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Abstract. Recently popularized randomized methods for principal component analysis (PCA)
efficiently and reliably produce nearly optimal accuracy — even on parallel processors — unlike the
classical (deterministic) alternatives. We adapt one of these randomized methods for use with data
sets that are too large to be stored in random-access memory (RAM). (The traditional terminology
is that our procedure works efficiently out-of-core.) We illustrate the performance of the algorithm
via several numerical examples. For example, we report on the PCA of a data set stored on disk
that is so large that less than a hundredth of it can fit in our computer’s RAM.
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1. Introduction. Principal component analysis (PCA) is among the most pop-
ular tools in machine learning, statistics, and data analysis more generally. PCA is
the basis of many techniques in data mining and information retrieval, including the
latent semantic analysis of large databases of text and HTML documents described
in [1]. In this paper, we compute PCAs of very large data sets via a randomized
version of the block Lanczos method, summarized in Section 2 below. The proofs
in [4] and [9] show that this method requires only a couple of iterations to produce
nearly optimal accuracy, with overwhelmingly high probability (the probability is in-
dependent of the data being analyzed, and is typically 1 − 10−15 or greater). The
randomized algorithm has many advantages, as shown in [4] and [9]; the present arti-
cle adapts the algorithm for use with data sets that are too large to be stored in the
RAM of a typical computer system.

Computing a PCA of a data set amounts to constructing a singular value decom-
position (SVD) that accurately approximates the matrix A containing the data being
analyzed (possibly after suitably “normalizing” A, for example, by subtracting from
each column its mean). That is, if A is m × n, then we must find a positive integer
k < min(m, n) and construct matrices U , Σ, and V such that

A ≈ U Σ V ⊤, (1.1)

with U being an m × k matrix whose columns are orthonormal, V being an n × k
matrix whose columns are orthonormal, and Σ being a diagonal k × k matrix whose
entries are all nonnegative. Most often, the relevant measure of the quality of the
approximation in (1.1) is the spectral norm of the discrepancy A − U Σ V ⊤; see, for
example, Section 2 below. The present article focuses on the spectral norm, though
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our methods produce similar accuracy in the Frobenius/Hilbert-Schmidt norm (see,
for example, [4]).

In the present paper, the entries of all matrices are real valued; our techniques
extend trivially to matrices whose entries are complex valued. The remainder of the
article has the following structure: Section 2 outlines the algorithm. Section 3 details
the implementation for very large matrices. Section 4 quantifies the main factors
influencing the running-time of the algorithm. Section 5 illustrates the performance
of the algorithm via several numerical examples. Section 6 draws some conclusions
and proposes directions for further research.

2. Summary of the algorithm. In this section, we will construct a low-rank
(say, rank k) approximation U Σ V ⊤ to any given real matrix A, such that

‖A − U Σ V ⊤‖2 ≤ (Ckn)1/(4i+2) σk+1 (2.1)

with very high probability (typically 1−10−15, independent of A), where m and n are
the dimensions of the given m×n matrix A, U is a real m× k matrix whose columns
are orthonormal, V is a real n× k matrix whose columns are orthonormal, Σ is a real
diagonal k× k matrix whose entries are all nonnegative, σk+1 is the (k + 1)st greatest
singular value of A, and C is a constant determining the probability of failure (the
probability of failure is small when C = 10, negligible when C = 100). In (2.1), i is
any nonnegative integer such that (i + 2)k ≤ n (for most applications, i = 1 or i = 2
is sufficient; the algorithm becomes less efficient as i increases), and ‖A − U Σ V ⊤‖2

is the spectral (l2-operator) norm of A − U Σ V ⊤, that is,

‖A − U Σ V ⊤‖2 = max
x∈Rn:‖x‖2 6=0

‖(A − U Σ V ⊤)x‖2

‖x‖2
, (2.2)

‖x‖2 =

√

√

√

√

n
∑

j=1

(xj)2. (2.3)

To simplify the presentation, we will be assuming that n ≤ m (if n > m, then the
user can apply the algorithm to A⊤). In this section, we summarize the algorithm;
see [4] and [9] for a detailed discussion, including proofs of analogues of (2.1).

