Fast numerical methods for solving linear PDEs

P.G. Martinsson, The University of Colorado at Boulder

Acknowledgements: Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert at Yale University.
In this talk, we will discuss numerical methods for solving the equation

\[
\begin{cases}
-\Delta u(x) = g(x), & x \in \Omega, \\
u(x) = f(x), & x \in \Gamma,
\end{cases}
\]

where \(\Omega \) is a domain in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) with boundary \(\Gamma \).

More generally, we will consider stationary linear Boundary Value Problems (BVP)

\[
\begin{cases}
A u(x) = g(x), & x \in \Omega, \\
B u(x) = f(x), & x \in \Gamma,
\end{cases}
\]

such as:

- The equations of linear elasticity.
- Stokes’ equation.
- Helmholtz’ equation (at least at low and intermediate frequencies).
- The Yukawa equation.
Why construct numerical methods for linear PDEs?

Well, ...

Seriously, isn’t it known how to do this already?!?

Not in all environments, in particular when it comes to oscillatory problems (high frequency scattering problems, etc).

More importantly, this is one of the most commonly occurring computational tasks in scientific computing. Significant improvements in speed, accuracy, and robustness would have transformative effects on computational science.

For instance, as far as linear elliptic boundary value problems go (Laplace, elasticity, etc), the goal is instantaneous solves at ten digits of accuracy or more.

The challenge is similar to the task of constructing faster computers.
Outline of talk:

1: Linear PDE solvers — background, context.

2: $O(N)$ direct solvers.

3: Randomized sampling for constructing low-rank approximations to operators.

4: (Applications to coarse graining in analysis of heterogeneous media.)
Linear boundary value problem.

Direct discretization of the differential operator via Finite Elements, Finite Differences, ...

$N \times N$ discrete linear system.
Very large, sparse, ill-conditioned.

Fast solvers:
iterative (multigrid), $O(N)$,
direct (nested dissection), $O(N^{3/2})$.

Conversion of the BVP to a Boundary Integral Operator (BIE).

Discretization of (BIE) using Nyström, collocation, BEM,

$N \times N$ discrete linear system.
Moderate size, dense, (often) well-conditioned.

Iterative solver accelerated by fast matrix-vector multiplier, $O(N)$.
Linear boundary value problem.

Direct discretization of the differential operator via Finite Elements, Finite Differences, ...

$N \times N$ discrete linear system. Very large, sparse, ill-conditioned.

Fast solvers:
iterate (multigrid), $O(N)$,
direct (nested dissection), $O(N^{3/2})$. $O(N)$ direct solvers.

Conversion of the BVP to a Boundary Integral Operator (BIE).

Discretization of (BIE) using Nyström, collocation, BEM,

$N \times N$ discrete linear system. Moderate size, dense, (often) well-conditioned.

Iterative solver accelerated by fast matrix-vector multiplier, $O(N)$. $O(N)$ direct solvers.
Reformulating a BVP as a Boundary Integral Equation.

The idea is to convert a linear partial differential equation

\begin{align*}
\text{(BVP)} \quad \begin{cases}
 A u(x) = g(x), & x \in \Omega, \\
 B u(x) = f(x), & x \in \Gamma,
\end{cases}
\end{align*}

to an “equivalent” integral equation

\begin{align*}
\text{(BIE)} \quad v(x) + \int_{\Gamma} k(x, y) v(y) \, ds(y) = h(x), & \quad x \in \Gamma.
\end{align*}

- The kernel \(k \) is derived from the operator \(A \).

- The data function \(h \) is derived from the data of (BVP).

- The conversion from (BVP) to (BIE) sometimes involves the evaluation of certain integrals over \(\Gamma \) and/or \(\Omega \).

- Sometimes the integral equation must be formulated on \(\Omega \) (e.g. for problems with low-order terms that have variable coefficients).

- . . .
Example:

Let us consider the equation

\[
\begin{cases}
-\Delta u(x) = 0, & x \in \Omega, \\
u(x) = f(x), & x \in \Gamma,
\end{cases}
\]

We make the following Ansatz:

\[
u(x) = \int_{\Gamma} (n(y) \cdot \nabla_y \log |x - y|) v(y) \, ds(y), \quad x \in \Omega,
\]

where \(n(y)\) is the outward pointing unit normal of \(\Gamma\) at \(y\). Then the boundary charge distribution \(v\) satisfies the Boundary Integral Equation

\[
v(x) + 2 \int_{\Gamma} (n(y) \cdot \nabla_y \log |x - y|) v(y) \, ds(y) = 2f(x), \quad x \in \Gamma.
\]

- (BIE) and (BVP) are in a strong sense equivalent.
- (BIE) is appealing mathematically (2nd kind Fredholm equation).
The BIE formulation has powerful arguments in its favor (reduced dimension, well-conditioned, etc) that we will return to, but it also has a major drawback:

Discretization of integral operators typically results in dense matrices.

