
SIAM J. SCI. COMPUT. c© 2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. A2023–A2046

A DIRECT SOLVER WITH O(N) COMPLEXITY FOR VARIABLE
COEFFICIENT ELLIPTIC PDES DISCRETIZED VIA A

HIGH-ORDER COMPOSITE SPECTRAL COLLOCATION METHOD∗

A. GILLMAN† AND P. G. MARTINSSON‡

Abstract. A numerical method for solving elliptic PDEs with variable coefficients on two-
dimensional domains is presented. The method is based on high-order composite spectral approxi-
mations and is designed for problems with smooth solutions. The resulting system of linear equations
is solved using a direct (as opposed to iterative) solver that has optimal O(N) complexity for all
stages of the computation when applied to problems with nonoscillatory solutions such as the Laplace
and the Stokes equations. Numerical examples demonstrate that the scheme is capable of comput-
ing solutions with a relative accuracy of 10−10 or better for challenging problems such as highly
oscillatory Helmholtz problems and convection-dominated convection-diffusion equations. In terms
of speed, it is demonstrated that a problem with a nonoscillatory solution that was discretized using
108 nodes can be solved in 115 minutes on a personal workstation with two quad-core 3.3 GHz CPUs.
Since the solver is direct, and the “solution operator” fits in RAM, any solves beyond the first are
very fast. In the example with 108 unknowns, solves require only 30 seconds.

Key words. fast direct solver, high-order discretization, multidomain spectral method, nested
dissection, multifrontal method, structured matrix algebra, hierarchically block separable matrix,
reduction to interface, Dirichlet-to-Neumann operator, Poincaré–Steklov operator

AMS subject classification. 65N35

DOI. 10.1137/130918988

1. Introduction.

1.1. Problem formulation. The paper describes a numerical method with op-
timal O(N) complexity for solving boundary value problems of the form

(1)

{
Au(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

where Ω is a rectangle in the plane with boundary Γ, and where A is a coercive elliptic
partial differential operator

[Au](x) = −c11(x)[∂
2
1u](x)− 2c12(x)[∂1∂2u](x)− c22(x)[∂

2
2u](x)(2)

+ c1(x)[∂1u](x) + c2(x)[∂2u](x) + c(x)u(x).

The methodology is based on a high-order composite spectral discretization and can be
modified to handle a range of different domains, including curved ones. For problems
with smooth solutions, we demonstrate that the method can easily produce answers
with ten or more correct digits.

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 30,
2013; accepted for publication (in revised form) May 27, 2014; published electronically August 29,
2014. The work was supported by NSF awards DMS-0748488 and CDI-0941476, and by DARPA
award N66001-13-1-4050.

http://www.siam.org/journals/sisc/36-4/91898.html
†Department of Mathematics, Dartmouth College, Hanover, NH 03755 (adrianna.gillman@

dartmouth.edu).
‡Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309

(martinss@colorado.edu).

A2023

http://www.siam.org/journals/sisc/36-4/91898.html
mailto:adrianna.gillman@dartmouth.edu
mailto:adrianna.gillman@dartmouth.edu
mailto:martinss@colorado.edu

A2024 A. GILLMAN AND P. G. MARTINSSON

The proposed method is based on a direct solver which in a single sweep con-
structs an approximation to the solution operator of (1). This gives the solver sev-
eral advantages over established linear complexity methods based on iterative solvers
(e.g., GMRES or multigrid); perhaps, most importantly, the new method can solve
problems for which iterative methods converge slowly or not at all. The direct solver
has O(N) complexity for all stages of the computation. A key feature is that once the
solution operator has been built, solves can be executed extremely rapidly, making
the scheme excel when solving a sequence of equations with the same operator but
different boundary data.

1.2. Outline of solution procedure. The method in this paper is comprised
of three steps.

1. The domain is first tessellated into a hierarchical tree of rectangular patches.
For each patch on the finest level, a local “solution operator” is built using
a dense brute force calculation. The “solution operator” will be defined in
section 1.3; for now we simply note that it encodes all information about the
patch that is required to evaluate interactions with other patches.

2. The larger patches are processed in an upwards pass through the tree, where
each parent can be processed once its children have been processed. The
processing of a parent node consists of forming its solution operator by “gluing
together” the solution operators of its children.

3. Once the solution operators for all patches have been computed, a solution
to the PDE can be computed via a downwards pass through the tree. This
step is typically very fast.

1.3. Local solution operators. The “local solution operators” introduced in
section 1.2 take the form of discrete approximations to the Dirichlet-to-Neumann, or
“DtN,” maps. To explain what these maps do, first observe that for a given boundary
function f , the BVP (1) has a unique solution u (recall that we assume A to be
coercive). For x ∈ Γ, let g(x) = un(x) denote the normal derivative in the outwards
direction of u at x. The process for constructing the function g from f is linear, we
write it as

g = T f.

Or, equivalently,

T : u|Γ �→ un|Γ, where u satisfies Au = 0 in Ω.

From a mathematical perspective, the map T is a slightly unpleasant object; it
is a hypersingular integral operator whose kernel exhibits complicated behavior near
the corners of Γ. A key observation is that in the present context, these difficulties
can be ignored since we limit attention to functions that are smooth. In a sense, we
only need to accurately represent the projection of the “true” operator T onto a space
of smooth functions (that in particular do not have any corner singularities).

Concretely, given a square box Ωτ we represent a boundary potential u|Γ and a
boundary flux un|Γ via tabulation at a set of r tabulation points on each side. (For a
leaf box, we use r Gaussian nodes.) The DtN operator T τ is then represented simply
as a dense matrix Tτ of size 4r × 4r that maps tabulated boundary potentials to the
corresponding tabulated boundary fluxes.

1.4. Computational complexity. A straightforward implementation of the di-
rect solver outlined in sections 1.2 and 1.3 in which all solution operators Tτ are

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2025

treated as general dense matrices has asymptotic complexity O(N3/2) for the “build
stage” where the solution operators are constructed, and O(N logN) complexity for
the “solve stage” where the solution operator is applied for a given set of boundary
data [19]. This paper demonstrates that by exploiting internal structure in these
operators, they can be stored and manipulated efficiently, resulting in optimal O(N)
overall complexity.

To be precise, the internal structure exploited is that the off-diagonal blocks of
the dense solution operators can to high accuracy be approximated by matrices of
low rank. This property is a result of the fact that for a patch Ωτ , the matrix Tτ

is a discrete approximation of the continuum DtN operator T τ , which is an integral
operator whose kernel is smooth away from the diagonal.

Remark 1.1. The proposed solver can also handle noncoercive problems such
as the Helmholtz equation. If the equation is kept fixed while N is increased, O(N)
complexity is retained. (A slight complication arises in that the DtN operator does not
always exist, but this can be rectified by considering other Poincaré–Steklov operators,
such as, e.g., the impedance-to-impedance map; see [9].) However, in the context of
elliptic problems with oscillatory solutions, it is common to scale N to the wavelength
so that the number of discretization points per wavelength is fixed as N increases.
Our accelerated technique will in this situation lead to a practical speed-up, but will
have the same O(N3/2) asymptotic scaling as the basic method that does not use fast
operator algebra.

1.5. Prior work. The direct solver outlined in section 1.2 is an evolution of a
sequence of direct solvers for integral equations dating back to [20] and later [11, 10,
12, 3, 4]. The common idea is to build a global solution operator by splitting the
domain into a hierarchical tree of patches, build a local solution operator for each
“leaf” patch, and then build solution operators for larger patches via a hierarchical
merge procedure in a sweep over the tree from smaller to larger patches. In the
context of integral equations, the “solution operator” is a type of scattering matrix,
while in the present context, the solution operator is a DtN operator.

The direct solvers [20, 11, 10, 12, 3], designed for dense systems, are conceptually
related to earlier work on direct solvers for sparse systems arising from finite difference
and finite element discretizations of elliptic PDEs such as the classical nested dissec-
tion method of George [7, 13] and the multifrontal methods by Duff, Erisman, and
Reid [6]. Conceptually, these solvers can be viewed as hierarchical versions of the clas-
sical “static condensation” idea in finite element analysis [25]. These techniques typ-
ically require O(N3/2) operations to construct the LU-factorization of a sparse coeffi-
cient matrix arising from the discretization of an elliptic PDE on a planar domain, with
the dominant cost being the formation of Schur complements and LU-factorizations of
dense matrices of size up to O(N0.5)×O(N0.5). It was demonstrated in the last several
years that these dense matrices have internal structure that allows the direct solver to
be accelerated to linear or close to linear complexity; see, e.g., [26, 8, 16, 17, 22]. These
accelerated nested dissection methods are closely related to the fast direct solver pre-
sented in this manuscript, and served as an inspiration for our work. An important
difference is that the method in the present paper allows high-order discretizations to
be used without increasing the cost of the direct solver. To be technical, the solvers
in [26, 8, 16, 17, 22] are based on an underlying finite difference or finite element
discretization. High-order discretization in this context tends to lead to large frontal
matrices (since the “dividers” that partition the grid get wider as the order increases),
and consequently very high cost of the LU-factorization (see, e.g., Table 3).