The minimal value of the spectral norm ‖A − B‖2, minimized over all rank-k
matrices B, is σk+1. Hence, (2.1) guarantees that the algorithm summarized below
produces approximations of nearly optimal accuracy.

To construct a rank-k approximation to A, we could apply A to about k random
vectors, in order to identify the part of its range corresponding to the larger singular
values. To enhance the decay of the singular values, we apply A (A⊤ A)i instead.
Once we have identified most of the range of A, we perform some linear-algebraic
manipulations in order to recover an approximation satisfying (2.1).

A numerically stable realization of the scheme outlined in the preceding paragraph
is the following. We choose an integer l ≥ k such that (i + 1)l ≤ n− k (it is generally
sufficient to choose l = k + 2; increasing l can improve the accuracy marginally, but
increases computational costs), and make the following six steps:



PRINCIPAL COMPONENT ANALYSIS OF LARGE DATA SETS 3

1. Using a random number generator, form a real n × l matrix G whose entries
are independent, identically distributed Gaussian random variables of zero
mean and unit variance, and compute the m × l matrices H(0), H(1), . . . ,
H(i−1), H(i) defined via the formulae

H(0) = AG, (2.4)

H(1) = A (A⊤H(0)), (2.5)

H(2) = A (A⊤H(1)), (2.6)

...

H(i) = A (A⊤H(i−1)). (2.7)

Form the m × ((i + 1)l) matrix

H =
(

H(0) H(1) . . . H(i−1) H(i)
)

. (2.8)

2. Using a pivoted QR-decomposition, form a real m×((i+1)l) matrix Q whose
columns are orthonormal, such that there exists a real ((i + 1)l) × ((i + 1)l)
matrix R for which

H = Q R. (2.9)

(See, for example, Chapter 5 in [3] for details concerning the construction of
such a matrix Q.)

3. Compute the n × ((i + 1)l) product matrix

T = A⊤ Q. (2.10)

4. Form an SVD of T ,

T = Ṽ Σ̃ W⊤, (2.11)

where Ṽ is a real n × ((i + 1)l) matrix whose columns are orthonormal, W
is a real ((i + 1)l)× ((i + 1)l) matrix whose columns are orthonormal, and Σ̃
is a real diagonal ((i + 1)l) × ((i + 1)l) matrix such that Σ̃1,1 ≥ Σ̃2,2 ≥ · · · ≥

Σ̃(i+1)l−1,(i+1)l−1 ≥ Σ̃(i+1)l,(i+1)l ≥ 0. (See, for example, Chapter 8 in [3] for
details concerning the construction of such an SVD.)

5. Compute the m × ((i + 1)l) product matrix

Ũ = Q W. (2.12)

6. Retrieve the leftmost m × k block U of Ũ , the leftmost n × k block V of Ṽ ,
and the leftmost uppermost k × k block Σ of Σ̃. The product U Σ V ⊤ then
approximates A as in (2.1) (we omit the proof; see [4] for proofs of similar
bounds).

Remark 2.1. In the present paper, we assume that the user specifies the rank k
of the approximation U Σ V ⊤ being constructed. See [4] for techniques for determining
the rank k adaptively, such that the accuracy ‖A − U Σ V ⊤‖2 meets a user-specified
threshold.

Remark 2.2. Variants of the fast Fourier transform (FFT) permit additional
accelerations; see [4], [6], and [10]. However, these accelerations have negligible ef-
fect on the algorithm running out-of-core. For out-of-core computations, the simpler
techniques of the present paper are preferable.



4 N. HALKO, P.-G. MARTINSSON, Y. SHKOLNISKY, AND M. TYGERT

3. Out-of-core computations. With suitably large matrices, some steps in
Section 2 above require either storage on disk, or on-the-fly computations obviating
the need for storing all the entries of the m×n matrix A being approximated. Conve-
niently, Steps 2, 4, 5, and 6 involve only matrices having O((i + 1) l (m + n)) entries;
we perform these steps using only storage in RAM. However, Steps 1 and 3 involve
A, which has mn entries; we perform Steps 1 and 3 differently depending on how A
is provided, as detailed below in Subsections 3.1 and 3.2.

