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Abstract: A fast solver is presented for the solution of scattering prob-
lems in which the scatterer is a relatively thin, elongated object. The
scheme presented here is a version of an algorithm previously published
by the authors, and is based on the observation that under certain con-
ditions and with certain modifications, the scheme will retain its O(n)
CPU time estimate independently of the size of the scatterer in wave-
lengths. The performance of the scheme is illustrated with numerical
examples.

1. Introduction

A standard approach to the numerical solution of large-scale scattering
problems is to reduce the problem to a set of integral equations on the
boundary of the scatterer (or scatterers), discretize the integral equations
via an appropriate numerical scheme (usually, Nyström or Galerkin) and to
solve the resulting system of linear algebraic equations iteratively; GMRES
appears to be the preferred iterative solver in this environment. While in
many situations the existing methods are quite satisfactory, the iterative
methods tend to display slow convergence whenever the condition number
of the underlying scattering problem is high (i.e. when the system is close to
a resonance). Furthermore, when the problem to be solved involves a single
scattering structure irradiated from many directions (a frequently encoun-
tered situation), iterative methods obtain only limited advantage from the
resulting multiple right-hand sides.

In this paper, we present an algorithm for the direct inversion of inte-
gral operators associated with scattering problems involving thin, elongated
scatterers. The computational cost of the scheme is O(N), where N is the
number of nodes in the discretization of the surface of the scatterer (which
in this case tends to be proportional to the length of the scatterer in wave-
lengths). The algorithm of this paper should be viewed as a development of
the direct inversion scheme found in [12]. A class of problems very close to
the one addressed here is treated in [14], where an O(N log2 N) algorithm
is presented; [14] is in turn an extension of [8].

This paper is structured as follows: Section 2 defines a model problem
and lists some known techniques for discretizing and solving such problems.
Section 3 contains the analytical apparatus we use in the construction of
the numerical scheme of this paper, and in Section 4, we describe the “fast”
algorithm. Section 5 illustrates the performance of the scheme via several
numerical examples involving scatterers that are up to three thousand wave-
lengths in size. Finally, Section 6 contains generalizations and conclusions.
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2. Preliminaries

In this section, we describe a scattering problem that will serve as our
model, and reduce the model problem to an integral equation of the sec-
ond kind on the boundary of the scatterer. We also summarize some of
the standard techniques for the numerical solution of the obtained integral
equation.

2.1. Integral equations resulting from scattering problems. For defini-
tiveness, we will be discussing the solution of the exterior Dirichlet problem.
Specifically, given a complex wavenumber k (which is assumed to have a
positive real part and a non-negative imaginary part) and a subset Ω of
R2 bounded by a sufficiently smooth Jordan curve Γ, we seek the function
uout : R2 \ Ω → C satisfying the Helmholtz equation

(2.1) −∆uout − k2uout = 0,

subject to the radiation condition

(2.2) lim
t→∞

t · uout(t · x)
ei k t

= c(x)

for any x ∈ R2 such that ||x|| = 1, and to the boundary condition

(2.3) uin + uout = 0,

on Γ, with uin : Γ → C a continuous function.
In order to solve the boundary value problem (2.1), (2.2), (2.3), numeri-

cally, we construct the Ansatz

(2.4) uout(x) =
∫

Γ

(
∂

∂n(y)
H0(k|x− y|) + ikH0(k|x− y|)

)
σ(y) ds(y),

where n(y) is the outward pointing unit normal of Γ at the point y, σ is a
function to be determined, and H0 is the Hankel function of the first kind of
order zero. (This choice of an Ansatz, which leads to what is called the “com-
bined field integral equation”, is discussed in detail, inter alia, in [7].) The
function uout defined by (2.4) automatically satisfies the Helmholtz equation
(2.1) with the radiation condition (2.2), and the boundary condition (2.3)
is satisfied if and only if σ satisfies the equation

(2.5) − 2iσ(x) +
∫

Γ

(
∂

∂n(y)
H0(k|x− y|) + ikH0(k|x− y|)

)
σ(y) ds(y)

= −uin(x),

for all x ∈ Γ. In effect, the process described in the preceding paragraph
converts the boundary value problem (2.1), (2.2), (2.3) into the integral
equation (2.5). The purpose of this paper is to solve the equation (2.5)
rapidly in the case where the scatterer is a relatively thin, elongated object.



3

2.2. Nyström discretization of integral equations. Having formulated
a scattering problem as an integral equation of the form

(2.6) v(x) +
∫

Γ
K(x, y)v(y) ds(y) = f(x), for x ∈ Γ,

(as discussed in Section 2.1), the next step is to approximate the continuum
equation (2.6) by a system of N linear algebraic equations. There are several
ways of doing so; throughout this paper, we have utilized a version of the
Nyström method. This technique has been described in detail elsewhere
(see, e.g. [2, 7]), and here we simply observe that the end result of the
process is a set of N linear algebraic equations of the form

(2.7) (I + A)v(N) = f (N),

where A is a matrix that approximates the integral operator. It is important
to note that when the Nyström method is used, the entries of the matrix A
are in a certain sense samples of the kernel function K(x, y). To be precise,
if the contour is discretized into the points {xi}N

i=1, and if we let aij denote
the ij-th entry of A, then there exist functions ϕ and ψ such that

(2.8) aij = ϕ(xi)K(xi, xj)ψ(xj), when |i− j| ≥ m.