A2026 A. GILLMAN AND P. G. MARTINSSON

1 2 3

4

5

6

7

8 9

10 11

12 13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Fig. 1. The square domain Ω is split into 4 × 4 leaf boxes. These are then gathered into a
binary tree of successively larger boxes as described in section 5.1. One possible enumeration of the
boxes in the tree is shown, but note that the only restriction is that if box τ is the parent of box σ,
then τ < σ.

Our discretization scheme is related to earlier work on spectral collocation meth-
ods on composite (“multidomain”) grids, such as, e.g., [15, 27], and, in particular,
Pfeiffer et al. [21]. For a detailed review of the similarities and differences, see [19].
The procedure is conceptually related to so-called “reduction to the interface” meth-
ods; see [14] and the references therein. These “interface” methods also use local
solution operators defined on boundaries (often referred to as “discrete Poincaré–
Steklov operators”) but typically discretize a variational problem instead of the PDE
directly.

1.6. Novelty of the proposed method. A solver with O(N3/2) complexity
based on the idea of hierarchical construction of DtN maps was previously described
in [19], which in turn is based on [18]. The principal contribution of the present
work is a technique that exploits internal structure in the dense matrices representing
DtN maps to improve on the computational complexity from O(N3/2) to O(N). The
acceleration technique was inspired by similar ideas presented in [26, 8, 16, 17, 22].

In addition to the improvement in complexity, the paper also describes a new
representation of the local solution operators that leads to cleaner implementation of
the direct solvers and allows greater flexibility in executing the leaf computation; see
Remark 3.1.

1.7. Outline of paper. Section 2 introduces the mesh of Gaussian nodes that
forms our basic computational grid. Sections 3, 4, and 5 describe a relatively simple
direct solver with O(N3/2) complexity. Sections 6, 7, and 8 describe how to improve
the asymptotic complexity of the direct solver from O(N3/2) to O(N) by exploiting
internal structure in certain dense matrices. Section 9 describes numerical examples
and section 10 summarizes the key findings.

2. Discretization. Partition the domain Ω into a collection of square (or possi-
bly rectangular) boxes, called leaf boxes. On the edges of each leaf, place q Gaussian
interpolation points. The size of the leaf boxes, and the parameter q should be chosen
so that any potential solution u of (1), as well as its first and second derivatives, can
be accurately interpolated from their values at these points (q = 21 is often a good
choice). Let {xk}Nk=1 denote the collection of interpolation points on all boundaries.

Next construct a binary tree on the collection of leaf boxes by hierarchically
merging them, making sure that all boxes on the same level are roughly of the same
size; cf. Figure 1. The boxes should be ordered so that if τ is a parent of a box σ,
then τ < σ. We also assume that the root of the tree (i.e., the full box Ω) has index
τ = 1. We let Ωτ denote the domain associated with box τ .

With each box τ , we define two index vectors Iτi and Iτe as follows:
Iτe A list of all exterior nodes of τ . In other words, k ∈ Iτe iff xk lies on the

boundary of Ωτ .

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2027

Iτi For a parent τ , Iτi is a list of all its interior nodes that are not interior nodes
of its children. For a leaf τ , Iτi is empty.

Let u ∈ R
N denote a vector holding approximations to the values of u of (1), in

other words,

u(k) ≈ u(xk).

Finally, let v ∈ R
N denote a vector holding approximations to the boundary fluxes of

the solution u of (1), in other words,

v(k) ≈
{
∂2u(xk), when xj lies on a horizontal edge,

∂1u(xk), when xj lies on a vertical edge.

Note the v(k) represents an outgoing flux on certain boxes and an incoming flux on
others. This is a deliberate choice to avoid problems with signs when matching fluxes
of touching boxes.

3. Constructing the Dirichlet-to-Neumann map for a leaf. This section
describes a spectral method for computing a discrete approximation to the DtN map
T τ associated with a leaf box Ωτ . In other words, if u is a solution of (1), we seek a
matrix Tτ of size 4q × 4q such that

(3) v(Iτe) ≈ Tτ u(Iτe).

Conceptually, we proceed as follows: Given a vector u(Iτe) of potential values tabulated
on the boundary of Ωτ , form for each side the unique polynomial of degree at most
q − 1 that interpolates the q specified values of u. This yields Dirichlet boundary
data on Ωτ in the form of four polynomials. Solve the restriction of (1) to Ωτ for
the specified boundary data using a spectral method on a local tensor product grid
of p× p Chebyshev nodes. The vector v(Iτe) is obtained by spectral differentiation of
the local solution, and then retabulating the boundary fluxes to the Gaussian nodes
in {xk}k∈Iτ

e
.

We give details of the construction in section 3.2, but as a preliminary step, we
first review a classical spectral collocation method for the local solve in section 3.1

Remark 3.1. Chebyshev nodes are ideal for the leaf computations, and it is in
principle also possible to use Chebyshev nodes to represent all boundary-to-boundary
“solution operators” such as, e.g., Tτ (indeed, this was the approach taken in the
first implementation of the proposed method [19]). However, there are at least two
substantial benefits to using Gaussian nodes that justify the trouble of retabulat-
ing the operators. First, the procedure for merging boundary operators defined for
neighboring boxes is much cleaner and involves less bookkeeping since the Gaussian
nodes do not include the corner nodes. (Contrast section 4 of [19] with section 4.)
Second, and more importantly, the use of the Gaussian nodes allows for interpolation
between different discretizations. Thus the method can easily be extended to have
local refinement when necessary; see Remark 5.2.

3.1. Spectral discretization. Let Ωτ denote a rectangular subset of Ω with
boundary Γτ , and consider the local Dirichlet problem

[Au](x) = 0, x ∈ Ωτ ,(4)

u(x) = h(x), x ∈ Γτ ,(5)

A2028 A. GILLMAN AND P. G. MARTINSSON

)b()a(

Fig. 2. Notation for the leaf computation in section 3. (a) A leaf before elimination of interior
(white) nodes. (b) A leaf after elimination of interior nodes.

where the elliptic operator A is defined by (2). We will construct an approximate so-
lution to (4) using a classical spectral collocation method described in, e.g., Trefethen

[24]: First, pick a small integer p and let {zk}p
2

k=1 denote the nodes in a tensor product

grid of p×p Chebyshev nodes on Ωτ . Let D
(1) and D(2) denote spectral differentiation

matrices corresponding to the operators ∂/∂x1 and ∂/∂x2, respectively. The operator
(2) is then locally approximated via the p2 × p2 matrix

(6) A = −C11

(
D(1)

)2 − 2C12D
(1)D(2) − C22

(
D(2)

)2
+ C1D

(1) + C2D
(2) + C,

where C11 is the diagonal matrix with diagonal entries {c11(zk)}p
2

k=1, and the other
matrices Cij , Ci, C are defined analogously.

Let w ∈ R
p2

denote a vector holding the desired approximate solution of (4). We
populate all entries corresponding to boundary nodes with the Dirichlet data from h,
and then enforce a spectral collocation condition at the interior nodes. To formalize,
let us partition the index set

{1, 2, . . . , p2} = Je ∪ Ji

in such a way that Je contains the 4(p − 1) nodes on the boundary of Ωτ , and Ji
denotes the set of (p− 2)2 interior nodes; see Figure 2(a). Then partition the vector
w into two parts corresponding to internal and exterior nodes via

wi = w(Ji), we = w(Je).

Analogously, partition A into four parts via

Ai,i = A(Ji, Ji), Ai,e = A(Ji, Je), Ae,i = A(Je, Ji), Ae,e = A(Je, Je).

The potential at the exterior nodes is now given directly from the boundary condition

we = [h(zk)]k∈Je
.

For the internal nodes, we enforce the PDE (4) via direct collocation:

(7) Ai,iwi + Ai,ewe = 0.

Solving (7) for wi, we find

(8) wi = −A−1
i,i Ai,ewe.

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2029

3.2. Constructing the approximate DtN. Now that we know how to ap-
proximately solve the local Dirichlet problem (4) via a local spectral method, we can
build a matrix Tτ such that (3) holds to high accuracy. The starting point is a vector
u(Iτ) ∈ R

4q of tabulated potential values on the boundary of Ωτ . We will construct
the vector v(Iτ) ∈ R

4q via four linear maps. The combination of these maps is the
matrix Tτ . We henceforth assume that the spectral order of the local Chebyshev grid
matches the order of the tabulation on the leaf boundaries so that p = q.