In the 1950’s when computers made numerical PDE solvers possible, researchers faced a grim choice:

<table>
<thead>
<tr>
<th>PDE-based:</th>
<th>Ill-conditioned, N is too large, low accuracy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral Equations:</td>
<td>Dense system.</td>
</tr>
</tbody>
</table>

The integral equations lost and were largely forgotten — they were simply too expensive.

(Except in some scattering problems where there was no choice.)
The situation changed dramatically in the 1980’s. It was discovered that while K_N (the discretized integral operator) is dense, it is possible to evaluate the matrix-vector product

$$v \mapsto K_N v$$

in $O(N)$ operations — to high accuracy and with a small constant.

A very successful such algorithm is the Fast Multipole Method by Rokhlin and Greengard (circa 1985).

Combining such methods with iterative solvers (GMRES / conjugate gradient / ...) leads to very fast solvers for the integral equations, especially when second kind Fredholm formulations are used.
A prescription for rapidly solving BVPs:

(BVP) \[
\begin{cases}
-\Delta v(x) = 0, & x \in \Omega, \\
v(x) = f(x), & x \in \Gamma.
\end{cases}
\]

Convert (BVP) to a second kind Fredholm equation:

(BIE) \[
u(x) + \int_\Gamma (n(y) \cdot \nabla_y \log |x - y|) u(y) \, ds(y) = f(x), \quad x \in \Gamma.
\]

Discretize (BIE) into the discrete equation

(DISC) \[(I + K_N)u_N = f_N
\]

where K_N is a (typically dense) $N \times N$ matrix.

Fast Multipole Method — Can multiply K_N by a vector in $O(N)$ time.

Iterative solver — Solves (DISC) using $\sqrt{\kappa}$ matrix-vector multiplies, where κ is the condition number of $(I + K_N)$.

Total complexity — $O(\sqrt{\kappa} N)$. (Recall that κ is small. Like 14.)
Example:

External Laplace problem with Dirichlet boundary data.
The contour is discretized into 25 600 points.
A single matrix-vector multiply takes 0.2 sec on a 2.8 Ghz desktop PC.
Fifteen iterations required for 10^{-10} accuracy → total CPU time is 3 sec.
BIE formulations exist for many classical BVPs

Laplace \[-\Delta u = f,\]

Elasticity \[\frac{1}{2} E_{ijkl} \left(\frac{\partial^2 u_k}{\partial x_i \partial x_j} + \frac{\partial^2 u_l}{\partial x_k \partial x_j} \right) = f_i,\]

Stokes \[\Delta \mathbf{u} = \nabla p, \quad \nabla \cdot \mathbf{u} = 0,\]

Helmholtz \[(-\Delta - k^2)u = f,\]

Schrödinger \[(-\Delta + V) \Psi = i \frac{\partial \Psi}{\partial t},\]

Maxwell
\[
\begin{cases}
\nn
We have described two paradigms for numerically solving BVPs:

\[\text{PDE formulation} \iff \text{Integral Equation formulation} \]

Which one should you choose?

\textit{When it is applicable}, compelling arguments favor the use of the IE formulation:

\textbf{Dimensionality:}
Frequently, an IE can be defined on the \underline{boundary} of the domain.

\textbf{Integral operators are benign objects:}
It is (relatively) easy to implement high order discretizations of integral operators. Relative accuracy of 10^{-10} or better is often achieved.

\textbf{Conditioning:}
\textit{When there exists an IE formulation that is a Fredholm equation of the second kind, the mathematical equation itself is well-conditioned.}
However, integral equation based methods are quite often not a choice:

Fundamental limitations: They require the existence of a fundamental solution to the (dominant part of the) partial difference operator. In practice, this means that the (dominant part of the) operator must be linear and constant-coefficient.

Practical limitations: The infrastructure for BIE methods is underdeveloped. Engineering strength code does not exist for many problems that are very well suited for BIE formulations. The following major pieces are missing:

- Generic techniques for reformulating a PDE as an integral equation. We do know how to handle “standard environments”, however.

- Machinery for representing surfaces. Quadrature formulas. The dearth of tools here has seriously impeded progress on 3D problems.

- **Fast solvers need to be made more accessible and more robust.** Towards this end, we are currently developing *direct solvers* to replace existing iterative ones.
WHAT IS A DIRECT SOLVER?

Recall that many BVPs can be cast in the following form:

\[u(x) + \int_{\Gamma} g(x, y) u(y) \, ds(y) = f(x), \quad x \in \Gamma. \]

Upon discretization, equation (BIE) turns into a discrete equation

\[(I + K_N)u = f \]

where \(K_N \) is a (typically dense) \(N \times N \) matrix.

A **direct method** computes a compressed representation for \((I + K_N)^{-1} \).

- Cost for pre-computing the inverse.
- Cost for applying the inverse to a vector.

In many environments, both of these costs can be made \(O(N) \).
Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves:
 - Molecular dynamics.
 - Scattering problems.
 - Optimal design. (Local updates to the system matrix are cheap.)

2. Problems that are relatively ill-conditioned:
 - Scattering problems at intermediate or high frequencies.
 - Ill-conditioning due to geometry (elongated domains, percolation, etc).
 - Ill-conditioning due to lazy handling of corners, cusps, etc.
 - Finite element and finite difference discretizations. (Yes, yes, yes,...)