In equation (2.8), the matrix elements in a diagonal band of width m are
excluded since the kernel function is typically singular near the diagonal and
the quadrature weights must then be adjusted to retain high order accuracy,
see, for example, [KapurRokhlin] (typically, m ≤ 10).

2.3. Iterative solvers for the linear systems resulting from scatter-
ing problems. The system of linear algebraic equations (2.7) is commonly
solved using an iterative solver such as GMRES in conjunction with a fast
matrix-vector multiplication algorithm such as the Fast Multipole Method
that computes a matrix-vector product in O(N) operations. If the iterative
solver needs Niter iterations to converge to some specified accuracy, then
the entire solution process requires O(Niter N) floating point operations. In
many environments, Niter is small and this approach works very well.

The principal drawback of iterative methods in the context of high-frequency
scattering problems is that such problems are almost always close to being
resonant, in which case a large number of iterations may be needed (since
the system (2.7) gets ill-conditioned), which in turn slows down the solution
process. Moreover, it is common that a sequence of scattering problems (cor-
responding to a collection of different right-hand sides) needs to be solved
with the same geometry, which is a situation that favors direct methods over
iterative ones.

2.4. Direct solvers for the linear systems resulting from scattering
problems. If Gaussian elimination or a similar scheme were used to solve
the system (2.7), the number of floating point operations required would be
O(N3), which would severely limit the size of problems that could be solved
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in practice. However, several schemes for the acceleration of the direct so-
lution of linear systems arising from integral equations have been proposed
over the last decade, see e.g. [4], [10], [12]. Most such schemes rely on
rank-deficiencies in the off-diagonal blocks of the matrix, which means that
they do not perform asymptotically fast for high-frequency problems (we
say that a method is “fast” if its computational speed is O(N logq N) for
some integer q). An algorithm presented in [5] reduces the computational
complexity to O(N3/2) for two-dimensional Lippmann-Schwinger problems
(and would yield O(N2) complexity in three dimensions), but to the au-
thors’ best knowledge, there does not exist a “fast” algorithm (in the sense
described above) for the direct solution of high frequency problems on gen-
eral domains.

However, for the special case of scattering from elongated objects (see
Section 4 for a precise definition), it was demonstrated in [14] that the
system (2.7) can be solved directly in O(N log2 N) operations (an earlier
result in this direction was given in [8]). The explanation for this is to be
found in the observation that for elongated scatterers, the rank of interaction
between two separated pieces of the scatterer scales as the logarithm of the
size of the pieces (measured in wave lengths), rather than scaling linearly
with the size of the pieces as would be the case for a general scatterer.
Versions of this observation are formulated in, e.g. [3], [8], [9], and [14].

In Section 3, we formalize and extend some of the observations found in
[3], [8], [9], [14]. The result will enable the conversion of many fast inversion
schemes devised for non-oscillatory problems (such as, e.g., those presented
in [4], [10], [12]) to fast algorithms for high-frequency scattering problems
on elongated scatterers. We describe such a modification of the scheme of
[12] in Section 4, and illustrate the performance of the resulting scheme on
some practical examples in Section 5.

2.5. An interpolation result. The following lemma (that will be used in
Section 3) states that for any n-dimensional linear space X of continuous
functions on a given compact set, there exists a set of n interpolation points
such that any function in X can be interpolated exactly from its values at
those n points. Moreover, none of the interpolation coefficients are large.
Lemma 1 is a special case of Theorem 2 of [13].

Lemma 1. Suppose that Ω is a compact set in R2, J is a positive integer,
and that χ1, . . . , χJ are continuous complex-valued funtions on Ω. Then
there exist J points y1, . . . , yJ in Ω and J functions ϕ1, . . . , ϕJ on Ω such
that, for j = 1, . . . , J and y ∈ Ω,

(2.9) χj(y) =
J∑

q=1

χj(yq)ϕq(y),

and

(2.10) |ϕj(y)| ≤ 1.
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Figure 1. The boxes ΩS and ΩT contain source and target
points, respectively. A “typical” source point y and a “typ-
ical” target point x are marked with crosses. The point ŷ is
the vertical projection of y onto the bottom boundary. The
origin in the coordinate system used is labeled O.