Step 1: retabulation from Gaussian nodes to Chebyshev nodes. For each side of
Ωτ , form the unique interpolating polynomial of degree at most q−1 that interpolates
the q potential values on that side specified by u(Iτe). Now evaluate these polynomials
at the boundary nodes of a q × q Chebyshev grid on Ωτ . Observe that for a corner
node, we may in the general case get conflicts. For instance, the potential at the
southwest corner may get one value from extrapolation of potential values on the
south border, and one value from extrapolation of the potential values on the west
border. We resolve such conflicts by assigning the corner node the average of the two
possibly different values. (In practice, essentially no error occurs since we know that
the vector u(Iτe) tabulates an underlying function that is continuous at the corner.)

Step 2: spectral solve. Step 1 populates the boundary nodes of the q×q Chebyshev
grid with Dirichlet data. Now determine the potential at all interior points on the
Chebyshev grid by executing a local spectral solve; cf. (8).

Step 3: spectral differentiation. After Step 2, the potential is known at all nodes
on the local Chebyshev grid. Now perform spectral differentiation to evaluate approx-
imations to ∂u/∂x2 for the Chebyshev nodes on the two horizontal sides, and ∂u/∂x1

for the Chebyshev nodes on the two vertical sides.
Step 4: retabulation from the Chebyshev nodes back to Gaussian nodes. After

Step 3, the boundary fluxes on ∂Ωτ are specified by four polynomials of degree q − 1
(specified via tabulation on the relevant Chebyshev nodes). Now simply evaluate
these polynomials at the Gaussian nodes on each side to obtain the vector v(Iτe).

Putting everything together, we find that the matrix Tτ is given as a product of
four matrices

Tτ = L4 ◦ L3 ◦ L2 ◦ L1

4q × 4q 4q × 4q 4q × q2 q2 × 4(q − 1) 4(q − 1)× 4q
,

where Li is the linear transform corresponding to “Step i” above. Observe that many
of these transforms are far from dense, for instance, L1 and L4 are 4×4 block matrices
with all off-diagonal blocks equal to zero. Exploiting these structures substantially
accelerates the computation.

Remark 3.2. The grid of Chebyshev nodes {zk}p
2

j=1 introduced in section 3.1

is only used for the local computation. In the final solver, there is no need to store
potential values at these grid points—they are used merely for constructing the matrix
Tτ .

4. Merging two DtN maps. Let τ denote a box in the tree with children α
and β. In this section, we demonstrate that if the DtN matrices Tα and Tβ for the
children are known, then the DtN matrix Tτ can be constructed via a purely local
computation which we refer to as a “merge” operation.

We start by introducing some notation: Let Ωτ denote a box with children Ωα

and Ωβ . For concreteness, let us assume that Ωα and Ωβ share a vertical edge as
shown in Figure 3, so that

Ωτ = Ωα ∪Ωβ .

A2030 A. GILLMAN AND P. G. MARTINSSON

Ωα ΩβJ1 J2J3

Fig. 3. Notation for the merge operation described in section 4. The rectangular domain Ω is
formed by two squares Ωα and Ωβ. The sets J1 and J2 form the exterior nodes (black), while J3
consists of the interior nodes (white).

We partition the points on ∂Ωα and ∂Ωβ into three sets:
J1 Boundary nodes of Ωα that are not boundary nodes of Ωβ .
J2 Boundary nodes of Ωβ that are not boundary nodes of Ωα.
J3 Boundary nodes of both Ωα and Ωβ that are not boundary nodes of the

union box Ωτ .
Figure 3 illustrates the definitions of the Jk’s. Let u denote a solution to (1), with
tabulated potential values u and boundary fluxes v, as described in section 2. Since
the interior and exterior nodes of τ are Iτi = J3 and Iτe = J1 ∪J3, respectively, we set

(9) ui = u3 and ue =

[
u1
u2

]
.

Recall that Tα and Tβ denote the operators that map values of the potential u on the
boundary to values of ∂nu on the boundaries of the boxes Ωα and Ωβ , as described
in section 3. The operators can be partitioned according to the numbering of nodes
in Figure 3, resulting in the equations
(10)[

v1
v3

]
=

[
Tα

1,1 Tα
1,3

Tα
3,1 Tα

3,3

] [
u1
u3

]
and

[
v2
v3

]
=

[
Tβ

2,2 Tβ
2,3

Tβ
3,2 Tβ

3,3

] [
u2

u3

]
.

Our objective is now to construct a solution operator Sτ and a DtN matrix Tτ

such that

u3 = Sτ

[
u1

u2

]
,(11) [

v1
v2

]
= Tτ

[
u1

u2

]
.(12)

To this end, we write (10) as a single equation:

(13)

⎡
⎢⎣ Tα

1,1 0 Tα
1,3

0 Tβ
2,2 Tβ

2,3

Tα
3,1 −Tβ

3,2 Tα
3,3 − Tβ

3,3

⎤
⎥⎦
⎡
⎣ u1

u2
u3

⎤
⎦ =

⎡
⎣ v1

v2
0

⎤
⎦ .

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2031

The last equation directly tells us that (11) holds with

(14) Sτ =
(
Tα

3,3 − Tβ
3,3

)−1[−Tα
3,1

∣∣ Tβ
3,2].

By eliminating u3 from (13) by forming a Schur complement, we also find that (12)
holds with

(15) Tτ =

[
Tα

1,1 0

0 Tβ
2,2

]
+

[
Tα

1,3

Tβ
2,3

] (
Tα

3,3 − Tβ
3,3

)−1[−Tα
3,1

∣∣ Tβ
3,2

]
.

5. The full hierarchical scheme. At this point, we know how to construct
the DtN operator for a leaf (section 3), and how to merge two such operators of
neighboring patches to form the DtN operator of their union (section 4). We are
ready to describe the full hierarchical scheme for solving the Dirichlet problem (1).
This scheme takes the Dirichlet boundary data f , and constructs an approximation
to the solution u. The output is a vector u that tabulates approximations to u at
the Gaussian nodes {xk}Nk=1 on all interior edges that were defined in section 2. To
find u at an arbitrary set of target points in Ω, a postprocessing step described in
section 5.3 can be used.

5.1. The algorithm. Partition the domain into a hierarchical tree as described
in section 2. Then execute a “build stage” in which we construct for each box τ the
following two matrices:

Sτ For a parent box τ , Sτ is a solution operator that maps values of u on ∂Ωτ

to values of u at the interior nodes. In other words, u(Iτi) = Sτ u(Iτe). (For a
leaf τ , Sτ is not defined.)

Tτ The matrix that maps u(Iτe) (tabulating values of u on ∂Ωτ) to v(Iτe) (tabu-
lating values of du/dn). In other words, v(Iτe) = Tτ u(Iτe).

(Recall that the index vector Iτe and Iτi were defined in section 2.) The build
stage consists of a single sweep over all nodes in the tree. Any bottom-up ordering
in which any parent box is processed after its children can be used. For each leaf
box τ , an approximation to the local DtN map Tτ is constructed using the procedure
described in section 3. For a parent box τ with children σ1 and σ2, the matrices Sτ

and Tτ are formed from the DtN operators Tσ1 and Tσ2 via the process described in
section 4. Algorithm 1 summarizes the build stage.

Once all the matrices {Sτ}τ have been formed, a vector u holding approximations
to the solution u of (1) can be constructed for all discretization points by starting at
the root box Ω and moving down the tree toward the leaf boxes. The values of u for
the points on the boundary of Ω can be obtained by tabulating the boundary function
f . When any box τ is processed, the value of u is known for all nodes on its boundary
(i.e., those listed in Iτe). The matrix Sτ directly maps these values to the values of
u on the nodes in the interior of τ (i.e., those listed in Iτi). When all nodes have
been processed, approximations to u have been constructed for all tabulation nodes
on interior edges. Algorithm 2 summarizes the solve stage.

Remark 5.1. The merge stage is exact when performed in exact arithmetic. The
only approximation involved is the approximation of the solution u on a leaf by its
interpolating polynomial.

Remark 5.2. To keep the presentation simple, we consider in this paper only
the case of a uniform computational grid. Such grids are obviously not well suited to
situations where the regularity of the solution changes across the domain. The method
described can in principle be modified to handle locally refined grids quite easily.

A2032 A. GILLMAN AND P. G. MARTINSSON

Algorithm 1. Build solution operators.
This algorithm builds the global Dirichlet-to-Neumann operator for (1).
It also builds all matrices Sτ required for constructing u at any interior point.
It is assumed that if node τ is a parent of node σ, then τ < σ.