3. Direct solvers can be adapted to construct spectral decompositions:
 - Analysis of vibrating structures. Acoustics.
 - Buckling of mechanical structures.
 - Wave guides, bandgap materials, etc.
Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: **Engineering considerations.**

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers should be viewed as a step towards getting a LAPACK-type environment for solving the basic linear boundary value problems of mathematical physics.
Sampling of related work:

1991 Sparse matrix algebra / wavelets, *Beylkin, Coifman, Rokhlin*,

2002 $O(N^{3/2})$ inversion of Lippmann-Schwinger equations, *Y. Chen*,

2007 factorization of discrete Laplace operators, *S. Chandrasekharan, M. Gu, X.S. Li, J. Xia*.
How does the inversion scheme work?

It exploits rank deficiencies in the off-diagonal blocks.

Note: This fundamentally makes problems with highly oscillatory kernels (such as high-frequency Helmholtz) off-limits.

(However, it works great at low and intermediate frequencies.)
How does the inversion scheme work? Continued . . .

Consider the linear system

\[
\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{bmatrix}
\begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4
\end{bmatrix}
=
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{bmatrix}.
\]

We suppose that for \(i \neq j \), the blocks \(A_{ij} \) allow the factorization

\[
A_{ij} = \underbrace{U_i}_{n_i \times n_j} \underbrace{\tilde{A}_{ij}}_{n_i \times k_i} \underbrace{U_j^t}_{k_j \times n_j},
\]

where the ranks \(k_i \) are significantly smaller than the block sizes \(n_i \).

We then let

\[
\tilde{q}_j = \underbrace{U_j^t}_{k_j \times 1} \underbrace{q_j}_{n_j \times 1},
\]

be the variables of the “reduced” system.
Recall:

- $A_{ij} = U_i \tilde{A}_{ij} U_j^t$
- q_j is the variable in the original model — fine scale
- $\tilde{q}_j = U_j^t q_j$ — coarse scale

The system $\sum_j A_{ij} q_j = v_i$ then takes the form

$$
\begin{bmatrix}
A_{11} & 0 & 0 & 0 & 0 & 0 & U_1 \tilde{A}_{12} & U_1 \tilde{A}_{13} & U_1 \tilde{A}_{14} \\
0 & A_{22} & 0 & 0 & U_2 \tilde{A}_{21} & 0 & U_2 \tilde{A}_{23} & U_2 \tilde{A}_{24} \\
0 & 0 & A_{33} & 0 & U_3 \tilde{A}_{31} & U_3 \tilde{A}_{32} & 0 & U_3 \tilde{A}_{34} \\
0 & 0 & 0 & A_{44} & U_4 \tilde{A}_{41} & U_4 \tilde{A}_{42} & U_4 \tilde{A}_{43} & 0 \\
- U_1^t & 0 & 0 & 0 & I & 0 & 0 & 0 \\
0 & - U_2^t & 0 & 0 & 0 & I & 0 & 0 \\
0 & 0 & - U_3^t & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & - U_4^t & 0 & 0 & 0 & I
\end{bmatrix}
\begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4 \\
\tilde{q}_1 \\
\tilde{q}_2 \\
\tilde{q}_3 \\
\tilde{q}_4
\end{bmatrix}
= \begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{bmatrix}.
$$

Now form the Schur complement to eliminate the q_j’s.
After eliminating the “fine-scale” variables \(q_i \), we obtain

\[
\begin{pmatrix}
I & U_1^t \tilde{A}_{11}^{-1} U_1 \tilde{A}_{12} & U_1^t \tilde{A}_{11}^{-1} U_1 \tilde{A}_{13} & U_1^t \tilde{A}_{11}^{-1} U_1 \tilde{A}_{14} \\
U_2^t \tilde{A}_{22}^{-1} U_2 \tilde{A}_{21} & I & U_2^t \tilde{A}_{22}^{-1} U_2 \tilde{A}_{23} & U_2^t \tilde{A}_{22}^{-1} U_2 \tilde{A}_{24} \\
U_3^t \tilde{A}_{33}^{-1} U_3 \tilde{A}_{31} & U_3^t \tilde{A}_{33}^{-1} U_3 \tilde{A}_{32} & I & U_3^t \tilde{A}_{33}^{-1} U_3 \tilde{A}_{34} \\
U_4^t \tilde{A}_{44}^{-1} U_4 \tilde{A}_{41} & U_4^t \tilde{A}_{44}^{-1} U_4 \tilde{A}_{42} & U_4^t \tilde{A}_{44}^{-1} U_4 \tilde{A}_{43} & I
\end{pmatrix}
\begin{pmatrix}
\tilde{q}_1 \\
\tilde{q}_2 \\
\tilde{q}_3 \\
\tilde{q}_4
\end{pmatrix}
=
\begin{pmatrix}
U_1^t \tilde{A}_{11}^{-1} v_1 \\
U_2^t \tilde{A}_{22}^{-1} v_2 \\
U_3^t \tilde{A}_{33}^{-1} v_3 \\
U_4^t \tilde{A}_{44}^{-1} v_4
\end{pmatrix}.
\]