3. Low-rank approximations

In this section, we prove certain estimates regarding the ranks of interac-
tions between different parts of an elongated scatterer. The starting point
is Theorem 2 which can be found (in a somewhat different form) in [14]. It
states that to within precision ε, the rank of interaction between the two
boxes shown in Fig. 1, of lengths L and fixed widths, is O(log(kL) | log ε|2),
as L → ∞ and ε → 0. A proof of Theorem 2 can be found in Appendix A
to this paper. Theorems 3, 4, 5 are the purpose of this section; each of them
can be viewed as a modification of Theorem 2. Theorems 3, 4, 5 will be
used in the construction of low-rank factorizations of off-diagonal blocks in
the matrices to be inverted.

In the following theorem (as elsewhere in this paper), H0 denotes the
Hankel function of the first kind of order zero.

Theorem 2. Suppose that L, W , k, ε, S are real numbers such that L > 0,
W ≥ 0, k > 0, 0 < ε ≤ 1/2, S > 0, and ΩS = [−L, 0] × [−W/2, W/2],
ΩT = [S, S + L]× [−W/2, W/2] are two boxes in R2 (see Fig. 1).

Then there exists an integer J , functions ψj : ΩS → C, χj : ΩT → C,
with j = 1, 2, · · · , J , and a real number c that does not depend on either L
or ε such that if

(3.1) S ≥ c | log ε|/k,

then

(3.2) H0(k|x− y|) =
J∑

j=1

ψj(x)χj(y)+ Ẽ(x, y), for all x ∈ ΩT, y ∈ ΩS,

where

(3.3) |Ẽ(x, y)| ≤ ε.

Furthermore, there exists a number C such that, as L →∞, and ε → 0,

(3.4) J ≤ C log(kL)| log ε|2.
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Finally, the functions ψj and χj are smooth and bounded uniformly in L
and ε.

Remark 1. In Theorem 2, there is a requirement that the boxes must be
separated by a distance of O(| log ε|/k). The dependence of ε in this relation
can for practical purposes be ignored. If ε > 10−15, then a separation
S = 1/k works well. The reason is that the sum (A.13) in the proof converges
very fast; for double precision accuracy, no more than 15 terms are ever
needed. Another consequence of this fact is that the square on the | log ε|
factor in (3.4) is generally not noticeable in practical calculations.

Remark 2. Theorem 2 does not specify how the interaction rank J depends
on the width W of the boxes. In fact, it grows quite rapidly with W , and
the theorem is generally not practically useful for W larger than a few wave-
lengths. Some actual values of J for various combinations of L, W , S, and
ε, are given in Sec. 5.1.

Theorem 3 sharpens Theorem 2 by stating that the functions ψj(x) in the
expansion (3.2) can in fact be chosen to take the form ψj(x) = H0(k|x −
yj |) for some points yj ∈ ΩS. This assertion is proved by applying the
interpolation result of Lemma 1 to the expansion (3.2).

Theorem 3. Let L, W , k, S, ε, ΩS, ΩT, and J be as in Theorem 2. Then
there exist points {yj}J

j=1 in ΩS, and functions {ϕj}J
j=1, such that,

(3.5) H0(k|x−y|) =
J∑

j=1

H0(k|x−yj |)ϕj(y)+Ê(x, y) for x ∈ ΩT, y ∈ ΩS,

where

(3.6) |Ê(x, y)| ≤ ε (J + 1).

Moreover, for j = 1, . . . , J and y ∈ ΩS,

(3.7) |ϕj(y)| ≤ 1.

Proof: In order to convert the results of Theorem 2 to those of Theo-
rem 3, we apply the interpolation method of Lemma 1 to the set of func-
tions χ1, . . . , χJ . This yields a set of points {yq}J

q=1 in ΩS, and interpolants
{ϕq}J

q=1 satisfying (3.7). Combining (2.9) and (3.2), we find that

(3.8) H0(k|x− y|) =
J∑

j=1

J∑

q=1

ψj(x)χj(yq)ϕq(ky) + E(x, y).

Another application of (3.2) yields

(3.9) H0(k|x− y|) =
J∑

q=1

(
H0(k|x− yq|)− E(x, yq)

)
ϕq(y) + E(x, y),

and the bound (3.6) is seen to be a direct consequence of (3.3) and (3.7). ¤
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The following theorem is the principal result of this section. It is simply a
corollary of Theorem 3 obtained by integrating the expansion (3.5) against
a charge distribution.

Theorem 4. Let L, W , S, k, ε, ΩS, ΩT, and J be as in Theorem 2,
and let the functions ϕ1, . . . , ϕJ be as in Theorem 3. Furthermore, for any
function σ ∈ L1(ΩS), we let u denote the potential on ΩT induced by a charge
distribution on ΩS of density σ. In other words, for x ∈ ΩT,

(3.10) u(x) =
∫

ΩS

H0(k|x− y|)σ(y) dA(y).