(1) for τ = Nboxes, Nboxes − 1, Nboxes − 2, . . . , 1
(2) if (τ is a leaf)
(3) Construct Tτ via the process described in section 3.
(4) else
(5) Let σ1 and σ2 be the children of τ .
(6) Split Iσ1

e and Iσ2
e into vectors I1, I2, and I3 as shown in Figure 3.

(7) Sτ =
(
Tσ1

3,3 − Tσ2

3,3

)−1[−Tσ1

3,1

∣∣ Tσ2

3,2

]
(8) Tτ =

[
Tσ1

1,1 0
0 Tσ2

2,2

]
+

[
Tσ1

1,3

Tσ2
2,3

]
Sτ .

(9) Delete Tσ1 and Tσ2 .
(10) end if
(11) end for

Algorithm 2. Solve BVP once solution operator has been built.
This program constructs an approximation u to the solution u of (1).
It assumes that all matrices Sτ have already been constructed in a precomputation.
It is assumed that if node τ is a parent of node σ, then τ < σ.

(1) u(k) = f(xk) for all k ∈ I1e .
(2) for τ = 1, 2, 3, . . . , Nboxes

(3) if (τ is a parent)
(4) u(Iτi) = Sτ u(Iτe).
(5) end if
(6) end for
Remark: This algorithm outputs the solution on the Gaussian nodes on box bound-
aries. To get the solution at other points, use the method described in section 5.3.

A complication is that the tabulation nodes for two touching boxes will typically
not coincide, which requires the introduction of specialized interpolation operators.
Efficient refinement strategies also require the development of error indicators that
identify the regions where the grid needs to be refined. This is work in progress, and
will be reported at a later date. We observe that our introduction of Gaussian nodes
on the internal boundaries (as opposed to the Chebyshev nodes used in [19]) makes
reinterpolation much easier.

5.2. Asymptotic complexity. In this section, we determine the asymptotic
complexity of the direct solver. Let Nleaf = 4q denote the number of Gaussian nodes
on the boundary of a leaf box, and let q2 denote the number of Chebyshev nodes
used in the leaf computation. Let L denote the number of levels in the binary tree.
This means there are 4L boxes. Thus the total number of discretization nodes N is
approximately 4Lq = (2Lq)2

q . (To be exact, N = 22L+1q + 2L+1q.)

The cost to process one leaf is approximately O(q6). Since there are N
q2 leaf boxes,

the total cost of precomputing approximate DtN operators for all the bottom level is
N
q2 × q6 ∼ Nq4.

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2033

Next, consider the cost of constructing the DtN map on level � via the merge
operation described in section 4. For each box on the level �, the operators Tτ and Sτ

are constructed via (14) and (15). These operations involve matrices of size roughly
2−�N0.5× 2−�N0.5. Since there are 4� boxes per level, the cost on level � of the merge
is

4� ×
(
2−�N0.5

)3 ∼ 2−�N1.5.

The total cost for all the merge procedures has complexity

L∑
�=1

2−�N1.5 ∼ N1.5.

Finally, consider the cost of the downwards sweep which solves for the interior
unknowns. For any nonleaf box τ on level �, the size of Sτ is 2lq × 2l(6q) which
is approximately ∼ 2−�N0.5 × 2−�N0.5. Thus the cost of applying Sτ is roughly
(2−�N0.5)2 = 2−2�N . So the total cost of the solve step has complexity

L−1∑
l=0

22�2−2�N ∼ N logN.

In section 8, we explain how to exploit structure in the matrices T and S to
improve the computational cost of both the precomputation and the solve steps.

5.3. Postprocessing. The direct solver in Algorithm 1 constructs approxima-
tions to the solution u of (1) at tabulation nodes at all interior edges. Once these
are available, it is easy to construct an approximation to u at an arbitrary point. To
illustrate the process, suppose that we seek an approximation to u(y), where y is a
point located in a leaf τ . We have values of u tabulated at Gaussian nodes on ∂Ωτ .
These can easily be reinterpolated to the Chebyshev nodes on ∂Ωτ . Then u can be
reconstructed at the interior Chebyshev nodes via the formula (8); observe that the
local solution operator −A−1

i,i Ai,e was built when the leaf was originally processed and
can be simply retrieved from memory (assuming enough memory is available). Once
u is tabulated at the Chebyshev grid on Ωτ , it is trivial to interpolate it to y or any
other point.

6. Compressible matrices. The cost of the direct solver given as Algorithm
1 is dominated by the work done at the very top levels; the matrix operations on
lines (7) and (8) involve dense matrices of size O(N0.5) × O(N0.5), where N is the
total number of discretization nodes, resulting in O(N1.5) overall cost. It turns out
that these dense matrices have an internal structure that can be exploited to greatly
accelerate the matrix algebra. Specifically, the off-diagonal blocks of these matrices are
to, high precision, rank deficient, and the matrices can be represented efficiently using
a hierarchical “data-sparse” format known as hierarchically block separable (HBS)
(and sometimes hierarchically semiseparable (HSS) matrices [23, 1]). This section
briefly describes the HBS property; for details, see [10].

6.1. Block separable. Let H be an mp×mp matrix that is blocked into p× p
blocks, each of size m×m. We say that H is “block separable” with “block-rank” k if
for τ = 1, 2, . . . , p, there exist m× k matrices Uτ and Vτ such that each off-diagonal
block Hσ,τ of H admits the factorization

(16)
Hσ,τ = Uσ H̃σ,τ V∗

τ , σ, τ ∈ {1, 2, . . . , p}, σ 	= τ.
m×m m× k k × k k ×m

A2034 A. GILLMAN AND P. G. MARTINSSON

Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fig. 4. Numbering of nodes in a fully populated binary tree with L = 3 levels. The root is the
original index vector I = I1 = [1, 2, . . . , 400].

Observe that the columns of Uσ must form a basis for the columns of all off-diagonal
blocks in row σ and, analogously, the columns of Vτ must form a basis for the rows
in all the off-diagonal blocks in column τ . When (16) holds, the matrix H admits a
block factorization

(17)
H = U H̃ V∗ + D,

mp×mp mp× kp kp× kp kp×mp mp×mp

where

U = diag(U1, U2, . . . ,Up), V = diag(V1, V2, . . . ,Vp), D = diag(D1, D2, . . . ,Dp),

and

H̃ =

⎡
⎢⎢⎢⎣

0 H̃12 H̃13 · · ·
H̃21 0 H̃23 · · ·
H̃31 H̃32 0 · · ·
...

...
...

⎤
⎥⎥⎥⎦ .

6.2. Hierarchically block separable. Informally speaking, a matrix H is hier-
archically block separable (HBS), if it is amenable to a telescoping block factorization.
In other words, in addition to the matrix H being block separable, so is H̃ once it has
been reblocked to form a matrix with p/2× p/2 blocks. Likewise, the middle matrix
from the block separable factorization of H̃ will be block separable, etc.

In this section, we describe properties and the factored representation of HBS
matrices. Details on constructing the factorization are provided in [10].

6.3. A binary tree structure. The HBS representation of an M ×M matrix
H is based on a partition of the index vector I = [1, 2, . . . ,M] into a binary tree
structure. We let I form the root of the tree, and give it the index 1, I1 = I. We next
split the root into two roughly equisized vectors I2 and I3 so that I1 = I2 ∪ I3. The
full tree is then formed by continuing to subdivide any interval that holds more than
some preset fixed number m of indices. We use the integers � = 0, 1, . . . , L to label
the different levels, with 0 denoting the coarsest level. A leaf is a node corresponding
to a vector that never got split. For a nonleaf node τ , its children are the two boxes
σ1 and σ2 such that Iτ = Iσ1 ∪ Iσ2 , and τ is then the parent of σ1 and σ2. Two boxes
with the same parent are called siblings. These definitions are illustrated in Figure 4.

6.4. Definition of the HBS property. We now define what it means for an
M ×M matrix H to be HBS with respect to a given binary tree T that partitions the

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2035

Name Size Function
For each leaf Dτ m×m The diagonal block H(Iτ , Iτ).
node τ Uτ m× k Basis for the columns in the blocks in row τ .

Vτ m× k Basis for the rows in the blocks in column τ .
For each parent Bτ 2k × 2k Interactions between the children of τ .
node τ Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .

Fig. 5. An HBS matrix H associated with a tree T is fully specified if the factors listed above
are provided.

index vector J = [1, 2, . . . ,M]. For simplicity, we suppose that for every leaf node τ
the index vector Iτ holds precisely m points, so that M = m 2L. Then H is HBS with
block rank k if the following two conditions hold.

(1) Assumption on ranks of off-diagonal blocks at the finest level: For any two
distinct leaf nodes τ and τ ′, define the m×m matrix

(18) Hτ,τ ′ = H(Iτ , Iτ ′).