We set

\[
\tilde{A}_{ii} = (U_i^t A_{ii}^{-1} U_i)^{-1},
\]

and multiply line \(i \) by \(\tilde{A}_{ii} \) to obtain the reduced system

\[
\begin{pmatrix}
\tilde{A}_{11} & \tilde{A}_{12} & \tilde{A}_{13} & \tilde{A}_{14} \\
\tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & \tilde{A}_{24} \\
\tilde{A}_{31} & \tilde{A}_{32} & \tilde{A}_{33} & \tilde{A}_{34} \\
\tilde{A}_{41} & \tilde{A}_{42} & \tilde{A}_{43} & \tilde{A}_{44}
\end{pmatrix}
\begin{pmatrix}
\tilde{q}_1 \\
\tilde{q}_2 \\
\tilde{q}_3 \\
\tilde{q}_4
\end{pmatrix}
=
\begin{pmatrix}
\tilde{v}_1 \\
\tilde{v}_2 \\
\tilde{v}_3 \\
\tilde{v}_4
\end{pmatrix}.
\]

where

\[
\tilde{v}_i = \tilde{A}_{ii} U_i^t A_{ii}^{-1} v_i.
\]

(This derivation was pointed out by Leslie Greengard.)
A globally $O(N)$ algorithm is obtained by hierarchically repeating the process:
The critical step is to find matrices U_j such that

$$A_{ij} = U_i \tilde{A}_{ij} U_j^t,$$

for some matrix \tilde{A}_{ij} that is smaller than A_{ij}.

To attain an $O(N)$ scheme, one cannot afford to even look at every off-diagonal block. Instead, one can use:

- Interpolation of the kernel function [Hackbusch, BCR, etc].
 - Requires estimates of smoothness of the kernel away from the diagonal.
 - Inefficient, does not work for all geometries.

- Green’s identities that the kernel must satisfy [Martinsson, Rokhlin].
 - Very robust.
 - Leads to representations that are very close to optimal.

- Randomized sampling. New!

To further improve the operation counts, we represent potentials via “proxy charges”.
The concept of “proxy charges”:

Sources \(\{ q_n \}_{n=1}^N \) \hspace{1cm} Potentials \(\{ v_m \}_{m=1}^M \)

“Small” representation

The key observation is that \(k = \text{rank}(A_{12}) < \min(M, N) \).
We can pick k points in Ω_S with the property that any potential in Ω_T can be replicated by placing charges on these k points.

- The choice of points does not depend on $\{q_n\}_{n=1}^N$.
- A_{12}^{ske} is a submatrix of A_{12}.
We can “skeletonize” both \(\Omega_1 \) and \(\Omega_2 \).

\[
\begin{align*}
\{q_n\}_{n=1}^N & \xrightarrow{A_{12}} \{v_m\}_{m=1}^M \\
\{\tilde{q}_{nj}\}_{j=1}^k & \xrightarrow{A_{12}^{\text{skel}}} \{v_{mj}\}_{j=1}^k
\end{align*}
\]

Rank = 19 at \(\varepsilon = 10^{-10} \).
Skeletonization can be performed for \(\Omega_S \) and \(\Omega_T \) of various shapes.

Rank = 29 at \(\varepsilon = 10^{-10} \).
Rank = 48 at $\varepsilon = 10^{-10}$.
Adjacent boxes can be skeletonized.

\[\text{Rank} = 46 \text{ at } \varepsilon = 10^{-10}. \]
Benefits:

- The rank is optimal.
- The projection and interpolation are cheap. U_1 and U_2 contain $k \times k$ identity matrices.
- The projection and interpolation are well-conditioned.
- Finding the k points is cheap.
- The matrix \tilde{A}_{12} is a submatrix of the original matrix A_{12}. (We loosely say that “the physics of the problem is preserved”.)
- Interaction between adjacent boxes can be compressed (no buffering is required).
Similar schemes have been proposed by many researchers:

1993 - C.R. Anderson

1995 - C.L. Berman

1996 - E. Michielssen, A. Boag

1999 - J. Makino

2004 - L. Ying, G. Biros, D. Zorin

A mathematical foundation:

1996 - M. Gu, S. Eisenstat
Let us return to the direct solver environment. Recall:

We convert the system

\[
\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4
\end{bmatrix}.
\]

Fine resolution. Large blocks.

to the reduced system

\[
\begin{bmatrix}
\tilde{A}_{11} & A_{12}^{\text{skel}} & A_{13}^{\text{skel}} & A_{14}^{\text{skel}} \\
A_{21}^{\text{skel}} & \tilde{A}_{22} & A_{23}^{\text{skel}} & A_{24}^{\text{skel}} \\
A_{31}^{\text{skel}} & A_{32}^{\text{skel}} & \tilde{A}_{33} & A_{34}^{\text{skel}} \\
A_{41}^{\text{skel}} & A_{42}^{\text{skel}} & A_{43}^{\text{skel}} & \tilde{A}_{44}
\end{bmatrix}
\begin{bmatrix}
\tilde{x}_1 \\
\tilde{x}_2 \\
\tilde{x}_3 \\
\tilde{x}_4
\end{bmatrix} =
\begin{bmatrix}
\tilde{f}_1 \\
\tilde{f}_2 \\
\tilde{f}_3 \\
\tilde{f}_4
\end{bmatrix}.
\]

Coarse resolution. Small blocks.