3.1. Computations with on-the-fly evaluation of matrix entries. If A
does not fit in memory, but we have access to a computational routine that can
evaluate each entry (or row or column) of A individually, then obviously we can
perform Steps 1 and 3 using only storage in RAM. Every time we evaluate an entry
(or row or column) of A in order to compute part of a matrix product involving A or
A⊤, we immediately perform all computations associated with this particular entry
(or row or column) that contribute to the matrix product.

3.2. Computations with storage on disk. If A does not fit in memory, but is
provided as a file on disk, then Steps 1 and 3 require access to the disk. We assume for
definiteness that A is provided in row-major format on disk (if A is provided in column-
major format, then we apply the algorithm to A⊤ instead). To construct the matrix
product in (2.4), we retrieve as many rows of A from disk as will fit in memory, form
their inner products with the appropriate columns of G, store the results in H(0), and
then repeat with the remaining rows of A. To construct the matrix product in (2.10),
we initialize all entries of T to zeros, retrieve as many rows of A from disk as will fit in
memory, add to T the transposes of these rows, weighted by the appropriate entries of
Q, and then repeat with the remaining rows of A. We construct the matrix product
in (2.5) similarly, forming F = A⊤ H(0) first, and H(1) = AF second. Constructing
the matrix products in (2.6)–(2.7) is analogous.

4. Computational costs. In this section, we tabulate the computational costs
of the algorithm described in Section 2, for the particular out-of-core implementations
described in Subsections 3.1 and 3.2. We will be using the notation from Section 2,
including the integers i, k, l, m, and n, and the m × n matrix A.

Remark 4.1. For most applications, i ≤ 2 suffices. In contrast, the classi-
cal Lanczos algorithm generally requires many iterations in order to yield adequate
accuracy, making the computational costs of the classical algorithm prohibitive for
out-of-core (or parallel) computations (see, for example, Chapter 9 in [3]).

4.1. Costs with on-the-fly evaluation of matrix entries. We denote by
CA the number of floating-point operations (flops) required to evaluate all nonzero
entries in A. We denote by NA the number of nonzero entries in A. With on-the-fly
evaluation of the entries of A, the six steps of the algorithm described in Section 2
have the following costs:

1. Forming H(0) in (2.4) costs CA + O(l NA) flops. Forming any of the matrix
products in (2.5)–(2.7) costs 2CA + O(l NA) flops. Forming H in (2.8) costs
O(ilm) flops. All together, Step 1 costs (2i + 1)CA + O(il(m + NA)) flops.

2. Forming Q in (2.9) costs O(i2l2m) flops.
3. Forming T in (2.10) costs CA + O(il NA) flops.
4. Forming the SVD of T in (2.11) costs O(i2l2n) flops.
5. Forming Ũ in (2.12) costs O(i2l2m) flops.
6. Forming U , Σ, and V in Step 6 costs O(k(m + n)) flops.
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Summing up the costs for the six steps above, and using the fact that k ≤ l ≤
n ≤ m, we see that the full algorithm requires

Con-the-fly = 2(i + 1)CA + O(il NA + i2l2m) (4.1)

flops, where CA is the number of flops required to evaluate all nonzero entries in A,
and NA is the number of nonzero entries in A.

4.2. Costs with storage on disk. We denote by j the number of floating-point
words of random-access memory (RAM) available to the algorithm. With A stored
on disk, the six steps of the algorithm described in Section 2 have the following costs
(assuming for convenience that j > 2 (i + 1) l (m + n)):

1. Forming H(0) in (2.4) requires at most O(lmn) floating-point operations
(flops), O(mn/j) disk accesses/seeks, and a total data transfer of O(mn)
floating-point words. Forming any of the matrix products in (2.5)–(2.7) also
requires O(lmn) flops, O(mn/j) disk accesses/seeks, and a total data transfer
of O(mn) floating-point words. Forming H in (2.8) costs O(ilm) flops. All
together, Step 1 requires O(ilmn) flops, O(imn/j) disk accesses/seeks, and
a total data transfer of O(imn) floating-point words.