Then, if we define for j = 1, . . . , J , the “equivalent” charges

(3.11) σj =
∫

ΩS

ϕj(y)σ(y) dA(y),

it is the case that, for x ∈ ΩT,

(3.12) u(x) =
J∑

j=1

H0(k|x− yj |)σj + E(x),

where

(3.13) |E(x)| ≤ (J + 1) ε

∫

ΩS

|σ(y)| dA(y).

Proof: Insert the expansion (3.5) into (3.10). ¤

Remark 3. In physical terms, Theorem 4 can be interpreted as follows:
Suppose that ΩS and ΩT are as in Fig. 1. Then there exist J points inside ΩS

with the property that any potential in ΩT caused by a charge distribution in
ΩS, can to within precision ε be replicated by placing point charges at those
J points only. Moreover, the number of points depends only logarithmically
on the lengths of the boxes, and the precision required.

The functions {ϕj}J
j=1 in Theorem 4 form a basis for the support of the

integral operator that maps σ to u in (3.10). The following theorem provides
an analogous basis {νi}J

i=1 for the range of the same integral operator.

Theorem 5. Let L, W , S, k, ε, ΩS, ΩT, and J be as in Theorem 4, and let
for any σ ∈ L1(ΩS), the potential u be defined by (3.10). Then there exist J
points {xi}J

i=1, and J interpolation functions {νi}J
i=1 with the property that,

for x ∈ ΩT,

(3.14) u(x) =
J∑

i=1

νi(x)u(xi) + E(x),

where E satisfies (3.13), and, for i = 1, . . . , J and x ∈ ΩT,

(3.15) |νi(x)| ≤ 1.
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Proof: We let {σj}J
j=1 and {yj}J

j=1 be defined as in Theorem 4, and set

(3.16) uε(x) =
J∑

j=1

H0(k|x− yj |)σj .

Thus for any σ, the function uε belongs to the linear span of the functions
{H0(k|x− yj |)}J

j=1. Lemma 1 then directly yields the desired interpolation
points and interpolation functions. ¤
Remark 4. Theorems 4 and 5 provide bases for the support and the range of
the integral operator in (3.10), respectively. By combining the two theorems,
we obtain a factorization of the integral operator into three factors where the
middle one is simply the restriction of the original operator to the points
{yj}J

j=1 and {xi}J
i=1. To be precise, by combining (3.12) and (3.14), we

obtain the approximation

(3.17) u(x) =
J∑

i,j=1

νi(x)H0(k|xi − yj |)
∫

ΩS

ϕj(y)σ(y) dA(y) + E(x),

where E satisfies (3.13).

Remark 5. While Theorems 4 and 5 assert the existence of points {yj}J
j=1

and {xi}J
i=1 such that (3.12) and (3.14) hold, they do not say anything about

how to actually find such points. Methods for this task are described in [6]
and [13]. The points determined by these methods tend to lie close to the
boundaries of ΩS and ΩT, as seen in Fig. 3(b). In fact, it is possible to force
the points to lie exactly on the boundary, although one must then use both
monopole and dipole charges (as opposed to the representation (3.12) that
uses monopoles only).

4. Fast direct solvers for the integral equations associated
with elongated scatterers

In this section, we describe how the fast solver for integral equations
presented in [12] can be modified in order to obtain a “fast” algorithm for
solving the integral equation

(4.1) u(x) +
∫

Γ
H0(k|x− y|) u(y) ds(y) = f(x),

where f is a given data function, k is the wave-number (assumed to be real
and positive), and Γ is a given elongated contour. The discussion is framed
around the equation (4.1) for simplicity, but all techniques presented apply
more generally to the integral equations discussed in Section 2.1. We note
that when discussing the asymptotic cost of a numerical algorithm for high-
frequency problems, it is not reasonable to fix a geometry and a wave number
and let the number of degrees of freedom N tend to infinity independently.
Instead, we must let the size of the object (measured in wave lengths tend
to infinity in proportion to N .
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Γ W

D

Figure 2. The contour Γ (drawn with a solid line) is ad-
missible provided that: (1) the width W of the enclosing
rectangle (drawn with a dashed line) satisfies W ≤ 1/k, and,
(2), there is a number n0 such if m denotes the number of
discretization points inside a box of length D, as the gray
box in the illustration, then m ≤ n0kD.

If the algorithm of [12] were to be applied to the inversion of the integral
operator in (4.1) unmodified, its asymptotic cost S would satisfy

(4.2) S ∼ c1N + c2(kL)3 as N, kL →∞,

where L is the diameter of Γ, and c1 and c2 are numbers that do not depend
on N , k, or L. It turns out that c2 is quite small, so for scatterers that
are at most a few hundred wavelengths large, the first term dominates the
computational cost. However, the second term eventually will dominate, and
will limit the size of problems that can be considered. In this section, we
demonstrate how the scheme can be modified to obtain a scheme that truly is
asymptotically fast in the sense that its computational cost is O(N) = O(kL)
for a class of contours satisfying the following two conditions:

(1) All contours in the class fit inside rectangles whose shortest side is
bounded by some given number W . (See Remark 2, and Section 5.1,
for a discussion of practical values of W .)

