
SIAM J. MATRIX ANAL. APPL. c© 2011 Society for Industrial and Applied Mathematics
Vol. 32, No. 4, pp. 1251–1274

A FAST RANDOMIZED ALGORITHM FOR COMPUTING A
HIERARCHICALLY SEMISEPARABLE REPRESENTATION OF A

MATRIX∗

P. G. MARTINSSON†

Abstract. Randomized sampling has recently been proven a highly efficient technique for
computing approximate factorizations of matrices that have low numerical rank. This paper describes
an extension of such techniques to a wider class of matrices that are not themselves rank-deficient but
have off-diagonal blocks that are; specifically, the class of so-called hierarchically semiseparable (HSS)
matrices. HSS matrices arise frequently in numerical analysis and signal processing, particularly in
the construction of fast methods for solving differential and integral equations numerically. The HSS
structure admits algebraic operations (matrix-vector multiplications, matrix factorizations, matrix
inversion, etc.) to be performed very rapidly, but only once the HSS representation of the matrix
has been constructed. How to rapidly compute this representation in the first place is much less well
understood. The present paper demonstrates that if an N × N matrix can be applied to a vector
in O(N) time, and if individual entries of the matrix can be computed rapidly, then provided that
an HSS representation of the matrix exists, it can be constructed in O(N k2) operations, where k
is an upper bound for the numerical rank of the off-diagonal blocks. The point is that when legacy
codes (based on, e.g., the fast multipole method) can be used for the fast matrix-vector multiply,
the proposed algorithm can be used to obtain the HSS representation of the matrix, and then well-
established techniques for HSS matrices can be used to invert or factor the matrix.

Key words. data-sparse matrix, randomized algorithm, matrix factorization, hierarchically
semiseparable matrix, direct solver

AMS subject classifications. 65F05, 65F30, 65F20, 15A23

DOI. 10.1137/100786617

1. Introduction. A ubiquitous task in computational science is to rapidly per-
form linear algebraic operations involving very large matrices. Such operations typi-
cally exploit special “structure” in the matrix since the costs of standard techniques
tend to scale prohibitively fast with matrix size; for a general N ×N matrix, it costs
O(N2) operations to perform a matrix-vector multiplication, O(N3) operations to
perform Gaussian elimination or to invert the matrix, etc. A well-known form of
“structure” in a matrix is sparsity. When at most a few entries in each row of the
matrix are nonzero (as is the case, e.g., for matrices arising upon the discretization
of differential equations, or representing the link structure of the World Wide Web)
matrix-vector multiplications can be performed in O(N) operations instead of O(N2).
The description “data-sparse” applies to a matrix that may be dense but that shares
the key characteristic of a sparse matrix that some linear algebraic operations, typi-
cally the matrix-vector multiplication, can to high precision be executed in fewer than
O(N2) operations (often in close to linear time).

There are many different types of data-sparse representations of a matrix. This
paper is concerned with the class of so-called hierarchically semiseparable (HSS) ma-
trices [9, 10, 35], which arise upon the discretization of many of the integral operators
of mathematical physics, in signal processing, in algorithms for inverting certain fi-

∗Received by the editors February 22, 2010; accepted for publication (in revised form) by I. C.
F. Ipsen July 21, 2011; published electronically November 8, 2011. This work was supported by the
NSF under the contracts 0941476, 0748488, and 0610097.

http://www.siam.org/journals/simax/32-4/78661.html
†Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309

(martinss@colorado.edu).
1251

1252 P. G. MARTINSSON

nite element matrices, and in many other applications; see, e.g., [38, 29, 31, 35]. An
HSS matrix is a dense matrix whose off-diagonal blocks are rank-deficient in a certain
sense. Postponing a precise definition until section 3, we for now simply note that an
HSS matrix A can be expressed via a recursive formula in L levels,

(1.1) A(j) = U (j) A(j−1) V (j) +B(j), j = 2, 3, . . . , L,

where A = A(L) and the sequence A(L), A(L−1), . . . , A(1) consists of matrices that are
successively smaller. (In principle, one could say that A satisfies the HSS property as
long as there is any decay in size, but in typical applications, A(j−1) would be roughly
half the size of A(j).) In (1.1), the matrices U (j), V (j), and B(j) are all block-diagonal,
so the formula directly leads to a fast technique for evaluating a matrix-vector product.
The HSS property is similar to many other data-sparse representations in that it
exploits rank-deficiencies in off-diagonal blocks to allow matrix-vector products to
be evaluated rapidly; the fast multipole method (FMM) [16, 17], the Barnes–Hut
method [1], and panel clustering [19] are all similar in this regard. The HSS property
is different from these other formats in that it also allows the rapid computation
of a matrix inverse, of an LU factorization, etc.; see [8, 9, 12, 30, 36]. The ability
to perform algebraic operations other than the matrix-vector multiplication is also
characteristic of the H-matrix format of Hackbusch [21]. Comparing the two formats,
the H-matrix representation is more general (every HSS matrix is an H-matrix, but
not every H-matrix is an HSS matrix) but pays for the generality by requiring more
complicated, and typically slower, algorithms for computing matrix inverses, matrix
factorizations, etc.

The most straightforward technique for computing the HSS representation of a
dense N ×N matrix A is to explicitly form all matrix elements, and then to compress
the off-diagonal blocks using, e.g., the SVD. This approach can be executed stably
[9, 20], but it is often prohibitively expensive, with an O(k N2) asymptotic cost, where
k is the rank of the off-diagonal blocks (in the HSS sense). Fortunately, there exist for
specific applications much faster methods for constructing HSS representations. When
the matrix A approximates a boundary integral operator in the plane, the technique
of [30] computes a representation in O(k2 N) time by exploiting representation results
from potential theory. In other environments, it is possible to use known regularity
properties of the off-diagonal blocks in conjunction with interpolation techniques to
obtain rough initial factorizations, and then recompress these to obtain factorizations
with close to optimal ranks [5, 31]. A particularly popular version of the “regularity
+ recompression” method is the so-called adaptive cross approximation technique,
which was initially proposed for H-matrices [2, 6, 24] but has recently been modified
to obtain a representation of a matrix in a format similar to the HSS [14].

The purpose of the present paper is to describe a fast and simple randomized
technique for computing an HSS representation of a matrix which can rapidly be
applied to a vector. The existence of such a technique means that the advantages
of the HSS format—very fast inversion and factorization algorithms in particular—
become available for any matrix that can currently be applied via the FMM, via
an H-matrix calculation, or by any other existing data-sparse format (provided, of
course, that the matrix is in principle compressible in the HSS sense). In order to
describe the cost of the algorithm precisely, we introduce some notation: We let A
be an N × N matrix whose off-diagonal blocks have maximal rank k (in the HSS
sense; see section 3), we let Tmult denote the time required to perform a matrix-vector
multiplication x �→ Ax or x �→ A∗ x, we let Trand denote the cost of constructing a

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1253

pseudorandom number from a normalized Gaussian distribution, we let Tentry denote
the computational cost of evaluating an individual entry of A, and we let Tflop denote
the cost of a floating point operation. The computational cost Ttotal of the algorithm
then satisfies

(1.2) Ttotal ∼ Tmult × 2 (k + p) + Trand ×N (k + p) + Tentry × 2N k + Tflop × cN k2,

where c is a small constant and where p is a tuning parameter that balances compu-
tational cost against the probability of not meeting the requested accuracy. Setting
p = 10 is often a good choice which leads to a “failure probability” of less that 10−9;
see Remark 1.1. In particular, if Tmult is O(N), then the method presented here is
O(N) as well.

Remark 1.1. The technique described in this paper utilizes a method for com-
puting approximate low-rank factorizations of matrices that is based on randomized
sampling [23, 26, 32]. As a consequence, there is in principle a nonzero risk that the
method may fail to produce full accuracy in any given realization of the algorithm.
This risk can be controlled by the user via the choice of the tuning parameter p in
(1.2); for details see section 2.3. Moreover, unlike some better known randomized
algorithms such as Monte Carlo, the accuracy of the output of the algorithms under
discussion here is typically very high; in the environment described in the present
paper, approximation errors of less than 10−10 are entirely typical.

Remark 1.2. There currently is little consistency in terminology in describing
different formats for representing “data-sparse” matrices. The property that we here
refer to as the “HSS” property is referred to by a range of different names; see, e.g.,
[31, 30, 33, 36]. It is closely related to the “H2-matrix” format [5, 3, 4, 22], which
is more restrictive than the H-matrix format and often admits O(N) algorithms.
The methods described in the present paper are directly applicable to the structures
described in [31, 30, 33] and, we believe, with minor modifications to the structures
in [3, 5, 4, 22].