2. Forming Q in (2.9) costs O(i2l2m) flops.
3. Forming T in (2.10) requires O(ilmn) floating-point operations, O(mn/j)

disk accesses/seeks, and a total data transfer of O(mn) floating-point words.
4. Forming the SVD of T in (2.11) costs O(i2l2n) flops.
5. Forming Ũ in (2.12) costs O(i2l2m) flops.
6. Forming U , Σ, and V in Step 6 costs O(k(m + n)) flops.

Summing up the costs for the six steps above, and using the fact that k ≤ l ≤
n ≤ m, we see that the full algorithm requires

Cflops = O(ilmn + i2l2m) (4.2)

flops,

Caccesses = O(imn/j) (4.3)

disk accesses/seeks (where j is the number of floating-point words of RAM available
to the algorithm), and a total data transfer of

Cwords = O(imn) (4.4)

floating-point words (more specifically, Cwords ≈ (2i + 1)mn).

5. Numerical examples. In this section, we describe the results of several
numerical tests of the algorithm of the present paper.

We set l = k+2 for all examples, setting i = 3 for the first two examples, and i = 1
for the last two, where i, k, and l are the parameters from Section 2 above. We ran
all examples on a laptop with 1.5 GB of random-access memory (RAM), connected
to an external hard drive via USB 2.0. The processor was a single-core 32-bit 2-GHz
Intel Pentium M, with 2 MB of L2 cache. We ran all examples in Matlab 7.4.0, stor-
ing floating-point numbers in RAM using IEEE standard double-precision variables
(requiring 8 bytes per real number), and on disk using IEEE standard single-precision
variables (requiring 4 bytes per real number).

All our numerical experiments indicate that the quality and distribution of the
pseudorandom numbers have little effect on the accuracy of the algorithm of the
present paper. We used Matlab’s built-in pseudorandom number generator for all
results reported below.
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5.1. Synthetic data. In this subsection, we illustrate the performance of the
algorithm with the principal component analysis of three examples, including a com-
putational simulation.

For the first example, we apply the algorithm to the m × n matrix

A = F S G, (5.1)

where F and G are m×m and n×n unitary discrete cosine transforms of the second
type (DCT-II), and S is an m×n matrix whose entries are zero off the main diagonal,
with

Sj,j =

{

10−4(j−1)/19, j = 1, 2, . . . , 19, or 20
10−4/(j − 20)1/10, j = 21, 22, . . . , n − 1, or n.

(5.2)

Clearly, S1,1, S2,2, . . . , Sn−1,n−1, Sn,n are the singular values of A.
For the second example, we apply the algorithm to the m × n matrix

A = F S G, (5.3)

where F and G are m×m and n×n unitary discrete cosine transforms of the second
type (DCT-II), and S is an m×n matrix whose entries are zero off the main diagonal,
with

Sj,j =























1.00, j = 1, 2, or 3
0.67, j = 4, 5, or 6
0.34, j = 7, 8, or 9
0.01, j = 10, 11, or 12

0.01 · n−j
n−13 , j = 13, 14, . . . , n − 1, or n.

(5.4)

Clearly, S1,1, S2,2, . . . , Sn−1,n−1, Sn,n are the singular values of A.
Table 1a summarizes results of applying the algorithm to the first example, storing

on disk the matrix being approximated. Table 1b summarizes results of applying the
algorithm to the first example, generating on-the-fly the columns of the matrix being
approximated.

Table 2a summarizes results of applying the algorithm to the second example,
storing on disk the matrix being approximated. Table 2b summarizes results of ap-
plying the algorithm to the second example, generating on-the-fly the columns of the
matrix being approximated.