We know that \(A_{ij}^{\text{skel}}\) is a submatrix of \(A_{ij}\) when \(i \neq j\).

What is \(\tilde{A}_{ii}\)?
We recall that the new diagonal blocks are defined by

$$\tilde{A}_{ii} = \left(U_i^t \ A_{ii}^{-1} \ U_i \right)^{-1}. $$

We call these blocks “proxy matrices”.

What are they?

Let Γ_1 denote the block marked in red.

Let Γ_2 denote the rest of the domain.

\tilde{A}_{11} contains all the information the outside world needs to know about Γ_1.

We have a diagram showing the flow of charges and potentials between Γ_1 and Γ_2. The blocks are annotated to show the flow of information.
We recall that the new diagonal blocks are defined by

\[
\tilde{A}_{ii} = \left(U^t_i A^{-1}_{ii} U_i \right)^{-1}.
\]

We call these blocks “proxy matrices”.

What are they?

Let \(\Gamma_1 \) denote the block marked in red.

Let \(\Gamma_2 \) denote the rest of the domain.

\(\tilde{A}_{11} \) contains all the information the outside world needs to know about \(\Gamma_1 \).
We recall that the new diagonal blocks are defined by

\[\tilde{A}_{ii} = (U_i^t \ A_{ii}^{-1} \ U_i)^{-1}. \]

We call these blocks “proxy matrices”. What are they?

Let \(\Omega_1 \) denote the block marked in red. Let \(\Omega_2 \) denote the rest of the domain.

\[\tilde{A}_{11} \] contains all the information the outside world needs to know about \(\Omega_1 \).
We recall that the new diagonal blocks are defined by
\[
\tilde{A}_{ii} = \left(U_i^t \ A_{ii}^{-1} \ U_i \right)^{-1}.
\]

We call these blocks “proxy matrices”.

What are they?

Let \(\Omega_1 \) denote the block marked in red.

Let \(\Omega_2 \) denote the rest of the domain.

\(\tilde{A}_{11} \) contains all the information the outside world needs to know about \(\Omega_1 \).
To obtain a globally $O(N)$ scheme, we hierarchically merge proxy matrices.
Numerical examples

In developing direct solvers, the “proof is in the pudding” — recall that from a theoretical point of view, the problem is already solved (by Hackbusch and others).

All computations were performed on standard laptops and desktop computers in the 2.0GHz - 2.8Ghz speed range, and with 512Mb of RAM.
An exterior Helmholtz Dirichlet problem

A smooth contour. Its length is roughly 15 and its horizontal width is 2.
<table>
<thead>
<tr>
<th>k</th>
<th>N_{start}</th>
<th>N_{final}</th>
<th>t_{tot}</th>
<th>t_{solve}</th>
<th>E_{res}</th>
<th>E_{pot}</th>
<th>σ_{min}</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>800</td>
<td>435</td>
<td>1.5e+01</td>
<td>3.3e-02</td>
<td>9.7e-08</td>
<td>7.1e-07</td>
<td>6.5e-01</td>
<td>12758</td>
</tr>
<tr>
<td>40</td>
<td>1600</td>
<td>550</td>
<td>3.0e+01</td>
<td>6.7e-02</td>
<td>6.2e-08</td>
<td>4.0e-08</td>
<td>8.0e-01</td>
<td>25372</td>
</tr>
<tr>
<td>79</td>
<td>3200</td>
<td>683</td>
<td>5.3e+01</td>
<td>1.2e-01</td>
<td>5.3e-08</td>
<td>3.8e-08</td>
<td>3.4e-01</td>
<td>44993</td>
</tr>
<tr>
<td>158</td>
<td>6400</td>
<td>870</td>
<td>9.2e+01</td>
<td>2.0e-01</td>
<td>3.9e-08</td>
<td>2.9e-08</td>
<td>3.4e-01</td>
<td>81679</td>
</tr>
<tr>
<td>316</td>
<td>12800</td>
<td>1179</td>
<td>1.8e+02</td>
<td>3.9e-01</td>
<td>2.3e-08</td>
<td>2.0e-08</td>
<td>3.4e-01</td>
<td>160493</td>
</tr>
<tr>
<td>632</td>
<td>25600</td>
<td>1753</td>
<td>4.3e+02</td>
<td>8.0e-01</td>
<td>1.7e-08</td>
<td>1.4e-08</td>
<td>3.3e-01</td>
<td>350984</td>
</tr>
</tbody>
</table>

Computational results for an exterior Helmholtz Dirichlet problem discretized with 10th order accurate quadrature. The Helmholtz parameter was chosen to keep the number of discretization points per wavelength constant at roughly 45 points per wavelength (resulting in a quadrature error about 10^{-12}).