Remark 1.3. Since the first version of the present paper [28] appeared, an alter-
native similar algorithm has been suggested [27]. The approach of [27] is more general
than the one presented here in that it accesses the matrix to be compressed only via
matrix-vector multiplications (no access to matrix entries is required). However, the
price to be paid is that the number of matrix-vector multiplications required is very
large; in the numerical examples reported in [27], several thousands of applications
of the matrix are needed. In contrast, we report in section 5 successful compression
via as few as 50 or 100 matrix-vector multiplications. Moreover, in our approach,
these matrix-vector multiplications can all be executed in parallel (as opposed to
consecutively).

2. Preliminaries. This section introduces established material that will be
needed to derive the new results in section 4. Specifically, we introduce our nota-
tion (section 2.1), describe a set of standard matrix factorizations (section 2.2), and
describe recently developed randomized techniques for computing a low-rank approx-
imation to a matrix (section 2.3).

2.1. Notation. Throughout the paper, we measure vectors in R
n using their

Euclidean norm, and matrices using the corresponding operator norm.
For an m × n matrix B and an integer k = 1, 2, . . . , min(m,n), we let σk(B),

or simply σk when it is obvious which matrix is being referred to, denote the kth
singular value of B. We assume that these are ordered so that σ1(B) ≥ σ2(B) ≥
· · · ≥ σmin(m,n)(B) ≥ 0. We say that a matrix B has “ε-rank” k if σk+1(B) ≤ ε.

1254 P. G. MARTINSSON

We use the notation of Golub and Van Loan [15] to specify submatrices. In
other words, if B is an m × n matrix with entries bij , and I = [i1, i2, . . . , ik] and
J = [j1, j2, . . . , j�] are two index vectors, then we let B(I, J) denote the k× � matrix

B(I, J) =

⎡
⎢⎢⎢⎣

bi1j1 bi1j2 · · · bi1j�
bi2j1 bi2j2 · · · bi2j�
...

...
...

bikj1 bikj2 · · · bikj�

⎤
⎥⎥⎥⎦ .

We let B(I, :) denote the matrix B(I, [1, 2, . . . , n]) and define B(:, J) analogously.
Given a set of matrices {Xj}�j=1, we define a block diagonal matrix via

diag(X1, X2, . . . , X�) =

⎡
⎢⎢⎢⎢⎢⎣

X1 0 0 · · · 0
0 X2 0 · · · 0
0 0 X3 · · · 0
...

...
...

...
0 0 0 · · · X�

⎤
⎥⎥⎥⎥⎥⎦
.

The transpose of B is denoted B∗, and we say that a matrix U is orthonormal if
its columns form an orthonormal set, so that U∗U = I.

2.2. Low-rank factorizations. We say that an m×n matrix B has exact rank
at most k if there exist an m× k matrix E and a k × n matrix F such that

B = E F.

In this paper, we will utilize three standard matrix factorizations. (In describing
them, we let B denote an m × n matrix of rank k.) The first is the so-called QR
factorization

B = QR,

where Q is an m× k orthonormal matrix and R is a k × n matrix with the property
that a permutation of its columns is upper triangular. The second is the singular
value decomposition (SVD)

B = U DV ∗,

where U and V are orthonormal matrices of sizes m×k and n×k, and the k×k matrix
D is a diagonal matrix whose diagonal entries are the singular values {σ1, σ2, . . . , σk}.
The third factorization is the so-called interpolative decomposition

B = B(:, J)X,

where J is a vector of indices marking k of the columns of B, and the k×n matrix X
has the k×k identity matrix as a submatrix and has the property that all its entries are
bounded by 1 in magnitude. In other words, the interpolative decomposition picks
k columns of B as a basis for the column space of B and expresses the remaining
columns in terms of the chosen ones.

The existence for all matrices of the QR factorization and the SVD is well known,
as are techniques for computing them accurately and stably; see, e.g., [15]. The
interpolatory decomposition is slightly less well known but it too always exists. It can
be viewed as a modification to the so-called rank-revealing QR factorization [7]. It can
be computed in a stable and accurate manner using the techniques of [18], as described
in [11]. (Practical algorithms for computing the interpolative decomposition produce

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1255

a matrix X whose elements slightly exceed 1 in magnitude.) In the pseudocode we
use to describe the methods of this paper, we refer to such algorithms as follows:

[Q,R] = qr(B), [U,D, V] = svd(B), [X, J] = interpolate(B).

In the applications under consideration in this paper, matrices that arise are
typically only approximately of low rank. Moreover, their approximate ranks are
generally not known a priori. As a consequence, the algorithms will typically invoke
versions of the factorization algorithms that take the computational accuracy ε as an
input parameter. For instance,

(2.1) [U,D, V] = svd(B, ε)

results in matrices U , D, and V of sizes m× k, n× k, and k × k such that

||U DV ∗ −B|| ≤ ε.

In this case, the number k is of course an output of the algorithm. The corresponding
functions for computing an approximate QR factorization or an interpolative decom-
position are denoted

(2.2) [Q,R] = qr(B, ε), [X, J] = interpolate(B, ε).

In our applications, it is not necessary for the factorizations to be of absolutely mini-
mal rank (i.e., the computed rank k is allowed to slightly exceed the theoretical ε-rank
of B).

2.3. Construction of low-rank approximations via randomized sam-
pling. Let B be a given m × n matrix that can accurately be approximated by a
matrix of rank k, and suppose that we seek to determine a matrix Q with orthonor-
mal columns (as few as possible) such that

||B −QQ∗B||

is small. In other words, we seek a matrix Q whose columns form an approximate
orthornomal basis (ON-basis) for the column space of B. (For now, we assume that the
rank k is known in advance; techniques for relaxing this assumption will be described
in Remark 2.3.) When we have access to a fast technique for computing matrix-vector
products x �→ B x, this task can efficiently be solved via the following randomized
procedure:

1. Pick a small integer p representing how much “oversampling” we do. (The
choice p = 10 is often good.)

2. Form an n× (k+ p) matrix Ω whose entries are drawn independently from a
normalized Gaussian distribution.

3. Form the product S = B Ω.
4. Construct a matrix Q whose columns form an ON-basis for the columns of S.

Note that each column of the “sample” matrix S is a random linear combination of
the columns of B. We would therefore expect the algorithm described to have a high
probability of producing an accurate result when p is a large number. It is perhaps
less obvious that there exists a lower bound for this probability that depends only on
p (not on m or n, or any other properties of B), and that it approaches 1 extremely

1256 P. G. MARTINSSON

rapidly as p increases. In fact, one can show that the basis Q determined by the
scheme above satisfies

(2.3) ||B −QQ∗ B|| ≤
[
1 + 11

√
k + p ·

√
min{m,n}

]
σk+1,

with probability at least 1− 6 · p−p; see [23, section 1.5].
Remark 2.1. The error bound (2.3) indicates that the error produced by the

randomized sampling procedure can be larger than the theoretically minimal error
σk+1 by a factor of 1 + 11

√
k + p ·

√
min{m,n}. This crude bound is typically very

pessimistic; for specific situations sharper bounds have been proven; see [23]. How-
ever, a loss of accuracy of one or two digits is often observed, and it is therefore
recommended that the matrix-vector multiplication be evaluated as accurately as
possible. We demonstrate in section 5 that HSS matrices of practical interest can be
approximated to ten digits of accuracy.

Remark 2.2. The task of computing a “thin” orthonormal matrix Q such that
||B−QQ∗B|| is small in an environment where B can rapidly be applied to a vector
is well studied. Krylov methods are often recommended, and these can significantly
outperform the randomized methods described in this section. In particular, for a fixed
number of matrix-vector products, the output of a Krylov method would typically
produce a smaller residual error ||B − QQ∗B|| than the randomized methods. A
Krylov method achieves high accuracy by picking the next vector to which B is to be
applied using information provided by previous matrix-vector products. A randomized
method is less accurate but provides much more flexibility, in that the vectors to which
B is applied can be picked in advance. This has at least two advantages:

1. The matrix-vector products can be computed in any order or all at once.
Significant speed-ups can result, since applying B to k vectors one after an-
other is often much slower than applying B to a matrix with k columns, even
though the two tasks are algebraically equivalent. (See Table 1 in section 6
for an illustration.)

2. The vectors to which B is applied do not depend on B itself. This means that
a fixed set of k vectors can be used to analyze a whole collection of low-rank
matrices.