(2) When a contour in the class is discretized, there are at most a fixed
number n0 of points per wavelength, counted along the long side of
the rectangle defined in (1).

The conditions are illustrated in Fig. 2. We will from this point on assume
that the long side of the box is oriented along the horizontal axis.

Given an admissible contour Γ, we let A denote the N ×N matrix that
results upon Nyström discretization of the integral operator in equation
(4.1). If the points in the discretization are ordered based on their horizontal
coordinate only, it follows from Theorem 4 that the rank of any off-diagonal
block of A of size m× n is O(log(m + n)). This shows that it is in principle
possible for the algorithm of [12] to have a running time of O(N). To
actually achieve this speed, we must furnish the algorithm with a technique
for rapidly computing bases for the row and column spaces of such off-
diagonal matrices. We describe such a technique in the proof of the following
observation.
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Figure 3. (a) A contour Γ = Γ1 + Γ2. Γ1 is drawn with
a bold line and Γ2 with a thin line. (b) A contour Γ =
Γ1 + Γclose + Γfar. Γ1 is drawn with a bold line, Γclose with
a thin line, and Γfar with a dashed line. The interaction
between Γ1 and Γfar is replaced by the interaction between
Γ1 and the proxy points y

(L)
j , y

(R)
j , drawn with crosses.

Observation 6. Let Γ denote an admissible contour of horizontal length
L, split into two pieces Γ1 and Γ2, as shown in Fig. 3(a). Furthermore, let
m and n denote the number of points in the discretizations of Γ1 and Γ2,
respectively, let B denote the m×n matrix discretizing the integral operator
that maps a charge distribution on Γ2 onto a potential on Γ1, and let {xi}m

i=1
denote the points in the discretization of Γ1. Then for any given precision
ε, there exists a set of points {yj}p

j=1 such that the vectors

(4.3)




H0(k|x1 − y1|)
...

H0(k|xm − y1|)


 , . . . ,




H0(k|x1 − yp|)
...

H0(k|xm − yp|)


 ,

constitute a basis for the column space of B, accurate to within precision ε.
Moreover, there exists a number C, depending on neither ε, nor L, such that

(4.4) p ≤ C log(kL) | log ε|2.
The cost of finding the points {yj}p

j=1 is O(p).

Proof: We let {y(0)
j }J

j=1 denote the points provided by Theorem 4 in order
to approximate a potential associated with a box of length L to precision
ε, and let S be the corresponding prescribed separation between the target
box and the source box. Given this separation S, we let Γclose denote the
part of Γ2 that is within distance S of Γ1 in the horizontal direction, and
let Γfar denote the rest, see Fig. 3(b). Furthermore, we let Bclose denote the
matrix mapping a charge distribution on Γclose onto a potential on Γ1, and
define Bfar analogously. In other words, the matrices B and [Bclose Bfar] are
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identical matrices except for the ordering of the columns, and

(4.5) Col(B) = Col(Bclose) + Col(Bfar),

where Col(B) denotes the column space of B. We let {y(close)
j }pclose

j=1 de-
note the points in the discretization of Γclose. Then the vectors {[H0(k|xi −
y

(close)
j |)]mi=1}pclose

j=1 form a basis for Bclose. It remains to find a basis of the re-
quired form for Col(Bfar). But this is exactly what Theorem 4 does. Simply
enclose the right part of Γfar in a box of length L, and let {y(R)

j }J
j=1 de-

note the associated proxy source locations obtained from the set {y(0)
j }J

j=1

by shifting all points horizontally. Likewise, we enclose the left part in a
similar box and obtain the source points {y(L)

j }J
j=1 by reflecting the points

{y(0)
j }J

j=1 about a vertical axis and then shifting them. The union of the

three sets {y(close)
j }pclose

j=1 , {y(L)
j }J

j=1, and {y(R)
j }J

j=1 now generates a basis of
the required form. The number of points is bounded as specified by (4.4)
since J ≤ C log(kL)| log ε|2, and since pclose ≤ n0kS ≤ c n0| log ε|. ¤

5. Numerical examples

5.1. Numerical estimation of interaction ranks between elongated
boxes. Theorem 2 states that to precision ε, the rank of interaction J
between two elongated boxes of widths W and lengths L, separated by a
distance S, as shown in Fig. 1, satisfies

(5.1) J ≤ C log(kL) (log(1/ε))2,

for some number C, as L → ∞ and ε → 0 (the number k is the wave-
number in the Helmholtz equation (2.1)). In this section, we present the
results of some numerical experiments that indicate that in many cases of
practical interest, J is quite small, typically between 20 and 40. Moreover,
these examples indicate that even though Theorem 2 requires the separation
distance S to be several times larger than the wavelength, a separation of
only one half, or one wavelength, is sufficient for five or ten digits of relative
accuracy.

