level j, the table shows the number of clusters pj on that level, the average size of a cluster nj, the compression ratio cj, the time

required for the factorization tj and the size of the matrices B(j), C(j) and D(j) (see (3.17)) in the maximum norm. For this computation,

Eres = 2.8 · 10�10, Epot = 3.3 · 10�5 and rmin = 1.4 · 10�5.

20 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
random points on the contour is not well predicted by their physical separation. One example of such a

curve is the star-fish lattice illustrated in Fig. 9. Focusing on the double layer Laplace problem (6.1), we

apply the factorization scheme to a matrix of size N = 25 600 and compare the performance to that for

the rippled dumb-bell shown in Fig. 6. Table 10 shows that the factorization of the matrix related to the

starfish lattice took almost five times as long and resulted in a compressed matrix of over twice the size.

To understand the difference in performance between the different contours, we need to consider how the

interaction rank of a cluster depends on its size. For the contours shown in Figs. 4, 6, and 7, we have seen

that the rank of the interaction between a cluster of size m and the rest of the contour is effectively bounded
by log m. However, for the contour shown in Fig. 9 the corresponding bound is

ffiffiffiffi
m

p
. Figs. 5 and 10 illus-

trate the difference. Thus, the asymptotic complexity of the scheme when applied to a contour similar to the

star-fish lattice is O(n3/2) rather than O(n log n).



0 1 2 3 4 5 6 7 8 9 10

-1

0

1

2

3

4

5

6

7

Fig. 9. The star-fish lattice contour; the physical distance between two random points on the contour is not well predicted by their

distance along the contour.

Table 10

Test results for two experiments concerning the matrix obtained by discretizing the double layer Laplace problem (6.1)

Contour: ttot Nstart Nfinal M

Rippled dumb-bell 37s 25 600 559 86Mb

Star-fish lattice 172s 25 600 1202 210Mb

The table illustrates the difference in performance of the algorithm when applied to, on the one hand, the contour shown in Fig. 6 (top

line), and on the other hand, the contour shown in Fig. 9 (lower line).

3.5 4 4.5 5 5.5 6

3

3.5

4

4.5

5

(a)
3.5 4 4.5 5 5.5 6

3

3.5

4

4.5

5

(b)

Fig. 10. Figure (a) shows a close-up of the star-fish lattice of Fig. 9. Figure (b) shows the nodes remaining after the interaction between

the cluster formed by the points inside the parallelogram and the remainder of the contour has been compressed, cf. Fig. 5.

P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 21



22 P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23
7. Generalizations and conclusions

We have presented a numerical scheme that constructs a compressed factorization of the inverse of a

matrix. The scheme is applicable to generic matrices whose off-diagonal blocks have rank-deficiencies

but is most efficient when applied to matrices arising from the discretization of integral equations defined
on one-dimensional contours. (Although such integral equations frequently arise in the analysis of bound-

ary value problems in two dimensions, the dimension of the underlying space is of little relevance to the

algorithm.) For equations with non-oscillatory kernels, the computational complexity of the algorithm is

O(n), where n is the number of nodes in the discretization of the contour.

Comparing our implementations of the direct factorization scheme on the one hand and the FMM ma-

trix-vector multiplication scheme on the other, we observed (i) that in a typical environment, the cost of

constructing a factorization of the inverse is 15–20 times larger than the cost of a single FMMmatrix-vector

multiply, and (ii) that once the factorization of the inverse has been computed, the cost to apply it to a vec-
tor is 5–10 times smaller than the cost of a single FMM matrix-vector multiply. Thus, if an iterative solver

requires less than 20 steps to converge, the iterative solver outperforms the direct solver for a single solve.

However, if multiple right-hand sides are involved, the direct solver has a clear advantage. This observation

is the foundation for [11].