The flexibility described in the two points above is crucial in the present context since
we are interested in approximating not a single low-rank matrix B, but a collection
of submatrices {Bi}i of a matrix A which can rapidly be applied to vectors.

Remark 2.3. The approximate rank k is rarely known in advance. In a situation
where a single matrix B of numerically low rank is to be analyzed, it is a straightfor-
ward matter to modify the algorithm described here to an algorithm that adaptively
determines the numerical rank by generating a sequence of samples from the column
space of B and simply stops when no more information is added [23]. In the applica-
tion we have in mind in this paper, however, the randomized scheme will be used in
such a way that a single random matrix will be used to create samples from a large
set of different matrices. In this case, we make an estimate k of the largest rank that
we could possibly encounter, and pick a random matrix with k + 10 columns. Then
as each off-diagonal block is processed, its true ε-rank will be revealed by executing
a rank-revealing QR factorization in “Step 4” of the algorithm listed above.

2.4. Computing interpolative decompositions via randomized sampling.
The randomized sampling technique described in section 2.3 is particularly effective
when used in conjunction with the interpolative decomposition. To illustrate, let us
suppose that B is an n × n matrix of rank k for which we can rapidly evaluate the

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1257

maps x �→ B x and x �→ B∗ x. Using the randomized sampling technique, we then
draw a random matrix Ω and construct matrices Scol = B Ω and Srow = B∗ Ω whose
columns span the column and the row spaces of B, respectively. If we seek to con-
struct a factorization of B without using the interpolative decomposition, we would
then orthonormalize the columns of Scol and Srow,

[Qcol, Y col] = qr(Scol) and [Qrow, Y row] = qr(Srow),

whence

(2.4) B = Qcol
(
(Qcol)∗ BQrow

)
(Qrow)∗.

The evaluation of (2.4) requires k matrix-vector multiplications involving the large
matrix B in order to compute the k×k matrix (Qcol)∗ BQrow. Using the interpolative
decomposition instead, we determine the k rows of Scol and Srow that span their
respective row spaces,

[Xcol, Jcol] = interpolate((Scol)∗) and [Xrow, J row] = interpolate((Srow)∗).

Then by simply extracting the k × k submatrix B(Jcol, J row) from B, we directly
obtain the factorization

(2.5) B = XcolB(Jcol, J row) (Xrow)∗.

More details (including an error analysis for the case when B has only approximate
rank k) can be found in section 5.2 of [23].

3. Hierarchically semiseparable matrices. In this section we rigorously de-
fine the concept of an HSS matrix and review some basic results that are slight
variations of techniques found in, e.g., [9, 30, 35, 36, 38]. Unfortunately, the notation
required can come across as quite daunting at first. (The same is true for essentially all
data-sparse formats that we know of.) We therefore start with an attempt to describe
the general ideas in section 3.1 before introducing the rigorous notational framework
in sections 3.2 and 3.3. In section 3.4, we describe a simple condition for checking
whether a matrix satisfies the HSS property. Finally we describe in section 3.5 how
the HSS representation of a matrix can be viewed as a telescoping factorization.

3.1. Intuition. The HSS property is essentially a condition that the off-diagonal
blocks of a matrix should have low rank, combined with a condition that the factors
used to represent the off-diagonal blocks satisfy certain recursive relations that make
them inexpensive to store and to apply.

To illustrate, suppose that a matrix A has been tesselated as shown in Figure 3.1.
Then the first condition is that there exists a fixed (small) integer k such that every
off-diagonal block in the tessellation should have rank at most k. When this condition
holds, every off-diagonal block Ai,j admits a factorization

Ai,j = Ubig
i A′

i,j ,

where Ubig
i is a matrix with k columns that form a basis for the range of Ai,j . The

second condition is now that all the “basis matrices” Ubig
i can be expressed hierar-

chically. Consider, for instance, the matrix A2,3. The row indices that form A2,3 are

1258 P. G. MARTINSSON

A =

A2,3

A3,2

A4,5

A5,4

A6,7

A7,6

D8 A8↪9

A9,8 D9

D10 A10,11

A11,10 D11

D12 A12,13

A13,12 D13

D14 A14,15

A15,14 D15

Fig. 3.1. A matrix A tesselated in accordance with the tree in Figure 3.2.

Level 3

Level 2

Level 1

Level 0 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fig. 3.2. Numbering of nodes in a fully populated binary tree with L = 3 levels.

the union of the row indices that form A4,5 and A5,4. We therefore require that there
exist a 2k × k matrix U2 such that

(3.1) Ubig
2 =

[
Ubig
4 0

0 Ubig
5

]
U2.

The point is that if Ubig
4 and Ubig

5 have been computed, then we can express Ubig
2 by

storing only the small matrix U2. This process will be continued recursively. Requiring
analogously that Ubig

4 and Ubig
5 satisfy

(3.2) Ubig
4 =

[
Ubig
8 0

0 Ubig
9

]
U4 and Ubig

5 =

[
Ubig
10 0

0 Ubig
11

]
U5,

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1259

we find by combining (3.1) with (3.2) that

Ubig
2 =

[
Ubig
4 0

0 Ubig
5

]
U2 =

⎡
⎢⎢⎢⎣

Ubig
8 0 0 0

0 Ubig
9 0 0

0 0 Ubig
10 0

0 0 0 Ubig
11

⎤
⎥⎥⎥⎦
[

U4 0
0 U5

]
U2.

The end result is that the only “big” basis matrices that actually need to be computed
and stored are those for the smallest off-diagonal blocks; all other basis matrices are
represented by storing only a small 2k × k matrix.

To turn this informal discussion into a rigorous definition of the HSS property for
an N ×N matrix A, we introduce in section 3.2 a tree structure on the index vector
[1, 2, . . . , N] and define in section 3.3 a tessellation of A based on the tree structure.
We can then formally introduce the basis matrices for each off-diagonal block, and
formulate a hierarchical condition that these basis matrices must satisfy.

Remark 3.1. In our discussion of HSS matrices, we assume that the off-diagonal
blocks have exact rank k. In the matrices encountered in practice, it is typically the
case that the rank of the off-diagonal blocks is k up to some finite computational
tolerance ε. Truncating the actual matrix to its rank-k HSS approximation does not
in our experience lead to any loss of accuracy beyond the specified tolerance ε.

3.2. Tree structure. The HSS representation of an N × N matrix A is given
with respect to a specific hierarchical partitioning of the index vector [1, 2, . . . , N].
To keep the presentation simple, we restrict attention to binary trees in which all
levels are fully populated, and in which all nodes on a given level contain roughly the
same number of indices. We number the nodes as illustrated for a tree with L = 3
levels in Figure 3.2. We define the terms children, parent, and sibling in the natural
way; for instance, the children of node 3 are the nodes 6 and 7, and the nodes 6 and
7 form a sibling pair. The childless nodes are called leaves.

With each node τ , we associate an index vector Iτ that forms a subset of I. We set
I1 = I, and form I2 and I3 by splitting I1 into halves. We form I4 and I5 by splitting
I2 into halves, etc. The cutting in half continues until we obtain index vectors with
no more than a fixed number, say 50, of entries. For instance, if N = 400, we get the
following index vectors:

Level 0: I1 = I = [1, 2, . . . , 400],
Level 1: I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400],
Level 2: I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . . , I7 = [301, 302, . . . , 400],
Level 3: I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . . , I15 = [351, 352, . . . , 400].

The tree T is now the set of all index vectors, T = {I1, I2, . . . , I2L+1−1}. Finally, we
note that if we allow at most, say, 50 nodes in the index vectors for the leaves, then
L satisfies

L ≈ 2 log2(N/50).

Remark 3.2. The HSS format can handle more general tree structures than the
simplistic one used here. It is permissible to split a node into more than two children if
desirable, to distribute the points in an index set unevenly among its children, to split
only some nodes on a given level, etc. This flexibility is useful when A approximates a
boundary integral operator since in this case the optimal way of organizing the index
vector into a tree structure is determined by the spatial geometry of the boundary
points.

1260 P. G. MARTINSSON

3.3. Basis matrices. The index vectors in a tree T define submatrices of A.
For any node τ , we define the corresponding diagonal block via

Dτ = A(Iτ , Iτ).

For any sibling pair ν1 and ν2, we define the corresponding off-diagonal blocks via

Aν1,ν2 = A(Iν1 , Iν2) and Aν2,ν1 = A(Iν2 , Iν1).

A tessellation of A is formed by the collection of all off-diagonal blocks Aν1,ν2 along
with the basis blocks Dτ for all leaf nodes τ , as illustrated in Figure 3.1.