Then there must exist matrices Uτ , Vτ ′ , and H̃τ,τ ′ such that

(19)
Hτ,τ ′ = Uτ H̃τ,τ ′ V∗

τ ′ .
m×m m× k k × k k ×m

(2) Assumption on ranks of off-diagonal blocks on level � = L − 1, L − 2, . . . , 1:
The rank assumption at level � is defined in terms of the blocks constructed on the
next finer level � + 1. For any distinct nodes τ and τ ′ on level � with children σ1, σ2

and σ′
1, σ

′
2, respectively, define

(20) Hτ,τ ′ =

[
H̃σ1,σ′

1
H̃σ1,σ′

2

H̃σ2,σ′
1

H̃σ2,σ′
2

]
.

Then there must exist matrices Uτ , Vτ ′ , and H̃τ,τ ′ such that

(21)
Hτ,τ ′ = Uτ H̃τ,τ ′ V∗

τ ′ .
2k × 2k 2k × k k × k k × 2k

An HBS matrix is now fully described if the basis matrices Uτ and Vτ are provided
for each node τ , and in addition, we are, for each leaf τ , given the m×m matrix

(22) Dτ = H(Iτ , Iτ),

and for each parent node τ with children σ1 and σ2 we are given the 2k × 2k matrix

(23) Bτ =

[
0 H̃σ1,σ2

H̃σ2,σ1 0

]
.

Observe in particular that the matrices H̃σ1,σ2 are only required when {σ1, σ2} forms
a sibling pair. Figure 5 summarizes the required matrices.

A2036 A. GILLMAN AND P. G. MARTINSSON

6.5. Telescoping factorization. Given the matrices defined in the previous
section, we define the following block diagonal factors:

D(�) = diag(Dτ : τ is a box on level �), � = 0, 1, . . . , L,(24)

U(�) = diag(Uτ : τ is a box on level �), � = 1, 2, . . . , L,(25)

V(�) = diag(Vτ : τ is a box on level �), � = 1, 2, . . . , L,(26)

B(�) = diag(Bτ : τ is a box on level �), � = 0, 1, . . . , L− 1.(27)

Furthermore, we let H̃
(�)

denote the block matrix whose diagonal blocks are zero, and
whose off-diagonal blocks are the blocks H̃τ,τ ′ for all distinct τ, τ ′ on level �. With
these definitions,

(28) H = U(L) H̃
(L)

(V(L))∗ + D(L);
m 2L × n 2L m 2L × k 2L k 2L × k 2L k 2L ×m 2L m 2L ×m 2L

for � = L− 1, L− 2, . . . , 1 we have

(29) H̃
(�+1)

= U(�) H̃
(�)

(V(�))∗ + B(�);
k 2�+1 × k 2�+1 k 2�+1 × k 2� k 2� × k 2� k 2� × k 2�+1 k 2�+1 × k 2�+1

and finally

(30) H̃
(1)

= B(0).

7. Fast arithmetic operations on HBS matrices. Arithmetic operations in-
volving dense HBS matrices of size M×M can often be executed in O(M) operations.
This fast matrix algebra is vital for achieving linear complexity in our direct solver.
This section provides a brief introduction to the HBS matrix algebra. We describe
the operations we need (inversion, addition, and low-rank update) in some detail for
the single level “block separable” format. The generalization to the multilevel HBS
format is briefly described for the case of matrix inversion. A full description of all
algorithms required is given in [8], which is related to the earlier work [2].

Before we start, we recall that a block separable matrix H consisting of p × p
blocks, each of size m×m, and with “HBS rank” k < m, admits the factorization

(31)
H = U H̃ V∗ + D.

mp×mp mp× kp kp× kp kp×mp mp×mp

7.1. Inversion of a block separable matrix. The decomposition (31) rep-
resents H as a sum of one term UH̃V∗ that is “low rank,” and one term D that is
easily invertible (since it is block diagonal). By modifying the classical Woodbury
formula for inversion of a matrix perturbed by the addition of a low-rank term, it can
be shown that (see Lemma 3.1 of [10])

(32) H−1 = E (H̃+ D̂)−1 F∗ + G,

where

D̂ =
(
V∗ D−1 U

)−1
,(33)

E = D−1 UD̂,(34)

F = (D̂ V∗ D−1)∗,(35)

G = D−1 −D−1 UD̂V∗ D−1,(36)

assuming the inverses in formulas (32)–(36) all exist. Now observe that the matrices

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2037

D̂, E, F, and G can all easily be computed since the formulas defining them involve
only block-diagonal matrices. In consequence, (32) reduces the task of inverting the
big (size mp×mp) matrix H to the task of inverting the small (size kp× kp) matrix

H̃+ D̂.
When H is not only “block separable,” but HBS, the process can be repeated re-

cursively by exploiting that H̃+D̂ is itself amenable to accelerated inversion, etc. The
resulting process is somewhat tricky to analyze, but leads to very clean codes. To il-
lustrate, we include Algorithm 3 which shows the multilevel O(M) inversion algorithm
for an HBS matrix H. The algorithm takes as input the factors {Uτ , Vτ , Dτ , Bτ}τ
representing H (cf. Figure 5), and outputs an analogous set of factors {Eτ , Fτ , Gτ}τ
representing H−1. With these factors, the matrix-vector multiplication y = H−1x can
be executed via the procedure described in Algorithm 4.

Algorithm 3. Inversion of an HBS matrix.

Given factors {Uτ , Vτ , Dτ , Bτ}τ representing an HBS matrix H, this algo-
rithm constructs factors {Eτ , Fτ , Gτ}τ representing H−1.
loop over all levels, finer to coarser, � = L, L− 1, . . . , 1

loop over all boxes τ on level �,
if τ is a leaf node

D̃τ = Dτ

else
Let σ1 and σ2 denote the children of τ .

D̃τ =

[
D̂σ1 Bσ1,σ2

Bσ2,σ1 D̂σ2

]
end if

D̂τ =
(
V∗

τ D̃
−1

τ Uτ

)−1
.

Eτ = D̃
−1

τ Uτ D̂τ .

F∗
τ = D̂τ V

∗
τ D̃

−1

τ .

Gτ = D̃
−1

τ − D̃
−1

τ Uτ D̂τ V
∗
τ D̃

−1

τ .
end loop

end loop

G1 =

[
D̂2 B2,3

B3,2 D̂3

]−1

.

7.2. Addition of two block separable matrices. Let HA and HB be block
separable matrices with factorizations

HA = UAH̃
A
VA∗ +DA, and HB = UBH̃

B
VB∗ +DB.

Then H = HA +HB can be written in block separable form via

(37) H = HA +HB =
[
UA UB

] [H̃
A

0

0 H̃
B

] [
VA VB

]∗
+
(
DA +DB

)
.

To restore (37) to block separable form, permute the rows and columns of [UA UB]
and [VA VB] to attain block diagonal form, then reorthogonalize the diagonal blocks.
This process in principle results in a matrix H whose HBS rank is the sum of the HBS
ranks of HA and HB. In practice, this rank increase can be combated by numerically
recompressing the basis matrices, and updating the middle factor as needed. For
details, as well as the extension to a multilevel scheme, see [2, 8].

A2038 A. GILLMAN AND P. G. MARTINSSON

Algorithm 4. Application of the inverse of an HBS matrix.

Given x, compute y = H−1 x using the factors {Eτ , Fτ , Gτ}τ resulting from
Algorithm 3.
loop over all leaf boxes τ

x̂τ = F∗
τ x(Iτ).

end loop

loop over all levels, finer to coarser, � = L, L− 1, . . . , 1
loop over all parent boxes τ on level �,

Let σ1 and σ2 denote the children of τ .

x̂τ = F∗
τ

[
x̂σ1

x̂σ2

]
.

end loop
end loop[

ŷ2
ŷ3

]
= G1

[
x̂2
x̂3

]
.

loop over all levels, coarser to finer, � = 1, 2, . . . , L− 1
loop over all parent boxes τ on level �

Let σ1 and σ2 denote the children of τ .[
ŷσ1

ŷσ2

]
= Eτ x̂τ + Gτ

[
x̂σ1

x̂σ2

]
.

end loop
end loop

loop over all leaf boxes τ
y(Iτ) = Eτ q̂τ + Gτ x(Iτ).

end loop

7.3. Addition of a block separable matrix with a low rank matrix. Let
HB = QR be a k-rank matrix where Q and R∗ are of size mp× k. We would like to
add HB to the block separable matrix HA. Since we already know how to add two
block separable matrices, we choose to rewrite HB in block separable form. Without
loss of generality, assume Q is orthogonal. Partition Q into p blocks of size m×k. The
blocks make up the matrix UB. Likewise partition R into p blocks of size k×m. The
block matrix DB has entries Dτ = QτRτ for τ = 1, . . . , p. To construct the matrices
VB, for each τ = 1, . . . , p, the matrix Rτ is factorized into R̃τVτ∗ where the matrix

Vτ is orthogonal. The matrices R̃τ make up the entries of H̃
B
.