Eventually \ldots the complexity is $O(n + k^3)$.
Example 2 - An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem with Dirichlet boundary data was solved using $N = 6400$ discretization points, with a prescribed accuracy of 10^{-10}.

For $k = 100.011027569 \cdots$, the smallest singular value of the boundary integral operator was $\sigma_{\text{min}} = 0.00001366 \cdots$.

Time for constructing the inverse: 0.7 seconds.

Error in the inverse: 10^{-5}.
Plot of σ_{min} versus k for an interior Helmholtz problem on the smooth pentagram. The values shown were computed using a matrix of size $N = 6400$. Each point in the graph required about 60s of CPU time.
Example 3:

An electrostatics problem in a dielectrically heterogeneous medium

\[\varepsilon = 10^{-5} \quad N_{\text{contour}} = 25600 \quad N_{\text{particles}} = 100000 \]

Time to invert the boundary integral equation = 46sec.

Time to compute the induced charges = 0.42sec. (2.5sec for the FMM)

Total time for the electro-statics problem = 3.8sec.
A close-up of the particle distribution.
Example 4: Inversion of a “Finite Element Matrix”

A grid conduction problem (the “five-point stencil”).

The conductivity of each bar is a random number drawn from a uniform distribution on [1, 2].
If all conductivities were one, then we would get the standard five-point stencil:

\[
A = \begin{bmatrix}
C & -I & 0 & 0 & \cdots \\
-I & C & -I & 0 & \cdots \\
0 & -I & C & -I & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
4 & -1 & 0 & 0 & \cdots \\
-1 & 4 & -1 & 0 & \cdots \\
0 & -1 & 4 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}.
\]
<table>
<thead>
<tr>
<th>N</th>
<th>T_{invert} (seconds)</th>
<th>T_{apply} (seconds)</th>
<th>M (kB)</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>5.93e-1</td>
<td>2.82e-3</td>
<td>3.82e+2</td>
<td>1.29e-8</td>
<td>1.37e-7</td>
<td>2.61e-8</td>
<td>3.31e-8</td>
</tr>
<tr>
<td>40000</td>
<td>4.69e+0</td>
<td>6.25e-3</td>
<td>9.19e+2</td>
<td>9.35e-9</td>
<td>8.74e-8</td>
<td>4.71e-8</td>
<td>6.47e-8</td>
</tr>
<tr>
<td>90000</td>
<td>1.28e+1</td>
<td>1.27e-2</td>
<td>1.51e+3</td>
<td>—</td>
<td>—</td>
<td>7.98e-8</td>
<td>1.25e-7</td>
</tr>
<tr>
<td>160000</td>
<td>2.87e+1</td>
<td>1.38e-2</td>
<td>2.15e+3</td>
<td>—</td>
<td>—</td>
<td>9.02e-8</td>
<td>1.84e-7</td>
</tr>
<tr>
<td>250000</td>
<td>4.67e+1</td>
<td>1.52e-2</td>
<td>2.80e+3</td>
<td>—</td>
<td>—</td>
<td>1.02e-7</td>
<td>1.14e-7</td>
</tr>
<tr>
<td>360000</td>
<td>7.50e+1</td>
<td>2.62e-2</td>
<td>3.55e+3</td>
<td>—</td>
<td>—</td>
<td>1.37e-7</td>
<td>1.57e-7</td>
</tr>
<tr>
<td>490000</td>
<td>1.13e+2</td>
<td>2.78e-2</td>
<td>4.22e+3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>640000</td>
<td>1.54e+2</td>
<td>2.92e-2</td>
<td>5.45e+3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>810000</td>
<td>1.98e+2</td>
<td>3.09e-2</td>
<td>5.86e+3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1000000</td>
<td>2.45e+2</td>
<td>3.25e-2</td>
<td>6.66e+3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

e_1 The largest error in any entry of \tilde{A}_n^{-1}
e_2 The error in l^2-operator norm of \tilde{A}_n^{-1}
e_3 The l^2-error in the vector $\tilde{A}_n^{-1}r$ where r is a unit vector of random direction.
e_4 The l^2-error in the first column of \tilde{A}_nn^{-1}.

\[
\frac{T_{\text{invert}}}{N} \text{ versus } N
\]
\[\frac{T_{\text{apply}}}{\sqrt{N}} \] versus \(N \)
$\frac{M}{\sqrt{N}}$ versus N.
Recall that the inversion scheme relies crucially on the fact that off-diagonal blocks of the system matrix can be approximated by matrices of low rank.

We will next describe techniques based on randomized sampling for constructing such low rank approximations.

Note that while the techniques themselves are randomized, the underlying problem is deterministic.
What do the spectra of these off-diagonal blocks look like?