The matrix A is now an HSS matrix with respect to the tree T if there exists a
fixed integer k (called the “HSS-rank”) such that the following hold:
Condition 1. For each sibling pair {ν1, ν2}, the off-diagonal block Aν1,ν2 has rank

at most k. We factor the blocks

(3.3) Aν1,ν2 = Ubig
ν1 Bν1,ν2 (V

big
ν2)∗ and Aν2,ν1 = Ubig

ν2 Bν2,ν1 (V
big
ν1)∗,

where Ubig
νj and V big

νj are matrices with k columns each, and Bν1,ν2 and Bν2,ν1

are k × k matrices.
Condition 2. The basis matrices Ubig

τ and V big
τ can be represented hierarchically.

Specifically, for any nonleaf node τ with children ν1 and ν2, there must exist
2k × k matrices Uτ and Vτ such that

(3.4) Ubig
τ =

[
Ubig
ν1 0
0 Ubig

ν2

]
Uτ and V big

τ =

[
V big
ν1 0
0 V big

ν2

]
Vτ .

To illustrate the notation, we note that if τ is a nonleaf node with children ν1
and ν2,

Dτ =

[
Dν1 Aν1,ν2

Aν2,ν1 Dν2

]
=

[
Dν1 Ubig

ν1 Bν1,ν2 (V
big
ν2)∗

Ubig
ν2 Bν2,ν1 (V

big
ν1)∗ Dν2

]
.

Observing that for a leaf node τ the basis matrices Ubig
τ and V big

τ are in fact not
big, we define

For any leaf node τ : Uτ = Ubig
τ , Vτ = V big

τ .

Then an HSS matrix A is completely described if
• for every leaf node τ , we are given the diagonal matrices Dτ ;
• for every node τ , we are given the small basis matrices Uτ and Vτ ;
• for every sibling pair {ν1, ν2}, we are given the k × k matrices Bν1,ν2 and
Bν2,ν1 .

A scheme for evaluating the matrix-vector product x �→ Ax from these factors in
O(N k) flops is given as Algorithm 1.

Remark 3.3. For notational simplicity, we have described only the case where all
HSS blocks are approximated by factorizations of the same rank k. In practice, it is
a simple matter to implement algorithms that use variable ranks.

Remark 3.4. It is common to require the matrices Uτ and Vτ that arise in an
HSS factorization of a given matrix to have orthonormal columns. We have found it
convenient to relax this assumption and allow the use of other well-conditioned bases.
In particular, the use of interpolative decompositions (as described in section 2.2) is
essential to the performance of the compression technique described in section 4.1.
A simple algorithm for converting a factorization based on interpolative bases to one
based on orthonormal bases is described in section 4.2.

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1261

Algorithm 1.

Given all factors Uτ , Vτ , Bν1,ν2 , and Dτ of an HSS matrix A, and given a
vector x, this scheme computes the product b = Ax.

(1) For every leaf node τ , calculate x̃τ = V ∗
τ x(Iτ).

(2) Looping over all nonleaf nodes τ , from finer to coarser, calculate

x̃τ = V ∗
τ

[
x̃ν1

x̃ν2

]
,

where ν1 and ν2 are the children of τ .

(3) Set b̃τ = 0 for the root node τ .

(4) Looping over all nonleaf nodes τ , from coarser to finer, calculate

[
b̃ν1
b̃ν2

]
=

[
0 Bν1,ν2

Bν2,ν1 0

] [
x̃ν1

x̃ν2

]
+ Uτ b̃τ ,

where ν1 and ν2 are the children of τ .

(5) For every leaf node τ , calculate b(Iτ) = Uτ b̃τ +Dτ x(Iτ).

3.4. Construction of the basis matrices. The definition of the HSS property
given in section 3.3 involves the existence of a set of basis matrices satisfying certain
recursive relations. It does not directly provide a means of testing whether such
matrices exist. In this section we provide a directly verifiable criterion that also leads
to a simple (but expensive) technique for computing the basis matrices.

We first define what are called HSS row blocks and HSS column blocks. To this
end, let � denote a level of the tree, and let {τ1, τ2, . . . , τq} denote all nodes on level
�. Then let D(�) denote the N ×N matrix with the matrices {Dτj}

q
j=1 as its diagonal

blocks,

(3.5) D(�) = diag(Dτ1 , Dτ2 , . . . , Dτq}.

For a node τ on level �, we now define the corresponding HSS row block Arow
τ and

HSS column block Acol
τ by

Arow
τ = A(Iτ , :)−D(�)(Iτ , :) and Acol

τ = A(:, Iτ)−D(�)(:, Iτ).

These definitions are illustrated in Figure 3.3.
The following theorem provides a simple test to see whether a matrix A is HSS,

and also furnishes a straightforward (but expensive) technique for computing all the
basis matrices.

Theorem 3.1. Let T be a tree on the indices 1, 2, . . . , N , and let A be an N×N
matrix. If every HSS row block Arow

τ and every HSS column block Acol
τ of A has rank

at most k, then A is an HSS matrix with respect to T with HSS-rank at most k.
The basis matrices Ubig

τ and V big
τ can be computed via

(3.6) [Ubig
τ , ·] = qr(Arow

τ) and [V big
τ , ·] = qr((Acol

τ)∗).

1262 P. G. MARTINSSON

)c()b()a(

Fig. 3.3. (a) The matrix A − D(3) with nonzero parts shaded. The HSS row block Arow
13 is

marked with a thick border. (b) The matrix A−D(2) with Arow
6 marked. (c) The matrix A−D(1)

with Arow
3 marked.

Once the big basis matrices have been computed for all blocks, the small ones can
easily be constructed. This approach requires O(N2 log(N) k) operations to compute
a representation of A as an HSS matrix. A more efficient scheme computes the
big basis matrices via (3.6) for the leaf nodes only. Then information from the leaf
computation is recycled to directly compute the small basis matrices Uτ and Vτ , at a
total cost of O(N2 k) operations.

3.5. Telescoping factorization. An HSS matrix A can be expressed in terms
of the matrices Dτ , Uτ , Vτ , and Bν1,ν2 as a telescoping factorization. To demonstrate,
we introduce for each level � = 1, 2, . . . , L the block-diagonal matrices

U (�) = diag(Uτ1 , Uτ2 , . . . , Uτq) and V (�) = diag(Vτ1 , Vτ2 , . . . , Vτq),

where τ1, τ2, . . . , τq is a list of all nodes on level �. Moreover, we define for each
nonleaf node τ the 2k × 2k matrices

Bτ =

[
0 Bν1,ν2

Bν2,ν1 0

]
,

where ν1 and ν2 are the children of τ , and set for � = 0, 1, . . . , L− 1

B(�) = diag(Bτ1 , Bτ2 , . . . , Bτq).

Then A can be expressed hierarchically via the relations

A(0) = B(0),(3.7)

A(�) = U (�)A(�−1) (V (�))∗ +B(�) for � = 1, 2, . . . , L− 1,(3.8)

A = U (L)A(L−1) (V (L))∗ +D(L),(3.9)

where D(L) is defined via (3.5). (The matrices A(�) defined by (3.7) and (3.8) satisfy
A(�) = A − D(�).) Rolling out the recursion, we get for, say, L = 3 the telescoping
factorization

(3.10) A = U (3)
(
U (2)

(
U (1) B(0) V (1)∗ +B(1)

)
V (2)∗ +B(2)

)
V (3)∗ +D(3).

The block structure of the formula (3.10) is shown in Figure 3.4. In practice, the
sparsity pattern of the blocks is typically slightly better than that shown in the fig-
ure. When interpolative decompositions are used, each of the diagonal blocks in the

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1263

U (3) (U (2) (U (1) B(0) V (1)∗
) +B(1)) V (2)∗

+ B(2)) V (3)∗
+ D(3)

Fig. 3.4. Block structure of (3.10).

matrices U (�) and V (�) contains an identity matrix. When orthonormal bases are
used, these can be chosen in such a way that the blocks in the B(�) matrices are all
diagonal.

4. Fast computation of HSS approximations. The straightforward tech-
nique for computing the HSS factorization of a matrix based on Theorem 3.1 requires
that all HSS blocks associated with leaf nodes be formed and then subjected to dense
linear algebraic operations. This approach requires at least O(N2 k) algebraic opera-
tions to factorize an N × N matrix of HSS rank k. In this section, we describe how
the randomized sampling techniques described in section 2.3 can be used to reduce
this cost to O(N k2).