Table 1 gives upper bounds for the interaction ranks for a number of
different values of L and H when the separation distance is one wave length,
while Table 2 gives the corresponding values when S equals one half wave
length. The ranks reported in the tables were computed using the methods
described in [6] and [13].

5.2. Example: Scattering off an elongated closed contour. We tested
the performance of the inversion scheme described in Section 4 by applying it
to a set of closed contours having the undulating shape shown in Fig. 3(a).
The times required to invert the integral operator in (2.5) on a desktop
PC with a 3GHz Pentium IV processor and 3Gb of RAM are reported in
Table 3. In all experiments, the vertical size of the contour remained fixed
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ε = 10−5 ε = 10−10

kL: 101 102 103 104 105 106 101 102 103 104 105 106

kH = 1: 15 20 24 26 28 30 29 39 48 57 64 69
kH = 2: 20 25 28 30 32 34 36 48 57 66 73 79
kH = 3: 24 28 33 36 38 40 44 55 64 72 80 87

Table 1. The table displays the number of interpolation
points J actually required for the interpolation (3.12) for a
separation S such that kS = 1.

ε = 10−5 ε = 10−10

kL: 101 102 103 104 105 106 101 102 103 104 105 106

kH = 1: 20 24 29 31 33 34 35 46 55 63 70 76
kH = 2: 27 33 37 40 42 44 45 55 65 73 82 87
kH = 3: 35 40 44 48 49 50 55 65 75 83 92 98

Table 2. The table displays the number of interpolation
points J actually required for the interpolation (3.12) for a
separation S such that kS = 0.5.

at one wave-length. The horizontal size varied between 8 and 1024 wave-
lengths and the contour was discretized using 50 points per wavelength. The
“geometric” undulation of the contour has precisely twice the wave-length
of the radiated field.

The integral equation was discretized using a Nyström method with the
6th order accurate quadrature rule descriped in [11]. With 50 points per
wave-length, this yielded a discretization error of 10−10.

5.3. Example: Scattering off a one-dimensional wavy surface. In
this section, we consider the problem of determining the scattered wave
from an infinite contour Γ of the form shown in Fig. 4. The contour Γ
coincides with the x-axis everywhere, except on the finite piece Γ+, drawn
with a bold line in Fig. 4. To be precise, we are given an incoming field uin

of the form

uin(x) = H0(k|x− x̂|),
where k is the wave-number, and x̂ is a given point in the domain Ω above
Γ, and we seek a field uout such that

(5.2) −∆uout − k2uout = 0, on Ω,

and

(5.3) uout + uin = 0, on Γ,
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ntot nwave tcomp tapply Eres M
800 8 2.38e0 6.60e-3 2.1e-6 7.5e0

1600 16 5.73e0 1.54e-2 3.3e-6 1.7e0
3200 32 1.27e1 3.26e-2 3.5e-6 3.6e1
6400 64 2.62e1 7.05e-2 5.2e-6 7.3e1

12800 128 5.39e1 1.41e-1 7.5e-6 1.5e2
25600 256 1.19e2 2.92e-1 9.9e-6 3.0e2
51200 512 2.38e2 5.89e-1 1.2e-5 5.9e2

102400 1024 4.79e2 1.19e-1 1.2e-5 1.2e3
Table 3. Results of the numerical experiment described in
Section 5.2. ntot is the total number of points in the dis-
cretization, nwave is the length of the scatterer in wavelengths
(its width is 1 for all experiments), tcomp is the time in sec-
onds required to compute an approximate inverse, tapply is
the time in seconds required to apply the compressed inverse
to a vector, Eres is the residual error in the computed inverse,
and M is the amount of memory (in megabytes) required to
compute the inverse.

×

×

x̂−

x̂

Γ

Γ+

Γ−

y

y−

Figure 4. Geometry of the scattering problem described in
Section 5.3. The contour Γ is drawn with a solid line; the
subset Γ+ is highlighted using a bold line. The reflection Γ−
of Γ+ is drawn with a dashed line. The point x̂ is a source,
and x̂− its mirror image.

while also satisfying the radiation condition (2.2). Letting G(x, y) denote
the kernel of the integral operator in (2.5), we make the Ansatz

(5.4) uout(x) =∫

Γ+

G(x, y) σ(y) ds(y)−
∫

Γ−
G(x, y−) σ(y) ds(y)−H0(k|x− x̂−|),
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where Γ−, y−, and x̂− are the reflections of Γ+, y, and x̂ in the x-axis, see
Fig. 4. With this Ansats, the Helmholtz’ equation (5.2) is automatically
satisfied, and the boundary condition (5.3) is satisfied on Γ\Γ+. To ensure
that (5.3) is satisfied on Γ+ as well, it is necessary that σ satisfies the
equation

(5.5) − 2iσ(x) +
∫

Γ+

G(x, y) σ(y) ds(y)−
∫

Γ−
G(x, y−) σ(y) ds(y) =

H0(k|x− x̂−|)−H0(k|x− x̂|), for x ∈ Γ+.