The headings of the tables have the following meanings:
• m is the number of rows in the matrix A being approximated.
• n is the number of columns in the matrix A being approximated.
• k is the parameter from Section 2 above; k is the rank of the approximation

being constructed.
• tgen is the time in seconds required to generate and store on disk the matrix

A being approximated.
• tPCA is the time in seconds required to compute the rank-k approximation

(the PCA) provided by the algorithm of the present paper.
• ε0 is the spectral norm of the difference between the matrix A being approx-

imated and its best rank-k approximation.
• ε is an estimate of the spectral norm of the difference between the matrix A

being approximated and the rank-k approximation produced by the algorithm
of the present paper. The estimate ε of the error is accurate to within a
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Table 1a

On-disk storage of the first example.

m n k tgen tPCA ε0 ε

2E5 2E5 16 2.7E4 6.6E4 4.3E-4 4.3E-4
2E5 2E5 20 2.7E4 6.6E4 1.0E-4 1.0E-4
2E5 2E5 24 2.7E4 6.9E4 1.0E-4 1.0E-4

Table 1b

On-the-fly generation of the first example.

m n k tPCA ε0 ε

2E5 2E5 16 7.7E1 4.3E-4 4.3E-4
2E5 2E5 20 1.0E2 1.0E-4 1.0E-4
2E5 2E5 24 1.3E2 1.0E-4 1.0E-4

factor of two with extraordinarily high probability; the expected accuracy of
the estimate ε of the error is about 10%, relative to the best possible error ε0

(see [5]). The appendix below details the construction of the estimate ε of the
spectral norm of D = A−UΣV ⊤, where A is the matrix being approximated,
and UΣV ⊤ is the rank-k approximation produced by the algorithm of the
present paper.

For the third example, we apply the algorithm with k = 3 to an m × 1000
matrix whose rows are independent and identically distributed (i.i.d.) realizations of
the random vector

α w1 + β w2 + γ w3 + δ, (5.5)

where w1, w2, and w3 are orthonormal 1× 1000 vectors, δ is a 1× 1000 vector whose
entries are i.i.d. Gaussian random variables of mean zero and standard deviation
0.1, and (α, β, γ) is drawn at random from inside an ellipsoid with axes of lengths
a = 1.5, b = 1, and c = 0.5, specifically,

α = a r (cos ϕ) sin θ, (5.6)

β = b r (sin ϕ) sin θ, (5.7)

γ = c r cos θ, (5.8)

with r drawn uniformly at random from [0, 1], ϕ drawn uniformly at random from
[0, 2π], and θ drawn uniformly at random from [0, π]. We obtained w1, w2, and w3 by
applying the Gram-Schmidt process to three vectors whose entries were i.i.d. centered
Gaussian random variables; w1, w2, and w3 are exactly the same in every row, whereas
the realizations of α, β, γ, and δ in the various rows are independent. We generated all
the random numbers on-the-fly using a high-quality pseudorandom number generator;
whenever we had to regenerate exactly the same matrix (as the algorithm requires
with i > 0), we restarted the pseudorandom number generator with the original seed.

Figure 1a plots the inner product (i.e., correlation) of w1 in (5.5) and the (normal-
ized) left singular vector associated with the greatest singular value produced by the
algorithm of the present article. Figure 1a also plots the inner product of w2 in (5.5)
and the (normalized) left singular vector associated with the second greatest singular
value, as well as the inner product of w3 and the (normalized) left singular vector
associated with the third greatest singular value. Needless to say, the inner products
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Table 2a

On-disk storage of the second example.

m n k tgen tPCA ε0 ε

2E5 2E5 12 2.7E4 6.3E4 1.0E-2 1.0E-2
2E5 2E4 12 1.9E3 6.1E3 1.0E-2 1.0E-2
5E5 8E4 12 2.2E4 6.5E4 1.0E-2 1.0E-2

Table 2b

On-the-fly generation of the second example.

m n k tPCA ε0 ε

2E5 2E5 12 5.5E1 1.0E-2 1.0E-2
2E5 2E4 12 2.7E1 1.0E-2 1.0E-2
5E5 8E4 12 7.9E1 1.0E-2 1.0E-2

(i.e., correlations) all tend to 1, as m increases — as they should. Figure 1b plots
the time required to run the algorithm of the present paper, generating on-the-fly the
entries of the matrix being processed. The running-time is roughly proportional to
m, in accordance with (4.1).