The fast technique relies crucially on the use of the interpolative decompositions
described in section 2.2 in the HSS factorization. The advantage is that the matrices
Bν1,ν2 are then submatrices of the original matrix A and can therefore be constructed
directly without a need for projecting the larger blocks onto the bases chosen; cf. sec-
tion 2.4.

Section 4.1 describes a scheme for rapidly computing the HSS factorization of
a symmetric matrix. The scheme described in section 4.1 results in a factorization
based on interpolative bases, and the blocks Bν1,ν2 are submatrices of the original
matrix; section 4.2 describes how such a factorization can be converted to one in
which the bases for the HSS blocks are orthonormal and the blocks Bν1,ν2 are diagonal.
Section 4.3 describes how to extend the methods to nonsymmetric matrices.

4.1. A scheme for computing an HSS factorization of a symmetric ma-
trix. Let A be an N × N symmetric HSS matrix that has HSS-rank k. Suppose
further that

(a) matrix-vector products x �→ Ax can be evaluated at a cost Tmult,
(b) individual entries of A can be evaluated at a cost Tentry.

In this section, we describe a scheme for computing an HSS factorization of A in time

Ttotal ∼ Tmult × (k + 10) + Trand ×N (k + 10) + Tentry × 2N k + Tflop × cN k2,

where Trand is the time required to generate a random number, Tflop is the time
required for a floating point operation, and c is a small number that does not depend
on N or k.

The core idea of the method is to construct an N × (k + 10) random matrix Ω,
and then construct, for each level �, the sample matrices

S(�) =
(
A−D(�)

)
Ω

via a procedure to be described. Then, for any cell τ on level �,

S(�)(Iτ , :) = Arow
τ Ω,

1264 P. G. MARTINSSON

and since Arow
τ has rank k, the columns of S(�)(Iτ , :) span the column space of Arow

τ

with high probability. We can then construct a basis for the column space of the large
matrix Arow

τ by analyzing the small matrix S(�)(Iτ , :).
What makes the procedure fast is that the sample matrices S(�) can be constructed

by means of an O(N) process from the result of applying the entire matrix A to Ω,

S = AΩ.

At the finest level, � = L, we directly obtain S(L) from S by simply subtracting the
contribution from the diagonal blocks of A,

(4.1) S(L) = S −D(L) Ω.

Since D(L) is block diagonal with small blocks, (4.1) can be evaluated cheaply. To
proceed to the next coarser level, � = L− 1, we observe that

S(L−1) = (A−D(L−1))Ω = (A−D(L))Ω− (D(L−1) −D(L))Ω(4.2)

= S(L) − (D(L−1) −D(L))Ω.

We observe that (D(L−1) −D(L)) has only 2L nonzero blocks. The pattern of these
blocks is illustrated for L = 3 below:

Each of these blocks was compressed in the computation at level L, so (4.2) can also
be evaluated rapidly. The algorithm then proceeds up towards coarser levels via the
formula

S(�−1) = S(�) − (D(�−1) −D(�))Ω,

which can be evaluated rapidly since the blocks of (D(�−1) −D(�)) have at this point
been compressed.

The condition that the bases be “nested” in the sense of formula (3.4) can conve-
niently be enforced by using the interpolative decompositions described in section 2.2:
At the finest level, we pick k rows of each HSS row block that span its row space. At
the next coarser level, we pick in each HSS row block k rows that span its row space
out of the 2k rows that span its two children. By proceeding analogously throughout
the upward pass, (3.4) will be satisfied. The k rows that span the row space of Arow

τ

are kept in the index vector Ĩτ .
The use of interpolative decompositions has the additional benefit that we do

not need to form the entire matrices S(�) when � < L. Instead, we work with the
submatrices formed by keeping only the rows of S(�) corresponding to the spanning
rows at that step.

A complete description of the methods is given as Algorithm 2.
Remark 4.1. For simplicity, Algorithm 2 is described for the case where the off-

diagonal blocks of A have exact rank at most k, and where the number k is known in
advance. In actual applications, one typically is given a matrix A whose off-diagonal

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1265

Algorithm 2. Computing the HSS factorization of a symmetric matrix.

Input: A fast means of computing matrix-vector products x �→ Ax.
A method for computing individual entries of A.
An upper bound for the HSS-rank k of A.
A tree T on the index vector [1, 2, . . . , N].

Output: Matrices Uτ , Bν1,ν2 , Dτ that form an HSS factorization of A.
(Note that Vτ = Uτ for a symmetric matrix.)

Generate an N × (k + 10) Gaussian random matrix Ω.
Evaluate S = AΩ using the fast matrix-vector multiplier.
loop over levels, finer to coarser, � = L, L− 1, . . . , 2, 1

loop over all nodes τ on level �
if τ is a leaf node, then

Iloc = Iτ
Ωloc = Ω(Iτ , :)
Sloc = S(Iτ , :)− A(Iτ , Iτ)Ωloc

else
Let ν1 and ν2 be the two children of τ .

Iloc = [Ĩν1 , Ĩν2]

Ωloc =

[
Ων1

Ων2

]

Sloc =

[
Sν1 −A(Ĩν1 , Ĩν2)Ων2

Sν2 −A(Ĩν2 , Ĩν1)Ων1

]

end if
[Uτ , Jτ] = interpolate(S∗

loc)
Ωτ = U∗

τ Ωloc

Sτ = Sloc(Jτ , :)

Ĩτ = Iloc(Jτ)
end loop

end loop
For all leaf nodes τ , set Dτ = A(Iτ , Iτ).

For all sibling pairs {ν1, ν2}, set Bν1,ν2 = A(Ĩν1 , Ĩν2).

blocks are not necessarily rank-deficient in an exact sense, but can to high accuracy
be approximated by low-rank matrices. In this case, Algorithm 2 needs to be modified
slightly to take as an input the computational accuracy ε instead of the rank k, and
the line

[Uτ , Jτ] = interpolate(S∗
loc)

needs to be replaced by the line

[Uτ , Jτ] = interpolate(S∗
loc, ε).

This directly leads to a variable-rank algorithm that is typically far more efficient
than the fixed-rank algorithm described.

4.2. Recompression into orthonormal basis functions. The output of Al-
gorithm 2 is an HSS representation of a matrix in which interpolative bases are used.

1266 P. G. MARTINSSON

It is sometimes desirable to convert this representation to one using orthonormal bases
(cf. Remark 3.4). In this section, we describe a technique for doing so that is similar
to a technique for sequentially semiseparable matrices reported in [13] and a technique
for HSS matrices reported in [9]. To be precise, suppose that matrices Uτ , Dτ , and
Bν1,ν2 in an HSS factorization of a symmetric matrix have already been generated.
(These may have been generated by Algorithm 2, or by some other means. All that
matters is that A can be factored as specified by (3.7), (3.8), (3.9).) The method
described in this section produces new matrices Unew

τ and Bnew
ν1,ν2 with the property

that each Unew
τ has orthonormal columns, and each Bnew

ν1,ν2 is diagonal.
The orthonormalization procedure works hierarchically, starting at the finest level

and working upwards. At the finest level, it loops over all sibling pairs {ν1, ν2}. It
orthonormalizes the basis matrices Uν1 and Uν2 by computing their QR factorizations,

[W1, R1] = qr(Uν1) and [W2, R2] = qr(Uν2),

so that

Uν1 = W1 R1 and Uν2 = W2 R2,

and W1 and W2 have orthonormal columns. The matrices R1 and R2 are then used
to update the diagonal block Bν1,ν2 to reflect the change in basis vectors,

B̃12 = R1 Bν1,ν2 R
∗
2.

Then B̃12 is diagonalized via an SVD,

B̃12 = W̃1 B
new
ν1,ν2 W̃

∗
2 .

The new bases for ν1 and ν2 are constructed by updating W1 and W2 to reflect the
diagonalization of B̃12,

Unew
ν1 = W1 W̃1 and Unew

ν2 = W2 W̃2.

Finally, the basis vectors for the parent τ of ν1 and ν2 must be updated to reflect the
change in bases at the finer level,

Uτ ←
[

W̃ ∗
1 R1 0

0 W̃ ∗
2 R2

]
Uτ .

Once the finest level has been processed, move up to the next coarser one and
proceed analogously. A complete description of the recompression scheme is given as
Algorithm 3.