The times required to invert the integral operator in (2.5) on a desktop
PC with a 3GHz Pentium IV processor and 3Gb of RAM using the method
described in Section 4 are reported in Table 4. In all experiments reported,
the contour Γ+ extends for half a wave-length above the x-axis, and for nwave

wave-lengths in the horizontal direction, where 10 ≤ nwave ≤ 3000. The
“geometric” undulation of the wave pattern has about the same wavelength
as the radiating field. The integral equation was discretized using the same
techniques that were described in Section 5.2.

A benefit to using direct methods in the study of scattering problems,
is that one frequently is interested in computing the scattered field for a
large set of incoming wave patterns. In the direct method presented here,
such calculations are very inexpensive once the approximate inverse has been
calculated. As an example, we computed the inverse for the integral operator
corresponding to a wavy surface such as the one depicted in Fig. 5, but 600
wave lengths across. We then computed the reflected field for a set of sources
located at various positions on the semi-circle in Fig. 5 and computed the
energy of the reflected field back at the source point. This resulted in a graph
showing the amount of energy reflected back to the source as a function of
location on the semi-circle, given in Fig. 6. In principle, the computation of
the reflected energy for each source location requires to solution of a dense
linear system involving 40 000 unknowns (in complex arithmetics). Since
we had access to the inverse (which took about a minute to compute), each
computation took less than one tenth of a second on a desktop PC.

6. Conclusions

In this paper, we have demonstrated that the integral operators associated
with acoustic scattering from elongated scatterers in two dimensions can
be inverted very rapidly. Numerical examples show that for a scatterer
3000 wavelengths long, the forward scattering problem can be solved in
minutes on a desktop PC (at five digit accuracy). After the first solve, a
compressed representation of the inverse of the integral operator is available,
and additional forward scattering problems can be solved in less than one
second each.

The techniques presented can with minor modifications be applied to
electromagnetic scattering problems in both two and three dimensions, as
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x̂

Figure 5. Computation of the reflection pattern of a wavy
surface. A radiating source is placed at the point marked
x̂, the reflection problem is solved, and the intensity of the
reflected wave at the point x̂ is computed. A plot of this
intensity, as a function of the angle between the dashed line
and the positive x-axis, is given in Fig. 6. (Note that in the
experiment reported, the wavy surface was 600 wave lengths
long rather than the 11 shown here.)

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

Figure 6. This plot is described in the caption of Fig. 5.
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ntot nwave tcomp tapply Eres M
800 11 1.07e0 2.20e-3 9.2e-7 2.6e0

1600 23 2.32e0 4.70e-3 1.8e-7 5.5e0
3200 46 4.86e0 9.60e-3 7.7e-7 1.1e1
6400 91 1.12e1 1.94e-2 6.2e-7 2.3e1

12800 183 2.30e1 3.90e-2 8.8e-7 4.7e1
25600 366 4.58e1 7.92e-2 4.7e-6 9.4e1
51200 731 1.01e2 1.59e-1 4.9e-6 1.9e2

102400 1463 2.02e2 3.19e-1 6.3e-6 3.8e2
204800 2926 4.06e2 6.36e-1 1.7e-5 7.6e2

Table 4. Computational timings for the numerical experi-
ment described in Section 5.3. The notation is the same as
in Table 3.

long as the scatterer can be contained in a long, straight cylinder whose
diameter as at most a few wave-lengths.
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Appendix A. Proof of Theorem 2:

The proof of Theorem 2 given in this appendix relies on the fact that
any Hankel function Hn can be approximated by a sum of exponentials.
The number of terms required to obtain an accuracy of ε on the interval
[n, n + L] scales as log L | log ε|. This result is stated in detail in Lemma 7.
From Lemma 7, the special case of Theorem 2 in which the two boxes ΩS and
ΩT have zero height follows immediately; we formulate it as Lemma 8. The
proof that the results of Lemma 8 can be generalized to the environment of
Theorem 2 is given at the end of this appendix.

Lemma 7 is a slight generalization of a result in [8].

Lemma 7. Let L be any positive number larger than 2, let n be any integer,
and let ε be a given precision such that 0 < ε ≤ 1/2. Then there exists
an integer J , a number C, complex numbers {αj , βj}J

j=1 and non-negative
real numbers {tj}J

j=1 with the following properties: The Hankel function Hn

allows the expansion

(A.1) Hn(r) =
J∑

j=1

(
αje

ir + βj

)
e−tjr + E(r),

where

(A.2) |E(r)| ≤ ε, for n ≤ r ≤ n + L.
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Moreover, the number C does not depend on either L, ε, or n, and

(A.3) J ≤ C log L | log ε|,
Proof: Formula (9.1.22) of [1], says that

(A.4) Hn(r) = Ψn(r) + χn(r),

where

(A.5) Ψn(r) = − 1
π

∫ ∞

0
e−r sinh t

(
sin(nπ)e−nt + i(ent + e−nt cos(nπ))

)
dt,

and

(A.6) χn(r) =
1
π

∫ π

0
eir sin θ e−inθ dθ.