5.2. Measured data. In this subsection, we illustrate the performance of the
algorithm with the principal component analysis of images of faces.

We apply the algorithm with k = 50 to the 393,216 × 102,042 matrix whose
columns consist of images from the FERET database of faces described in [7] and [8],
with each image duplicated three times. For each duplicate, we set the values of a
random choice of 10% of the pixels to numbers chosen uniformly at random from the
integers 0, 1, . . . , 254, 255; all pixel values are integers from 0, 1, . . . , 254, 255. Before
processing with the algorithm of the present article, we “normalized” the matrix by
subtracting from each column its mean, then dividing the resulting column by its
Euclidean norm. The algorithm of the present paper required 12.3 hours to process
all 150 GB of this data set stored on disk, using the laptop computer with 1.5 GB of
RAM described earlier (at the beginning of Section 5).

Figure 2a plots the computed singular values. Figure 2b displays the computed
“eigenfaces” (that is, the left singular vectors) corresponding to the five greatest
singular values.

6. Conclusion. The present article describes techniques for the principal com-
ponent analysis of data sets that are too large to be stored in random-access memory
(RAM), and illustrates the performance of the methods on data from various sources,
including standard test sets, numerical simulations, and physical measurements. Sev-
eral of our data sets stored on disk were so large that less than a hundredth of any
of them could fit in our computer’s RAM; nevertheless, the scheme always succeeded.
Theorems, their rigorous proofs, and their numerical validations all demonstrate that
the algorithm of the present paper produces nearly optimal spectral-norm accuracy.
Moreover, similar results are available for the Frobenius/Hilbert-Schmidt norm. Fi-
nally, the core steps of the procedures parallelize easily; with the advent of widespread
multicore and distributed processing, exciting opportunities for further development
and deployment abound.

Appendix. In this appendix, we describe a method for estimating the spectral
norm ‖D‖2 of a matrix D. This procedure is particularly useful for checking whether
an algorithm has produced a good approximation to a matrix (for this purpose, we
choose D to be the difference between the matrix being approximated and its approx-



PRINCIPAL COMPONENT ANALYSIS OF LARGE DATA SETS 9

imation). The procedure is a version of the classic power method, and so requires the
application of D and D⊤ to vectors, but does not use D in any other way. Though
the method is classical, its probabilistic analysis summarized below was introduced
fairly recently in [2] and [5] (see also Section 3.4 of [10]).

Suppose that m and n are positive integers, and D is a real m × n matrix. We
define ω(1), ω(2), ω(3), . . . to be real n × 1 column vectors with independent and
identically distributed entries, each distributed as a Gaussian random variable of zero
mean and unit variance. For any positive integers j and k, we define

pj,k(D) = max
1≤q≤k

√

‖(D⊤ D)j ω(q)‖2

‖(D⊤ D)j−1 ω(q)‖2
, (6.1)

which is the best estimate of the spectral norm of D produced by j steps of the power
method, started with k independent random vectors (see, for example, [5]). Naturally,
when computing pj,k(D), we do not form D⊤ D explicitly, but instead apply D and
D⊤ successively to vectors.

Needless to say, pj,k(D) ≤ ‖D‖2 for any positive j and k. A somewhat involved
analysis shows that the probability that

pj,k(D) ≥ ‖D‖2/2 (6.2)

is greater than

1 −

(

2n

(2j − 1) · 16j

)k/2

. (6.3)

The probability in (6.3) tends to 1 very quickly as j increases. Thus, even for fairly
small j, the estimate pj,k(D) of the value of ‖D‖2 is accurate to within a factor of two,
with very high probability; we used j = 6 for all numerical examples in this paper. We
used the procedure of this appendix to estimate the spectral norm in (2.1), choosing
D = A − U Σ V ⊤, where A, U , Σ, and V are the matrices from (2.1). We set k for
pj,k(D) to be equal to the rank of the approximation U Σ V ⊤ being constructed.

For more information, see [2], [5], or Section 3.4 of [10].
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Fig. 2a. Singular values computed for the fourth example (the database of images).

Fig. 2b. Dominant singular vectors computed for the fourth example (the database of images).
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