4.3. Nonsymmetric matrices. The extension of Algorithms 2 and 3 to the
case of nonsymmetric matrices is conceptually straightforward but requires the in-
troduction of more notation. In Algorithm 2, we construct a set of sample matrices
{Sτ} with the property that the columns of each Sτ span the column space of the
corresponding HSS row block Arow

τ . Since A is in that case symmetric, the columns
of Sτ automatically span the row space of Acol

τ as well. For nonsymmetric matrices,
we need to construct different sample matrices Srow

τ and Scol
τ whose columns span the

column space of Arow
τ and the row space of Acol

τ , respectively. Note that in practice,
we work only with the subsets of all these matrices formed by the respective spanning
rows and columns; in the nonsymmetric case, these may be different. The algorithm is
given in full as Algorithm 4. The generalization of the orthonormalization technique
in Algorithm 3 is entirely analogous.

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1267

Algorithm 3. Orthonormalizing an HSS factorization.

Input: The matrices Uτ , Bν1,ν2 , Dτ in an HSS factorization of a symmetric
matrix A.

Output: Matrices Unew
τ , Bnew

ν1,ν2 , and Dτ that form an HSS factorization of A such
that all Unew

τ have orthonormal columns and all Bnew
ν1,ν2 are diagonal.

(The matrices Dτ remain unchanged.)

Set U tmp
τ = Uτ for all leaf nodes τ .

loop over levels, finer to coarser, � = L− 1, L− 2, . . . , 0
loop over all nodes τ on level �

Let ν1 and ν2 denote the two children of τ .
[W1, R1] = qr(U tmp

ν1)
[W2, R2] = qr(U tmp

ν2)

[W̃1, B
new
ν1,ν2 , W̃2] = svd(R1 Bν1,ν2 R

∗
2)

Unew
ν1 = W1 W̃1

Unew
ν2 = W2 W̃2

U tmp
τ =

[
W̃ ∗

1 R1 0

0 W̃ ∗
2 R2

]
Uτ

end loop
end loop

Remark: In practice, we let the matrices U tmp
τ and Unew

τ simply overwrite Uτ .

5. Numerical examples. In this section, we demonstrate the performance of
the techniques described in section 4 by applying them to matrices arising from the
discretization of two boundary integral operators associated with Laplace’s equation
in two dimensions. The purpose of the experiments is (1) to investigate how the
computational time of Algorithms 2 and 4 depends on problem size, (2) to see to
what extent local errors aggregate, and (3) to compare the speeds of Algorithms 2
and 4 to the speed of the classical FMM. All methods were implemented in Matlab

and run on a desktop PC with a 3.2GHz Pentium IV processor and 2GB of RAM.

5.1. Model problems. The matrices investigated are discrete approximations
of the boundary integral operator

(5.1) [Tu](x) = αu(x) +

∫
Γ

K(x, y)u(y) ds(y), x ∈ Γ,

where Γ is the contour shown in Figure 5.1 and α and K are chosen as either one of
the following two options:

α = 0 and K(x, y) = log |x− y| (the “single layer” kernel),

(5.2)

α = 1/2 and K(x, y) =
(
n(y) · (x− y)

)
/|x− y|2 (the “double layer” kernel).

(5.3)

For y ∈ Γ, n(y) denotes the unit normal of Γ at y. The single layer operator was
discretized via the trapezoidal rule with a Kapur–Rokhlin [25] end-point modification
of the sixth order for handling the singularity in the kernel k(x, y) as y approaches

1268 P. G. MARTINSSON

Algorithm 4. Computing the HSS factorization of a nonsymmetric
matrix.

Input: A fast means of computing matrix-vector products x �→ Ax and x �→ A∗ x.
A method for computing individual entries of A.
An upper bound for the HSS-rank k of A.
A tree T on the index vector [1, 2, . . . , N].

Output: Matrices Uτ , Vτ , Bν1,ν2 , Dτ that form an HSS factorization of A.

Generate two N × (k + 10) Gaussian random matrices Rrow and Rcol.
Evaluate Srow = A∗ Rrow and Scol = ARcol using the fast matrix-vector multiplier.
loop over levels, finer to coarser, � = L, L− 1, . . . , 1

loop over all nodes τ on level �
if τ is a leaf node, then

Irowloc = Iτ Icolloc = Iτ
Rrow

loc = R(Iτ , :) Rcol
loc = R(Iτ , :)

Srow
loc = Srow(Iτ , :)−A(Iτ , Iτ)R

row
loc Scol

loc = Scol(Iτ , :)−A(Iτ , Iτ)
∗ Rcol

loc

else
Let ν1 and ν2 be the two children of τ .

Irowloc = [Ĩrowν1 , Ĩrowν2] Icolloc = [Ĩcolν1 , Ĩcolν2]

Rrow
loc =

[
Rrow

ν1
Rrow

ν2

]
Rcol

loc =

[
Rcol

ν1
Rcol

ν2

]

Srow
loc =

[
Srow
ν1 −A(Ĩrowν1 , Ĩcolν2)Rrow

ν2

Srow
ν2 −A(Ĩrowν2 , Ĩcolν1)Rrow

ν1

]
Scol
loc =

[
Scol
ν1 − A(Ĩrowν1 , Ĩcolν2)Rcol

ν2

Scol
ν2 − A(Ĩrowν2 , Ĩcolν1)Rcol

ν1

]

end if
[U row

τ , J row
τ] = interpolate((Srow

loc)∗) [U col
τ , Jcol

τ] = interpolate((Scol
loc)

∗)
Rrow

τ = (U col
τ)∗ Rrow

loc Rcol
τ = (U row

τ)∗ Rcol
loc

Srow
τ = Srow

loc (J row
τ , :) Scol

τ = Scol
loc(J

col
τ , :)

Ĩrowτ = Irowloc (J row
τ) Ĩcolτ = Icolloc(J

col
τ)

end loop
end loop
For all leaf nodes τ , set Dτ = A(Iτ , Iτ).

For all sibling pairs {ν1, ν2}, set Bν1,ν2 = A(Ĩrowν1 , Ĩcolν2).

Fig. 5.1. The contour Γ used in (5.1).

x, resulting in a symmetric coefficient matrix. The double layer operator was dis-
cretized using the plain trapezoidal rule, which in the present case has superalgebraic
convergence since the integrand is smooth.

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1269

Table 1

Time in seconds required by our implementation of the FMM to apply a matrix of size N ×N
to Nvec vectors simultaneously. The FMM uses multipole expansions of length 40, leading to about
15 accurate digits.

N = 800 N = 1600 N = 3200 N = 6400 N = 12 800 N = 25 600
Nvec = 1 1.328 1.891 2.875 4.531 7.343 13.266
Nvec = 50 1.500 2.266 3.578 5.969 10.531 19.375
Nvec = 100 1.656 2.563 4.110 7.062 12.844 23.891

Table 2

Results from experiments with Algorithms 2 and 4 when applied to the operator (5.1) with the
kernels (5.2) and (5.3). N is problem size, q is the number of columns in the random matrix Ω,
tcomp is the compression time in seconds, and e1 is the error, as defined by (5.4).

Single layer Double layer
q = 50 q = 100 q = 50 q = 100

N tcomp e1 tcomp e1 tcomp e1 tcomp e1
400 0.047 7.0e-13 0.094 2.2e-15 0.078 2.8e-13 0.172 3.6e-15
800 0.109 1.5e-11 0.219 8.3e-15 0.172 6.9e-13 0.390 1.0e-14

1600 0.235 3.3e-10 0.484 1.7e-14 0.343 5.7e-13 0.828 2.3e-14
3200 0.453 7.9e-10 1.000 5.2e-14 0.688 1.2e-12 1.719 4.2e-14
6400 0.906 7.0e-9 2.015 5.4e-14 1.422 4.0e-12 3.484 9.6e-14

12800 1.828 8.7e-9 4.031 1.0e-13 2.844 7.8e-12 7.046 4.7e-13
25600 3.765 5.8e-8 8.234 5.2e-13 5.719 1.1e-11 14.125 1.5e-12

5.2. The fast multipole method. In the numerical experiments reported here,
discrete approximations to the operator (5.1) were applied via the classical FMM of
Greengard and Rokhlin [16] with multipole expansions of order 40 to ensure close
to double precision accuracy. The cost required for applying an approximation of a
matrix A of size N×N to Nvec vectors simultaneously is reported in Table 1. We note
that the cost of applying A to Nvec = 50 vectors is only slightly higher than the cost
of applying A to a single vector. This illustrates a principal advantage of randomized
sampling methods over iterative methods (such as, e.g., Krylov), namely that the
matrix-vector multiplications can be executed in parallel rather than consecutively.