8. Accelerating the direct solver. This section describes how the fast matrix
algebra described in sections 6 and 7 can be used to accelerate the direct solver of
section 5 to attain O(N) complexity. We recall that the O(N1.5) cost of Algorithm 1
relates to the execution of lines (7) and (8) at the top levels, since these involve dense
matrix algebra of matrices of size O(N0.5) × O(N0.5). The principal claims of this
section are

• the matrices Tσ1
1,3, T

σ1
3,1; T

σ2
2,3, T

σ2
3,2. have low numerical rank;

• the matrices Tσ1
1,1, T

σ2
2,2, T

σ1
3,3, T

σ2
3,3 are HBS matrices of low HBS rank.

To be precise, the ranks that we claim are “low” scale as log(1/ν) × log(m), where
m is the number of points along the boundary of Ωτ , and ν is the computational
tolerance. In practice, we found that for problems with nonoscillatory solutions, the
ranks are extremely modest: When ν = 10−10, the ranks range between 10 and 80,
even for very large problems.

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2039

The cause of the rank deficiencies is that the matrix Tτ is a highly accurate ap-
proximation to the DtN operator on Ωτ . This operator is known to have a smooth
kernel that is nonoscillatory whenever the underlying PDE has nonoscillatory solu-
tions. Since the domain boundary ∂Ωτ is one dimensional, this makes the expectation
that the off-diagonal blocks have low rank very natural; see [10]. It is backed up by
extensive numerical experiments (see section 9), but we do not at this point have
rigorous proofs to support the claim.

Once it is observed that all matrices in lines (7) and (8) of Algorithm 1 are
structured, it becomes obvious how to accelerate the algorithm. For instance, line
(7) is executed in three steps: (i) Add the HBS matrices Tσ1

3,3 and −Tσ2
3,3; (ii) invert

the sum of the HBS matrices; (iii) apply the inverse (in HBS form) to one of the

low-rank factors of
[
−Tα

3,1

∣∣ Tβ
3,2

]
. The result is an approximation to Sτ , represented

as a product of two thin matrices. Executing line (8) is analogous: First form the
matrix products Tσ1

1,3 S
τ and Tσ2

2,3 S
τ , exploiting that all factors are of low rank. Then

perform a low-rank update to a block-diagonal matrix whose blocks are provided in
HBS-form to construct the new HBS matrix Tτ .

Accelerating the solve stage in Algorithm 2 is trivial, simply exploit that the
matrix Sτ on line (3) has low numerical rank.

Remark 8.1. Some of the structured matrix operators (e.g., adding two HBS
matrices, or the low-rank update) can algebraically lead to a large increase in the
HBS ranks. We know for physical reasons that the output should have rank structure
very similar to the input, however, and we combat the rank increase by frequently
recompressing the output of each operation.

Remark 8.2. In practice, we implement the algorithm to use dense matrix algebra
at the finer levels, where all the DtN matricesTτ are small. Once they get large enough
that HBS algebra outperforms dense operations, we compress the dense matrices by
brute force, and rely on HBS algebra in the remainder of the upwards sweep.

9. Numerical examples. In this section, we illustrate the capabilities of the
proposed method for the boundary value problem

(38)

{
−Δu(x)− c1(x) ∂1u(x)− c2(x) ∂2u(x)− c(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2, Γ = ∂Ω, and c1(x), c2(x), and c(x) are smooth; cf. (2). The choice
of the functions c1(x), c2(x), and c(x) will vary for each example.

All experiments reported in this section were executed on a machine with two
quad-core 3.3 GHz Intel Xeon E5-2643 processors and 128 GB of RAM. The direct
solver was implemented in MATLAB, which means that the speeds reported can very
likely be improved, although the asymptotic complexity should be unaffected.

In section 9.1 we apply the direct solver to four problems with known analytic
solutions. This allows us to very accurately investigate the errors incurred, but is
arguably a particularly favorable environment. Section 9.2 presents results from more
general situations where the exact solution is not known, and errors have to be esti-
mated.

In all experiments, the number of Gaussian points per leaf edge q is fixed at 21, and
21× 21 tensor product grids of Chebyshev points are used in the leaf computations.
Per Remark 8.2, we switch from dense computations to HBS when a box has more
than 2000 points on the boundary.

A2040 A. GILLMAN AND P. G. MARTINSSON

Table 1

Timing results in seconds for the PDEs considered in section 9.1. For these experiments,
ε = 10−7. Note that memory requirements grow as the wave number grows, which is why we could
handle N = 115909633 only for Laplace and Helmholtz I.

Ntot N Tbuild Tsolve Tapply R Epot

(seconds) (seconds) (seconds) (MB)

Laplace
1815681 174720 91.68 0.34 0.035 1611.19 1.41e-04
7252225 693504 371.15 1.803 0.104 6557.27 3.57e-4
28987905 2763264 1661.97 6.97 0.168 26503.29 1.23e-3
115909633 11031552 6894.31 30.67 0.367 106731.61 4.70e-3

Helmholtz I
1815681 174720 62.07 0.202 0.027 1611.41 1.10e-4
7252225 693504 363.19 1.755 0.084 6557.12 1.19e-4
28987905 2763264 1677.92 6.92 0.186 26503.41 2.48e-4
115909633 11031552 7584.65 31.85 0.435 106738.85 2.3e-3

Helmholtz II
1815681 174720 93.96 0.29 0.039 1827.72 1.62e-05
7252225 693504 525.92 2.13 0.074 7151.60 2.89e-05
28987905 2763264 2033.91 8.59 0.175 27985.41 1.82e-04

Helmholtz III
1815681 174720 93.68 0.29 0.038 1839.71 5.03e-05
7252225 693504 624.24 1.67 0.086 7865.13 6.76e-05
28987905 2763264 4174.91 10.28 0.206 33366.45 1.78e-04

9.1. Performance for problems with known solutions. To illustrate the
scaling and accuracy of the discretization technique, we apply the numerical method
to four problems with known solutions. The problems are as follows.
Laplace: Let c1(x) = c2(x) = c(x) = 0 in (38).
Helmholtz I: Let c1(x) = c2(x) = 0, and c(x) = κ2, where κ = 80 in (38). This repre-

sents a vibration problem on a domain Ω of size roughly 12× 12 wavelengths.
(Recall that the wavelength is given by λ = 2π

κ .)
Helmholtz II: Let c1(x) = c2(x) = 0, and c(x) = κ2, where κ = 640 in (38). This

corresponds to a domain of size roughly 102× 102 wavelengths.
Helmholtz III: We again set c1(x) = c2(x) = 0, and c(x) = κ2 in (38), but now we let

κ grow as the number of discretization points grows to maintain a constant
12 points per wavelength.

The boundary data in (38) are chosen to coincide with the known solutions
uexact(x) = log |x̂−x| for the Laplace problem and with uexact(x) = Y0(κ|x̂−x|) for
the three Helmholtz problems, where x̂ = (−2, 0), and where Y0 denotes the zeroth
Bessel function of the second kind.

In a first experiment, we prescribed the tolerance in the “fast” matrix algebra to
be ε = 10−7. Table 1 reports the following quantities:
N Number of Gaussian discretization points.

Ntot Total number of discretization points (N plus the number of Chebyshev

points).

Tbuild Time for building the solution operator.

Tsolve Time to solve for interior nodes (edge nodes only) once solution operator

is built.

Tapply Time to apply the approximate DtN operator T1.

R Amount of memory required to store the solution operator.
In addition, Table 1 reports the relative error in the computed solution uapp via the
measure

Epot =
max

{∣∣uapp(xk)− uexact(xk)
∣∣}N

k=1

max
{∣∣uexact(xk)

∣∣}N

k=1

,

where {xk}k are the Gaussian nodes on all internal boundaries.

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2041

10
6

10
7

10
8

10
1

10
2

10
3

10
4

10
6

10
7

10
8

10
−1

10
0

10
1

10
2

10
6

10
7

10
8

10
−2

10
−1

10
0

Laplace
Helmholtz I
Helmholtz II
Helmholtz III

10
6

10
7

10
8

10
3

10
4

10
5

Tbuild Tsolve

Tapply R

Ntot

T
im

e
in

se
co

nd
s

M
em

or
y

in
M

B

Fig. 6. The first three graphs give the times required for building the direct solver (Tbuild),
solving a problem (Tsolve), and applying the approximate DtN operator on ∂Ω(Tapply). The fourth
graph gives the memory R in MB required to store the solution operator.