Example: Let A be the matrix resulting from the discretization of the double layer potential (for Laplace’s equation) on the following contour:

We partition A into four blocks based on the red/blue partition above:

$$
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
.$$
The 10-logarithm of the singular values of A_{12}.
The 10-logarithm of the singular values of A_{12}.

Now for the case of a Helmholtz problem with $k = 40$.
Example:

Let L be the standard five-point stencil (discrete Laplacian) on a 50×50 grid:

\[
L = \begin{bmatrix}
C & -I & 0 & 0 & \cdots \\
-I & C & -I & 0 & \cdots \\
0 & -I & C & -I & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
4 & -1 & 0 & 0 & \cdots \\
-1 & 4 & -1 & 0 & \cdots \\
0 & -1 & 4 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\]

Let A be the inverse of L, and partition it:

\[
A = L^{-1} = \begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44} \\
\end{bmatrix}
\]

We consider the 625×625 submatrix A_{14} of the 2500×2500 matrix A.

In this case: "fast matrix-vector multiplication" = "fast linear solve"
The 10-logarithm of the singular values of A_{14}.
The 10-logarithm of the singular values of A_{14}.

Now for the case of random coefficients.
Algorithm 1:

Rapid computation of a low-rank approximation.

- Let ε denote the computational accuracy desired.
- Let A be an $m \times n$ matrix of ε-rank k.
- We seek a rank-k approximation of A.
- We can perform matrix-vector multiplies fast.

Let x_1, x_2, \ldots be a sequence of vectors in \mathbb{R}^n whose entries are i.i.d. random variables drawn from a standardized Gaussian distribution.

Form the length-m vectors

$$y_1 = A x_1, \quad y_2 = A x_2, \quad y_3 = A x_3, \quad \ldots$$

Each y_j is a “random linear combination” of columns of A.

If l is an integer such that $l \geq k$, then there is a chance that the vectors

$$\{y_1, y_2, \ldots, y_l\}$$

span the column space of A “to within precision ε”. Clearly, the probability that this happens gets larger, the larger the gap between l and k.
Algorithm 1: Rapid computation of a low-rank approximation.

- Let ε denote the computational accuracy desired.
- Let A be an $m \times n$ matrix of ε-rank k.
- We seek a rank-k approximation of A.
- We can perform matrix-vector multiplies fast.

Let x_1, x_2, \ldots be a sequence of vectors in \mathbb{R}^n whose entries are i.i.d. random variables drawn from a standardized Gaussian distribution.

Form the length-m vectors

$$y_1 = A x_1, \quad y_2 = A x_2, \quad y_3 = A x_3, \quad \ldots$$

Each y_j is a “random linear combination” of columns of A.

If l is an integer such that $l \geq k$, then there is a chance that the vectors

$$\{y_1, y_2, \ldots, y_l\}$$

span the column space of A “to within precision ε”. Clearly, the probability that this happens gets larger, the larger the gap between l and k.

What is remarkable is how fast this probability approaches one.
We illustrate with a numerical example, the same as before:

We partition A into four blocks based on the red/blue partition above:

$$
\begin{bmatrix}
X & B \\
A & Y
\end{bmatrix}.
$$

We seek a low-rank approximation of A.

Generate a sequence \(x_1, x_2, \ldots \) of Gaussian random vectors in \(\mathbb{R}^n \).

Compute \(Y_l = [y_1, y_2, \ldots, y_l] = [A x_1, A x_2, \ldots, A x_l] \).

Compute the (column pivoted) QR-factorization \(Y_l = Q_l R_l P_l \).

The “error” after \(l \) steps is (using the \(l^2 \)-operator norm)

\[
e_l = \| (I - Q_l Q_l^t) A \|.
\]

In reality, computing \(e_l \) is not affordable. Instead, we compute something like

\[
f_l = \max_{1 \leq j \leq 10} \| (I - Q_l Q_l^t) y_{l+j} \|.
\]

The computation stops when we come to an \(l \) such that \(f_l < \varepsilon \).

(Notice that plenty of operations here can be optimized. A lot.)
\[\varepsilon = 10^{-10}, \quad \text{exact } \varepsilon\text{-rank } = 34, \quad \text{nr. of matrix-vector multiplies required } = 36. \]
Was this just a lucky realization?

We collected statistics from 1 000 000 realizations:

(Recall that the exact ε-rank is 34.)

<table>
<thead>
<tr>
<th>Number of matrix-vector multiplies required:</th>
<th>Frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 (+10)</td>
<td>15063</td>
</tr>
<tr>
<td>35 (+10)</td>
<td>376163</td>
</tr>
<tr>
<td>36 (+10)</td>
<td>485124</td>
</tr>
<tr>
<td>37 (+10)</td>
<td>113928</td>
</tr>
<tr>
<td>38 (+10)</td>
<td>9420</td>
</tr>
<tr>
<td>39 (+10)</td>
<td>299</td>
</tr>
<tr>
<td>40 (+10)</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The post-processing correctly determined the rank to be 34 *every time*, and the error in the factorization was *always* less than 10^{-10}.
... compare to Monte Carlo ...
Results from a high-frequency Helmholtz problem (complex arithmetic):

$$\varepsilon = 10^{-10}, \quad \text{exact } \varepsilon\text{-rank } = 101, \quad \text{nr. of matrix-vector multiplies required } = 106.$$
Note:

Once you have a basis for the column space, you can cheaply get any factorization you want.