5.3. Fixed-rank experiments. In our first experiment, we executed Algo-
rithms 2 and 4 as stated, with a fixed preset number of sample vectors q of either 50
or 100. Algorithm 2 was applied to discretizations of the operator (5.1) with the sin-
gle layer kernel (5.2). For a sequence of problem sizes N we measured the time (wall
time) tcomp required to compress the matrix A via Algorithm 2, with the time for com-
puting the sample matrix S = AΩ via the FMM excluded (these times are reported
separately in Table 1). Once the compressed matrix Aapprox had been constructed,
we computed the error measure

(5.4) e1 =
||A−Aapprox||

||A||

via 20 steps of a power iteration with a random starting vector. Table 2 lists tcomp

and e1 for a variety of problem sizes N , and for the two levels of accuracy q = 50
and q = 100. Table 2 also gives the values of tcomp and e1 for an analogous set of
experiments in which Algorithm 4 was applied to the operator (5.1) with the double
layer kernel (5.3). Some observations:

1270 P. G. MARTINSSON

Table 3

Results from experiments with Algorithm 2 applied to the operator (5.1) with the kernel (5.2). N
is problem size, ε is the requested accuracy, and q is the number of columns in the sample matrices.
tcomp, tinv, and tapply are the computational times in seconds (as specified in section 5.4). The errors
reported are e1 = ||A−Aapprox||/||A|| and e2 = ||I−AG||, where G is the computed approximation
to A−1.

ε = 10−5, q = 50
N tcomp tinv tapply ||Aapprox|| ||G|| e1 e2

400 0.047 0.031 0.000 1.23 6.4e3 5.1e-6 2.9e-3
800 0.078 0.063 0.000 0.77 1.4e4 5.2e-6 2.4e-3

1600 0.140 0.141 0.016 0.57 1.6e5 1.1e-5 2.0e-2
3200 0.297 0.297 0.031 0.57 2.3e5 5.8e-6 1.2e-2
6400 0.625 0.625 0.062 0.57 1.1e6 2.9e-6 1.4e-2

12800 1.281 1.328 0.141 0.57 4.2e6 3.5e-6 8.0e-2
25600 2.625 2.875 0.265 0.57 5.6e6 6.5e-6 1.2e-1

ε = 10−10, q = 100
N tcomp tinv tapply ||Aapprox|| ||G|| e1 e2

400 0.047 0.047 0.000 1.24 6.4e3 3.3e-11 1.5e-8
800 0.109 0.094 0.000 0.75 1.4e4 4.3e-11 2.0e-8

1600 0.203 0.203 0.032 0.57 1.6e5 4.3e-11 1.2e-7
3200 0.422 0.406 0.031 0.57 2.3e5 4.3e-11 1.2e-5
6400 0.843 0.844 0.078 0.57 1.1e6 4.4e-11 4.6e-5

12800 1.687 1.703 0.141 0.57 4.2e6 3.3e-11 2.2e-4
25600 3.407 3.547 0.266 0.57 5.6e6 2.6e-11 2.0e-5

(1) The absolute times required for compression are small; e.g., a nonsymmetric
matrix of size 25 600× 25 600 is compressed to ten digits of accuracy in less
that 14 seconds.

(2) The claim that Algorithms 2 and 4 have linear complexity is supported.
(3) The time required by Algorithms 2 and 4 is comparable to the cost of applying

the matrix A via the FMM to a single vector.
(4) For the double layer potential, the error e1 grows only very slowly with prob-

lem size.
(5) For the single layer potential, the error e1 grows substantially with problem

size. A principal cause of this growth is that, in this case, the singular kernel
causes the HSS-ranks required for any fixed accuracy to grow with problem
size.

5.4. Adaptive rank determination. In view of the error growth described in
observations (4) and (5) above, we also implemented the modified version of Algo-
rithms 2 and 4 described in Remark 4.1. The interpolatory decomposition is now
executed to produce factorizations that satisfy a preset tolerance εloc. For the dou-
ble layer kernel, in which all HSS-blocks have roughly the same rank, using a fixed
tolerance εloc = ε for all blocks worked very well. For the single layer potential, in
which the rank of an HSS-block depends on which level it belongs to, we found that
a global tolerance of roughly ε was obtained when we required blocks on level � to be
compressed to accuracy ε� = ε · 10−0.5�. One set of experiments was executed with
ε = 10−5 and q = 50 sample columns, and a second set was executed with ε = 10−10

and q = 100 sample columns. The time required for compression tcomp, and the result-
ing error e1 (cf. (5.4)), are reported in Tables 3 and 4. (The tables provide additional
performance metrics that will be explained in section 5.5.) Two observations:

(1) By allowing the local rank to vary, the approximation error can be kept
constant across a broad range of problem sizes.

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1271

Table 4

Results from experiments with Algorithm 4 applied to the operator (5.1) with the kernel (5.3).
Notation as in Table 3.

ε = 10−5, q = 50
N tcomp tinv tapply ||Aapprox|| ||G|| e1 e2

400 0.047 0.031 0.000 1.04 3.6 2.6e-6 5.5e-6
800 0.094 0.031 0.016 1.04 3.6 3.1e-6 6.5e-6

1600 0.219 0.094 0.000 1.04 3.5 2.9e-6 6.3e-6
3200 0.406 0.140 0.016 1.04 3.5 2.6e-6 5.4e-6
6400 0.844 0.297 0.031 1.04 3.5 3.4e-6 7.6e-6

12800 1.688 0.578 0.062 1.04 3.6 3.6e-6 7.8e-6
25600 3.344 1.156 0.141 1.04 3.3 3.4e-6 7.3e-6

ε = 10−10, q = 100
N tcomp tinv tapply ||Aapprox|| ||G|| e1 e2

400 0.093 0.032 0.000 1.04 3.6 2.1e-11 4.5e-11
800 0.156 0.079 0.000 1.04 3.6 2.0e-11 4.4e-11

1600 0.297 0.109 0.016 1.04 3.6 1.5e-11 3.1e-11
3200 0.579 0.203 0.015 1.04 3.4 1.9e-11 4.0e-11
6400 1.094 0.344 0.047 1.04 3.6 2.5e-11 5.2e-11

12800 2.141 0.687 0.078 1.04 3.6 2.0e-11 4.2e-11
25600 4.093 1.266 0.141 1.04 3.6 3.4e-11 7.1e-11

(2) The algorithm with variable rank (reported in Tables 3 and 4) is faster than
that using fixed rank (reported in Table 2) at any comparable error.

Remark 5.1. The randomized compression algorithms that were employed in
section 5.3, as well as the experiments involving the double layer kernel in section 5.4,
were all executed “blindly” in the sense that no problem-specific knowledge was used
beyond a rough upper estimate of the numerical ranks of the off-diagonal blocks
(q = 50 is enough for intermediate accuracy, and q = 100 is enough for high accuracy).
The experiment involving the single layer kernel in section 5.4 is slightly different in
that it involved an informed choice of the tolerance to be used in the rank-revealing
QR factorizations. To obtain a blind method for a situation such as this, one can first
apply the fixed-rank approach used in section 5.3, and then follow up with a round
of rank reduction [37] in the computed HSS representation.

5.5. Inversion of the computed HSS representations. A motivation for
computing an HSS representation of a given matrix in a situation where a fast matrix-
vector multiplier such as the FMM is already available is that the HSS structure
admits a broader range of matrix operations to be performed. (As a general matter,
it is not known whether the FMM structure can be rapidly inverted, although some
intriguing preliminary results were reported in [34].) For instance, linear complexity
methods for inverting or computing an LU factorization of an HSS matrix are known
[8, 9, 12]. In this section, we illustrate how the compression scheme of this paper can
be combined with the inversion scheme of [30] to produce a fast direct solver for an
equation involving the integral operator (5.1). The particular method of [30] is exact
up to round-off errors and works best when the ranks used in the HSS representation
are close to the theoretically minimal ranks; we therefore applied it to the output of
the adaptive methods described in section 5.4.

In reporting the error of the direct solver, we let G denote the output of applying
the inversion scheme of [30] to the HSS representation computed by the randomized
compression algorithm. In other words, G is a data-sparse approximation of A−1,

G ≈ A−1.

1272 P. G. MARTINSSON

Since A−1 is not available we cannot readily compute the error ||A−1−G||. However,
we can bound the relative error in the inverse via

||A−1 −G||
||A−1|| =

||A−1
(
I −AG

)
||

||A−1|| ≤ ||I −AG||.

We therefore define the error measure

(5.5) e2 = ||I −AG||

and observe that it can be computed via a power iteration. The error e2 also provides
a useful bound on the residuals incurred when solving Ax = b. To see this, let xexact

denote the exact solution

(5.6) xexact = A−1 b,

and let xapprox denote the approximate solution constructed by the direct solver

(5.7) xapprox = Gb.