Our expectation is for all problems except Helmholtz III to exhibit optimal linear
scaling for both the build and the solve stages. Additionally, we expect the cost of
applying the DtN operator T1 to scale as N0.5 for all problems except Helmholtz III.
The numerical results clearly bear this out for Laplace and Helmholtz I. For Helmholtz
II, it appears that linear scaling has not quite taken hold for the range of problem
sizes our hardware could manage. The Helmholtz III problem clearly does not exhibit
linear scaling, but has not yet reached its O(N1.5) asymptote at the largest problem
considered, which was of size roughly 426 × 426 wavelengths. We see that the cost
of the solve stage is tiny. For example, a problem involving 11 million unknowns
(corresponding to approximately 100 million discretization points) takes 115 minutes
for the build stage and then only 30 seconds for each additional solve. The cost for
applying the DtN operator is even less at 0.36 seconds per boundary condition. Figure
6 illustrates the scaling via log-log plots.

Remark 9.1. It may at first seem counterintuitive that the errors Epot reported in
Table 1 increase as N grows, but this is explained by the fact that Epot is a combined
error metric that encapsulates both discretization errors and solver errors. While the
discretization errors decrease as N increases when the problem is held fixed (as in
Laplace I, and in Helmholtz I and II), the solver errors tend to slowly increase, due
to aggregation of truncation errors as the number of levels increase. In Table 1, the
solver errors tend to dominate, which explains why the errors increase asN grows (this

A2042 A. GILLMAN AND P. G. MARTINSSON

Table 2

Convergence results for solving the PDE’s in section 9.2 with a user prescribed tolerance of
ε = 10−12.

Ntot N uN (x̂) EN
int uN

n (x̂) EN
bnd

Constant convection

455233 44352 −0.474057246846306 0.477 −192794.835134257 824.14
1815681 174720 −0.951426960146812 8.28e-03 −191970.688228300 1.47
7252225 693504 −0.959709514830931 6.75e-10 −191972.166912008 0.365
28987905 2763264 −0.959709515505929 −191972.532606428

Variable Helmholtz

114465 11424 2.50679456864385 6.10e-02 −2779.09822864819 3188
455233 44352 2.56780367343056 4.63e-07 409.387483435691 2.59e-02
1815681 174720 2.56734097240752 1.77e-09 409.413356177218 3.30e-07
7252225 693504 2.56734097418159 409.413355846946

Diffusion convection

455233 44352 0.0822281612709325 5.04e-5 −35.1309711271060 2.23e-3
1815681 174720 0.0822785917678385 2.67e-8 −35.1332056731696 7.57e-6
7252225 693504 0.0822786184699243 5.41e-12 −35.1332132455725 2.11e-09
28987905 2763264 0.0822786184753420 −35.1332132476795

Table 3

Time and memory requirements for LU-factorization of cross-shaped finite difference stencils
on a regular grid in the plane using UMFPACK.

Matrix N Tbuild Tsolve R Epot Epot Epot

(seconds) (seconds) (MB) Helm-I Helm-II Helm-III
5-point stencil 40000 2.46e-1 5.32e-3 38.26 2.7e0 1.2e0 3.1e0
O(h2) 160000 1.29 2.74e-2 211.43 2.0e1 2.5e1 1.9e1

640000 6.87 1.33e-1 1073.39 3.1e-1 6.7e1 1.4e1
2560000 49.86 6.98e-1 5959.00 6.1e-2 8.8e1 3.7e1

10240000 277.31 3.134 27588.61 1.5e-2 1.6e1 3.5e1
9-point stencil 40000 6.78e-1 1.42e-2 123.82 ≥5.5e-2 ≥3.8e0 ≥1.3e0
O(h4) 160000 4.18 7.59e-2 726.62 ≥8.0e-3 ≥1.8e1 ≥3.2e-1

640000 35.83 3.80e-1 3509.28 ≥1.4e-4 ≥1.4e1 ≥9.6e-1
2560000 383.04 2.12 18817.29 ≥1.0e-5 ≥6.1e-1 ≥2.4e0

13-point stencil 40000 1.51 2.81e-2 285.08 ≥4.7e-4 ≥8.7e1 ≥8.6e-3
O(h6) 160000 9.76 1.59e-1 1575.29 ≥1.7e-5 ≥1.1e1 ≥1.3e-1

640000 164.33 9.03e-1 86661.39 ≥5.9e-7 ≥4.9e-1 ≥2.9e-1
2560000 1581.11 5.19 42191.17 ≥4.1e-9 ≥8.3e-2 ≥1.4e-1

behavior is in contrast to Table 2, where the solver error is small and discretization
errors dominate).

To provide a reference for the computational times and errors reported in Ta-
ble 1 for our O(N) solver, we give in Table 3 the build and solve times, and errors,
for a classical O(N3/2) multifrontal solver, as implemented in UMFPACK [5] (using
the MATLAB “lu” command); cf. Figure 7. We used UMFPACK to compute LU-
factorizations of finite difference matrices discretizing a convection-diffusion problem
on a regular square grid using three different stencils: The classical 5-point stencil
with O(h2) accuracy, and the cross-shaped 9-point and 13-point stencils with accura-
cies O(h4) and O(h6), respectively. For the cross-shaped 9-point and 13-point stencils,
the errors reported are lower bounds only (to ensure that we made the comparison as
favorable to finite difference methods as possible, we cheated and provided the solver
with the exact solution not only on the boundary, but on one or two layers inside the
domain as well). Some observations: (1) The performance of the multifrontal method
deteriorates rapidly as the order of the discretization is increased (note that even the
13-point stencil is a low-order method when compared to the proposed scheme); (2)
the multifrontal method ran out of memory much earlier than our O(N) method, in
particular, for the high-order stencils; (3) the break-even points between our O(N)

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2043

10
4

10
5

10
6

10
7

10
8

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

O(N) method for problem ‘‘Laplace’’
UMFPACK for 5−point stencil
UMFPACK for 9−point stencil
UMFPACK for 13−point stencil

Ntot

T
im

e
in

se
co

nd
s

Fig. 7. Comparison between Tbuild for the proposed method (applied to problem “Laplace” with
truncation error ε = 10−7) and UMFPACK applied to the linear systems arising from cross-shaped
5-, 9-, and 13-point stencils.

Table 4

Errors for solving the PDEs in section 9.1 with different user prescribed tolerances when the
number of discretization points is fixed at N = 693504 (Ntot = 7252225).

ε = 10−7 ε = 10−10 ε = 10−12

Epot Egrad Epot Egrad Epot Egrad

Laplace 3.57e-04 1.35e-02 1.59e-07 6.92e-06 7.32e-10 1.01e-07
Helmholtz I 1.19e-04 1.31e-04 7.99e-08 9.72e-08 2.06e-09 1.71e-09
Helmholtz II 2.90e-05 2.19e-05 5.72e-08 5.02e-08 6.21e-09 4.64e-09
Helmholtz III 6.76e-05 5.05e-05 1.21e-07 1.31e-07 1.05e-07 1.10e-07

scheme and UMFPACK is quite high for the very low-order 5-point stencil (about
N = 25 · 106), but is very low for the 9- and 13-point stencils (N = 2.5 · 105 and
N = 3.2 · 104, respectively); (4) the discretization errors resulting from finite differ-
ence discretizations are very large, even for relatively high order methods such as the
O(h6) order accurate 13-point stencil.

In a second set of experiments, we investigated the accuracy of the computed
solutions, and in particular how the accuracy depends on the tolerance ε in the fast
matrix algebra. In addition to reporting Epot, Table 4 reports

Egrad =
maxk : xk∈Γ

{∣∣un,app(xk)− un,exact(xk)
∣∣}

maxk : xk∈Γ

{∣∣un,exact(xk)
∣∣} ,

where un,app denotes the approximate normal derivative of the solution constructed
by the direct solver for tolerances ε = 10−7, 10−10, and 10−12 and un,exact denotes the
normal derivative of the solution. The number of edge nodes was fixed at N = 693504
(Ntot = 7252225).

The solution obtains (or nearly obtains) the prescribed tolerance while the nor-
mal derivative suffers from about a three digit loss in accuracy. This loss is likely
attributable to the unboundedness of the DtN map. The compressed representation
captures the high end of the spectrum to the desired accuracy while the low end of
the spectrum is captured to three digits less than the desired accuracy.

A2044 A. GILLMAN AND P. G. MARTINSSON

Table 5

Times in seconds for solving the PDE’s in section 9.2 with a user prescribed tolerance of
ε = 10−12.