We convert the integral representation of Ψn to an expansion of the form
(A.1) by simply estimating the integral by a quadrature rule supported on
some points t1, . . . , tJ . To prove that the number of points J required in
order to obtain an accuracy of ε is bounded as prescribed by (A.3), we note
that, (i), the integrand in the representation (A.5) decays exponentially
(actually super-exponentially), and, (ii), the derivative of the integrand at
the origin is bounded by the condition that r satisfy 1 ≤ r ≤ 1 + L, see [15]
or [16].

It remains to derive an expansion for χn. To this end, we first effect the
change of variables t = sin θ in (A.6), whence

(A.7) χn(r) =
∫ 1

0
eirtχn(t) dt,

where

(A.8) χn(t) =
1

π
√

1− t2

(
(
√

1− t2 + it)n + (−
√

1− t2 + it)n
)

.

Since the integrand in (A.7) is holomorphic in the set (0, 1)× (0,∞), we can
change the path of integration from the horizontal line {t : 0 < t < 1} to
the vertical lines {it : 0 < t < ∞}, and {1 + it : 0 < t < ∞}. Taking into
account the pole at t = 1, we then find that, for some number c,

(A.9) χn(r) =
∫ ∞

0
e−rtχn(it) dt−

∫ ∞

0
eir−rtχn(1 + it) dt + c eir.

The integral representation (A.9) can now be converted to an expansion of
the form (A.1) via the quadrature procedure already described for Ψn. ¤

Lemma 8. Let L be any positive number larger than 2, let n be any integer,
let ε be a given precision such that 0 < ε ≤ 1/2, and consider the two sets
ΩS = {(y1, 0) : −L ≤ y1 ≤ 0} and ΩT = {(x1, 0) : n ≤ x1 ≤ n+L}. Then,
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there exists an integer J , a number C, and functions {ψj , χj}J
j=1 with the

following properties: The Hankel function Hn allows the expansion

(A.10) Hn(|x− y|) =
J∑

j=1

ψj(x)χj(y) + E(x, y), for x ∈ ΩT, y ∈ ΩS,

where

(A.11) J ≤ C log L| log ε|,
and

(A.12) |E(x, y)| ≤ ε.

Moreover, the number C does not depend on either L, ε, or n.

Proof: In the geometry given, Hn(|x − y|) = Hn(x1 − y1), where n ≤
x1 − y1 ≤ n + 2L. Thus, the formula (A.1), which expresses Hn in terms of
exponentials only, applies. The factorization (A.10) follows immediately. ¤

Proof of Theorem 2: Since k is simply a scaling parameter for the geom-
etry of the problem, we can for the purposes of the proof set k = 1.

We first construct an expansion of the form (3.2) that is valid in the
special case where x lies on the bottom boundary of ΩT. Picking an arbitrary
y = (y1, y2) ∈ ΩS, we set ŷ = (y1,−W/2), as shown in Fig. 1, and apply the
Graf addition theorem (formula (9.1.79) of [1]) to obtain

(A.13) H0(|x− y|) =
∞∑

n=−∞
inHn(|x− ŷ|)Jn(|ŷ − y|).

Since |ŷ − y| ≤ W , this series converges very fast; to be precise, we can for
any ε find an integer N such that N ∼ | log ε|, and

(A.14)

∣∣∣∣∣H0(|x− y|)−
N∑

n=−N

inHn(|x− ŷ|)Jn(|ŷ − y|)
∣∣∣∣∣ ≤ ε

for any y ∈ ΩS, and any x on the bottom of ΩT. Provided that S ≥ N ,
Lemma 8 then applies to each term Hn(|x − ŷ|) in (A.14), resulting in the
desired expansion. The condition (3.1) follows since N ∼ | log ε|. (See
Remark 1 for some notes on the truncation of the sum (A.13).)

Next we note that similar expansions can be constructed for x on all
boundaries of ΩT (the top boundary is of course entirely analogous to the
bottom one, and the corresponding proof for the vertical boundaries is triv-
ial). Similarly, it can be shown that there exist expansions of the desired
form for the normal derivative of u on all boundaries of ΩT.

Finally we note that when we know the value of u and its normal derivative
on the boundary of ΩT, the value at any point x ∈ ΩT can be constructed
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via Green’s formula:
(A.15)

u(x) =
1
4i

∫

∂ΩT

((
∂

∂n(z)
H0(|x− z|)

)
u(z)−H0(|x− z|) ∂

∂n(z)
u(z)

)
ds(z),

valid for any function u satisfying −∆u− u = 0 on ΩT. ¤
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