Then

||Axexact −Axapprox|| = ||b−AGb|| ≤ ||I −AG|| ||b|| = e2 ||b||.

The errors e1 and e2 are reported in Tables 3 and 4. The tables also provide
estimates of the quantities ||Aapprox|| and ||G|| (which together give an indication of
the condition number of A), as well as the times tinv required by the inversion and
tapply required for applying the inverse to a vector. Some observations:

(1) The inversion takes about the same amount of time as the compression; both
of these steps are significantly faster than the application of the matrix to a
single vector via the FMM.

(2) Once the inverse has been computed, the cost tapply to solve (5.6) via (5.7) is
far smaller than the cost of applying A via the FMM.

(3) In the experiments involving the double layer kernel (reported in Table 4) the
matrix A is well-conditioned, and the inversion step leads to almost no loss
of accuracy.

(4) In the experiments involving the single layer kernel (reported in Table 3) we
see significant loss of accuracy as the problem size increases. This loss of
accuracy appears to be due to the ill-conditioning of the coefficient matrix,
since e2/e1 grows at about the same rate as the ratio ||G||/||Aapprox||.

Remark 5.2. The approach taken here of solving a linear system by explicitly
computing an approximation to the inverse of the coefficient matrix is slightly unortho-
dox, and since the matrix inversion step is not unconditionally stable, the approach
is not intended as a general recommendation. To justify the use of explicit matrix
inversion, we note simply that for the specific context of solving boundary integral
equations of mathematical physics it has empirically been observed to perform well
[30]. Moreover, any inverse computed can be reliably verified, since the error bound
(5.5) is computable.

6. Concluding remarks. This paper presents a randomized algorithm for com-
puting a compressed representation of a given matrix A in the so-called hierarchically
semiseparable (HSS) format. The proposed algorithm requires that two functions be
provided:

COMPRESSION OF HSS MATRICES VIA RANDOMIZATION 1273

(F1) A fast means of evaluating matrix-vector products x �→ Ax and x �→ A∗ x.
(F2) A fast technique for computing individual entries of the matrix. Only the

construction of O(N) entries is required.
The point of the proposed method is that while many well-established techniques are
available for rapidly computing the matrix-vector product in F1 above (e.g., the FMM
[16], panel clustering [19], or the Barnes–Hut method [1]), much less is known about
how to rapidly compute the HSS representation of a matrix. Such a representation
allows a broad range of matrix operations (matrix inversion, matrix-matrix multiply,
LU factorization, etc.) to be performed efficiently.

Numerical examples were presented that indicate that the execution times of
the proposed algorithms scale linearly with problem size, with a small constant of
proportionality. Moreover, the numerical examples indicate that local errors do not
significantly propagate, and that for requested accuracies between 10−5 and 10−10,
the computed compressed representation is accurate to within the requested accuracy.

Acknowledgments. The initial version of this manuscript [28] was written while
the author was visiting the Institute for Pure and Applied Mathematics at UCLA
during their long program Mathematics of Knowledge and Search Engines in the fall
of 2007. The author gratefully acknowledges the many helpful suggestions made by
the anonymous referees during the review process.

REFERENCES

[1] J. Barnes and P. Hut, A hierarchical o(n logn) force-calculation algorithm, Nature, 324
(1986), pp. 446–449.

[2] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000),
pp. 565–589.

[3] S. Börm, H2-matrix arithmetics in linear complexity, Computing, 77 (2006), pp. 1–28.
[4] S. Börm, Construction of data-sparse H2-matrices by hierarchical compression, SIAM J. Com-

put., 31 (2009), pp. 1820–1839.
[5] S. Börm, Approximation of solution operators of elliptic partial differential equations by 〈 and

〈2-matrices, Numer. Math., 115 (2010), pp. 165–193.
[6] S. Börm and L. Grasedyck, Hybrid cross approximation of integral operators, Numer. Math.,

101 (2005), pp. 221–249.
[7] T.F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88–89 (1987), pp. 67–82.
[8] S. Chandrasekaran and M. Gu, Fast and stable algorithms for banded plus semiseparable

systems of linear equations, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 373–384.
[9] S. Chandrasekaran, M. Gu, X.S. Li, and J. Xia, Some Fast Algorithms for Hierarchically

Semiseparable Matrices, CAM report 08-24, UCLA/CAM, Los Angeles, 2008.
[10] S. Chandrasekaran, M. Gu, and W. Lyons, A fast adaptive solver for hierarchically semisep-

arable representations, Calcolo, 42 (2005), pp. 171–185.
[11] H. Cheng, Z. Gimbutas, P.G. Martinsson, and V. Rokhlin, On the compression of low rank

matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.
[12] P. Dewilde and S. Chandrasekaran, A hierarchical semi-separable Moore-Penrose equation

solver, in Wavelets, Multiscale Systems and Hypercomplex Analysis, Oper. Theory Adv.
Appl. 167, Birkhäuser, Basel, 2006, pp. 69–85.

[13] P.M. DeWilde and A.J. van der Veen, Time-varying Systems and Computations, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998.

[14] K. Frederix and M. Van Barel, Solving a large dense linear system by adaptive cross ap-
proximation, J. Comput. Appl. Math., 234 (2010), pp. 3181–3195.

[15] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins Stud. Math.
Sci., Johns Hopkins University Press, Baltimore, MD, 1996.

[16] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[17] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace
equation in three dimensions, in Acta Numer. 6, Cambridge University Press, Cambridge,
UK, 1997, pp. 229–269.

1274 P. G. MARTINSSON

[18] M. Gu and S.C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[19] W. Hackbusch, The panel clustering technique for the boundary element method (invited con-
tribution), in Boundary elements IX, Vol. 1 (Stuttgart, 1987), Comput. Mech., Southamp-
ton, 1987, pp. 463–474.

[20] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[21] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary element
method by panel clustering, Numer. Math., 54 (1989), pp. 463–491.

[22] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures on Applied
Mathematics, H.-J. Bungartz, R.H.W. Hoppe, C. Zenger, eds., Springer, Berlin, 2000,
pp. 9–29.

[23] N. Halko, P.G. Martinsson, and J.A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[24] D. Huybrechs, Multiscale and Hybrid Methods for the Solution of Oscillatory Integral Equa-
tions, Ph.D. thesis, Engineering Science, Katholieke Universiteit Leuven, Leuven, Belgium,
2006.

[25] S. Kapur and V. Rokhlin, High-order corrected trapezoidal quadrature rules for singular
functions, SIAM J. Numer. Anal., 34 (1997), pp. 1331–1356.

[26] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert, Randomized algo-
rithms for the low-rank approximation of matrices, Proc. Natl. Acad. Sci. USA, 104 (2007),
pp. 20167–20172.

[27] L. Lin, J. Lu, and L. Ying, Fast Construction of Hierarchical Matrix Representation from
Matrix-Vector Multiplication, preprint, 2010.

[28] P.G. Martinsson, A Fast Algorithm for Compressing a Matrix into a Data-Sparse Format
via Randomized Sampling, Technical report 2008; online as arXiv.org report 0806.2339.

[29] P.G. Martinsson, A fast direct solver for a class of elliptic partial differential equations, J.
Sci. Comput., 38 (2009), pp, 316–330.

[30] P.G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two
dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[31] P.G. Martinsson and V. Rokhlin, An accelerated kernel-independent fast multipole method
in one dimension, SIAM J. Sci. Comput., 29 (2007), pp. 1160–1178.

[32] P.G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the decomposi-
tion of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68.

[33] E. Michielssen, A. Boag, and W.C. Chew, Scattering from elongated objects: Direct solution
in O(N log2 N) operations, IEE Proc. Microw. Antennas Propag., 143 (1996), pp. 277–283.

[34] T. Pals, Multipole for Scattering Computations: Spectral Discretization, Stabilization, Fast
Solvers, Ph.D. thesis, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, 2004.

[35] Z. Sheng, P. Dewilde, and S. Chandrasekaran, Algorithms to solve hierarchically semi-
separable systems, in System Theory, The Schur Algorithm and Multidimensional Analysis,
Oper. Theory Adv. Appl. 176, Birkhäuser, Basel, 2007, pp. 255–294.

[36] P. Starr and V. Rokhlin, On the numerical solution of two-point boundary value problems.
II, Comm. Pure Appl. Math., 47 (1994), pp. 1117–1159.

[37] J. Xia, On the Complexity of Some Hierarchical Structured Matrix Algorithms, 2010, in prepa-
ration.

[38] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li, Superfast multifrontal method for large
structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–
1411.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