Ntot N Tbuild Tsolve R
(seconds) (seconds) (MB)

Constant convection

455233 44352 21.04 0.85 683.25
1815681 174720 176.09 3.47 2997.80
7252225 693504 980.93 13.76 8460.94
28987905 2763264 5227.52 77.03 48576.75

Variable Helmholtz

114465 11424 4.61 0.19 167.68
455233 44352 42.72 1.110 774.34
1815681 174720 450.68 4.54 3678.31
7252225 693504 3116.57 17.64 15658.07

Diffusion convection

455233 44352 28.31 0.795 446.21
1815681 174720 131.23 3.20 2050.20
7252225 693504 906.11 17.12 8460.94
28987905 2763264 4524.99 66.99 47711.17

9.2. Convergence for unknown solutions. In this section, we apply the di-
rect solver to three problems for which we do not know an exact solution.
Constant convection: Let the convection in the x2 direction be constant by setting

c1(x) = 0, c2(x) = −100000, and set c(x) = 0.
Diffusion-Convection: Introduce a divergence free convection by setting c1(x) =

−10000 cos(4πx2), c2(x) = −10000 cos(4πx1), and c(x) = 0.
Variable Helmholtz: Consider the variable coefficient Helmholtz problem where c1(x) =

0, c2(x) = 0, c(x) = κ2(1− (sin(4πx1) sin(4πx2))
2), and κ = 640.

For the three experiments, the boundary data are given by f(x) = cos(2x1)(1− 2x2).
To check for convergence, we postprocess the solution as described in section 5.3 to

get the solution on the Chebyshev grid. Let uN denote the solution on the Chebyshev
grid. Likewise, let uN

n denote the normal derivative on the boundary at the Chebyshev
boundary points. We compare the solution and the normal derivative on the boundary
pointwise at the locations

x̂ = (0.75, 0.25) and ŷ = (0.75, 0),

respectively, via

EN
int = |uN (x̂)− u4N(x̂)| and EN

bnd = |uN
n (ŷ)− u4N

n (ŷ)|.

The tolerance for the compressed representations is set to ε = 10−12. Table 2
reports the pointwise errors. We see that high accuracy is obtained in all cases, with
solutions that have ten correct digits for the potential and about seven correct digits
for the boundary flux.

The computational costs of the computations are reported in Table 5. The mem-
ory R reported now includes the memory required to store all local solution operators
described in section 5.3.

10. Conclusions and extensions. We have described a direct solver for vari-
able coefficient elliptic PDEs in the plane, under the assumption that the solution
and all coefficient functions are smooth. For scalar problems with nonoscillatory so-
lutions such as the Laplace equation, the solver has an experimentally verified O(N)
asymptotic complexity, with a small constant of proportionality. We expect similar
performance for closely related problems with nonoscillatory solutions such as, e.g.,

AN O(N) DIRECT SOLVER FOR ELLIPTIC PDES A2045

the Stokes equation, or the equations of linear elasticity. For problems with oscilla-
tory solutions, high practical efficiency is retained for problems of size up to several
hundred wavelengths.

Our method is based on a composite spectral discretization. We use high-order lo-
cal meshes (typically of size 21× 21) capable of solving even very large scale problems
to ten correct digits or more. The direct solver is conceptually similar to the classical
nested dissection method [7]. To improve the asymptotic complexity from the classical
O(N1.5) to O(N), we exploit internal structure in the dense “frontal matrices” at the
top levels in a manner similar to recent work such as, e.g., [2, 8, 16, 17, 22]. Compared
to these techniques, our method has an advantage in that high-order discretizations
can be incorporated without compromising the speed of the linear algebra. The reason
is that we use a formulation based on DtN operators. As a result, we need high-order
convergence only in the tangential direction on patch boundaries.

The direct solver presented requires more storage than classical iterative methods,
but this is partially offset by the use of high-order discretizations. More importantly,
the solver is characterized by very low data movement. This appears to make the
method particularly well suited for implementation on parallel machines with dis-
tributed memory, although this has not yet been verified experimentally.

While the current manuscript treats only simple square domains, it is relatively
easy to extend the methodology to domains in two dimensions (2D) that can be
mapped to a rectangle, or a union of rectangles using smooth parameterizations; see,
e.g, [19, sections 6.3 and 6.4]. The extension to three dimensions is in principle
straightforward, but will of course require substantial work. Memory constraints
become far more limiting than for problems in 2D, but initial numerical experiments
indicate that fairly large problems can be handled on personal workstations. This is
work in progress, and will be reported at a later date.

The method presented is designed to be particularly competitive for high-order
discretizations of problems with smooth solutions. Local deviations from smoothness
due to, say, a corner, or a concentrated load, can be handled using mesh refinement,
but for problems with low overall smoothness in the solution, existing linear complex-
ity direct solvers (e.g., [2, 8, 16, 17, 22]) are likely to perform better.

REFERENCES

[1] S. Chandrasekaran and M. Gu, A divide-and-conquer algorithm for the eigendecomposi-
tion of symmetric block-diagonal plus semiseparable matrices, Numer. Math., 96 (2004),
pp. 723–731.

[2] S. Chandrasekaran, M. Gu, X.S. Li, and J Xia, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[3] Y. Chen, A fast, direct algorithm for the Lippmann-Schwinger integral equation in two dimen-
sions, Adv. Comput. Math., 16 (2002), pp. 175–190.

[4] Y. Chen, Total Wave Based Fast Direct Solver for Volume Scattering Problems, preprint,
arXiv:1302.2101, 2013.

[5] T.A. Davis, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method,
ACM Trans. Math. Software, 30 (2004), pp. 196–199.

[6] I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices, Clarendon
Press, Oxford, 1989.

[7] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[8] A. Gillman, Fast Direct Solvers for Elliptic Partial Differential Equations, Ph.D. thesis, Uni-
versity of Colorado at Boulder, Boulder, CO, 2011.

[9] A. Gillman, A. Barnett, and P.G. Martinsson, A spectrally accurate direct solution tech-
nique for frequency-domain scattering problems with variable media, BIT, (2014).

A2046 A. GILLMAN AND P. G. MARTINSSON

[10] A. Gillman, P. Young, and P.G. Martinsson, A direct solver with o(n) complexity for
integral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–
247.

[11] L. Greengard, D. Gueyffier, P.G. Martinsson, and V. Rokhlin, Fast direct solvers for
integral equations in complex three-dimensional domains, Acta Numer., 18 (2009), pp. 243–
275.

[12] K.L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive
skeletonization, SIAM J Sci. Comput., 34 (2014), pp. A2507–A2532.

[13] A.J. Hoffman, M.S. Martin, and D.J. Rose, Complexity bounds for regular finite difference
and finite element grids, SIAM J. Numer. Anal., 10 (1973), pp. 364–369.

[14] B.N. Khoromskij and G. Wittum, Numerical solution of elliptic differential equations by
reduction to the interface, Lect. Notes Comput. Sci. Eng. 36, Springer, Berlin, 2004.

[15] D.A. Kopriva, A staggered-grid multidomain spectral method for the compressible Navier-
Stokes equations, J. Comput. Phys., 143 (1998), pp. 125–158.

[16] S. Le Borne, L. Grasedyck, and R. Kriemann, Domain-decomposition based H-LU precon-
ditioners, in Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes
Comput. Sci. Eng. 55, Springer, Berlin, 2007, pp. 667–674.

[17] P.G. Martinsson, A fast direct solver for a class of elliptic partial differential equations, J.
Sci. Comput., 38 (2009), pp. 316–330.

[18] P.G. Martinsson, A Composite Spectral Scheme for Variable Coefficient Helmholtz Problems,
preprint, arXiv:1206.4136, 2012.

[19] P.G. Martinsson, A direct solver for variable coefficient elliptic PDEs discretized via a com-
posite spectral collocation method, J. Comput. Phys., 242 (2013), pp. 460–479.

[20] P.G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two
dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[21] H.P. Pfeiffer, L.E. Kidder, M.A. Scheel, and S.A. Teukolsky, A multidomain spectral
method for solving elliptic equations, Comput. Phys. Comm., 152 (2003), pp. 253–273.

[22] P.G. Schmitz and L. Ying, A fast direct solver for elliptic problems on general meshes in 2d,
J. Comput. Phys., 231 (2012), pp. 1314–1338.

[23] Z. Sheng, P. Dewilde, and S. Chandrasekaran, Algorithms to solve hierarchically semi-
separable systems, in System Theory, the Schur Algorithm and Multidimensional Analysis,
Oper. Theory Adv. Appl. 176, Birkhäuser, Basel, 2007, pp. 255–294.

[24] L.N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools, SIAM, Philadelphia,
2000.

[25] E.L. Wilson, The static condensation algorithm, Internat. J. Numer. Methods Engrg., 8 (1974),
pp. 198–203.

[26] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li, Superfast multifrontal method for large
structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1382–
1411.

[27] B. Yang and J.S. Hesthaven, Multidomain pseudospectral computation of Maxwell’s equa-
tions in 3-d general curvilinear coordinates, Appl. Numer. Math., 33 (2000), pp. 281–289.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