Since the scheme is based on rank considerations only, it cannot work for boundary integral equations

involving highly oscillatory kernels. However, since the interaction ranks are determined dynamically, the

oscillation must be quite significant before the scheme becomes impracticable. Empirically, it was found

that the scheme remains efficient for contours a couple of hundred wavelengths in size.
Another limitation of the scheme is that it does not achieve optimal efficiency when applied to a bound-

ary integral equation set on either a contour similar to the one shown in Fig. 9, or on a two-dimensional

surface. In either case, its computational complexity is O(n3/2). Overcoming this limitation is a subject of

on-going research.

Finally, we mention that the matrix factorization scheme presented in this paper can be modified to con-

struct certain standard matrix factorizations (such as the singular value decomposition). This modification

will be reported at a later date.
Acknowledgement

The first author was supported in part by the Office of Naval Research under contract #N00014-01-1-

0364. The second author was supported in part by the Defense Advanced Research Projects Agency under

contract # MDA972-00-1-0033.
References

[1] F.X. Canning, K. Rogivin, Fast direct solution of standard moment-method matrices, IEEE Antennas Propagation Mag. 40

(1998) 15–26.

[2] Yu. Chen, A fast direct algorithm for the Lippmann–Schwinger integral equation in two dimensions, Adv. Comput. Math. 16 (2-

3) (2002) 175–190, Yu Chen, Modeling and computation in optics and electromagnetics. MR 2003b:65139.

[3] H. Cheng, Z. Gimbutas, P.G. Martinsson, and V. Rokhlin, On the compression of low rank matrices, Tech. report, Yale

University, Department of Computer Science, 2003.

[4] W.C. Chew, An n2 algorithm for the multiple scattering problem of n scatterers, Micro. Optical Tech. Lett. 2 (1989) 380–383.

[5] D. Gines, G. Beylkin, J. Dunn, LU factorization of non-standard forms and direct multiresolution solvers, Appl. Comput.

Harmon. Anal. 5 (2) (1998) 156–201, MR99c:65087.

[6] Gene H. Golub, Charles F. Van Loan, Matrix computations, third ed., Johns Hopkins Studies in the Mathematical Sciences,

Johns Hopkins University Press, Baltimore, MD, 1996, MR 97g:65006.



P.G. Martinsson, V. Rokhlin / Journal of Computational Physics 205 (2005) 1–23 23
[7] Ming Gu, Stanley C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Sci.

Comput. 17 (4) (1996) 848–869, MR 97h:65053.

[8] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices, Computing 62 (2) (1999) 89–108,

MR 2000c:65039.

[9] W. Hackbusch, S. Börm, Data-sparse approximation by adaptive H2-matrices, Computing 69 (1) (2002) 1–35, MR 1 954 142.

[10] S. Kapur, V. Rokhlin, High-order corrected trapezoidal quadrature rules for singular functions, SIAM J. Numer. Anal. 34 (4)

(1997) 1331–1356, MR 98k:65011.

[11] P.G. Martinsson, Fast evaluation of electro-static interactions in two phase dielectric media, Tech. report, Yale University, Dept.

of Computer Science, 2004.

[12] E. Michielssen, A. Boag, A multilevel matrix decomposition algorithm for analysing scattering from large structures, IEEE Trans.

Antennas and Propagation 44 (8) (1996) 1086–1093.

[13] E. Michielssen, A. Boag, W.C. Chew, Scattering from elongated objects: direct solution in O(n log2 n) operations, IEEE Proc. H

143 (1996) 277–283.

[14] D. Scott, Analysis of the symmetric lanczos process, Tech. report, University of California at Berkeley, 1978.


	A fast direct solver for boundary integral equations in two dimensions
	Introduction
	Preliminaries
	Notation
	Compression of matrices

	Analytical apparatus
	An algorithm for the computation of a compressed inverse
	Single block compression
	Single-level compression
	Multi-level compression
	Conditioning
	Error estimation

	An accelerated algorithm applicable to contour integral equations
	Single-block compression
	Single- and multi-level compression
	Generalizations

	Numerical examples
	Example: a smooth contour
	A rippled contour that almost self-intersects
	An interior problem close to a resonance
	A contour resembling an area integral

	Generalizations and conclusions
	Acknowledgement
	References