To see this, suppose that Q is an orthonormal basis for the column space of A;

$$A = Q Q^t A.$$

Then compute $Q^t A$ and then compute the SVD of this $k \times n$ matrix:

$$Q^t A = \tilde{U} D V^t.$$

Then

$$A = Q \left(Q^t A \right) = Q \tilde{U} D V^t = U D V^t.$$

In many environments, it is not even necessary to compute $Q^t A \ldots$
Theorem: Let A be an $m \times n$ matrix and let k be an integer.

Let l be an integer such that $l \geq k$.

Let G be an $n \times l$ matrix with i.i.d. Gaussian elements.

Let Q be an $m \times l$ matrix whose columns form an ON-basis for the columns of AG.

Let σ_{k+1} denote the $(k+1)$’th singular value of A.

Then

$$||A - QQ^t A||_2 \leq 10 \sqrt{l}m \sigma_{k+1},$$

with probability at least

$$1 - \varphi(l - k),$$

where φ is a decreasing function satisfying

$$\varphi(8) < 10^{-5}$$

$$\varphi(20) < 10^{-17}.$$
Recall the error bound:

$$||A - QQ^t A||_2 \leq 10 \sqrt{lm} \sigma_{k+1},$$

The high-lighted factor is somewhat undesirable for a couple of reasons:

- The algorithm cannot determine the ε-rank if ε is too close to the computational precision.

- There could be problems in cases where the singular values decay slowly.

Important: In the applications that we have in mind, the singular values decay exponentially. In such cases, the only effect of the \sqrt{lm} factor is that a couple too many random vectors may be generated. *The computed decomposition is still accurate to precision ε.***
How does Algorithm I perform when we do not have a fast method for applying A to a vector?

When $k \ll \min(m, n)$, Algorithm 1 might be slightly faster than Gram-Schmidt:

\[
\text{Multiplications required for Algorithm 1:} \quad mn(k + 10) + O(k^2(m + n)).
\]

\[
\text{Multiplications required for Gram-Schmidt:} \quad mn2k + O(k^2(m + n)).
\]

Other potential benefits:

- Data-movement.
- Parallelization.

However, many environments remain in which there is little or no gain.
Algorithm 2: An O(mn log(k)) algorithm for general matrices:

Work by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. (The speaker was — much to his regret — not involved with this development.)

Recall that Algorithm 1 determines a basis for the column space from the matrix

\[Y = A G. \]

\[m \times l \quad m \times n \quad n \times l \]

Key points:

- The product \(x \mapsto Ax \) can be evaluated rapidly.
- The entries of \(G \) are i.i.d. random numbers.

What if we do not have a fast algorithm for computing \(x \mapsto Ax \)?

New idea: Construct \(G \) with “some randomness” and “some structure”. Then for each \(1 \times n \) row \(a \) of \(A \), the matrix-vector product

\[a \mapsto a G \]

can be evaluated using \(n \log(l) \) operations.
What is this “random but structured” matrix G?

$$G = D \quad F \quad S$$

$n \times l$ $n \times n$ $n \times n$ $n \times l$

where,

- D is a diagonal matrix whose entries are i.i.d. random variables drawn from a uniform distribution on the unit circle in \mathbb{C}.

- F is the discrete Fourier transform, $F_{jk} = e^{-2\pi i (j-1)(k-1)/n}$.

- S is a matrix whose entries are all zeros except for a single, randomly placed 1 in each column. (In other words, the action of S is to draw l columns at random from DF.)

Note: Other successful choices of the matrix G have been tested, for instance, the Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006). There is also related recent work by Sarlós (on randomized regression).
What is the probability of failure?

The proofs obtained so far do not assure quite as high likelihood of success as the proofs for Algorithm 1 did. (Say $1 - 10^{-7}$ instead of $1 - 10^{-17}$.)

The proofs may not be sharp however. An indication that this may be the case is that the algorithm has never failed during testing.

Should it prove to be the case that Algorithm 2 occasionally fails, a cheap verification can be put in place. (Simply note that the difference between A and the computed approximation to A can rapidly be applied to a vector.)
The time required to verify the approximation is included in the fast, but not in the classical timings.

This slide comes from a talk by Mark Tygert.
The estimates of the accuracy of the approximation are accurate to at least two digits of relative precision.

This slide comes from a talk by Mark Tygert.
It is time to definitively deal with linear boundary value problems:

- We need to develop machinery for dealing with surfaces.
- We need faster and more robust solvers.

Fast direct solvers:

- 3D surface integral equations. Theory mostly finished. (Or is it?)

Randomized sampling:

- More stable in the Lanczos environment. Probably faster too.
- For general matrices, it is $O(m n \log(k))$.
- Very interesting tool for coarse graining in physical sciences.
- Applications to network analysis, data mining, etc.