Separable differential equations:

Consider the DE:

$$
\frac{d y}{d t}=h(t) g(y)
$$

Solution recipe:

1. Collect terms:

$$
\frac{1}{g(y)} d y=h(t) d t
$$

2. Integrate:

$$
\int \frac{1}{g(y)} d y=\int h(t) d t+C
$$

In other words, find primitive functions H and G such that $H^{\prime}(t)=h(t)$ and $G^{\prime}(y)=\frac{1}{g(y)}$.
The solution is then

$$
\begin{equation*}
G(y)=H(t)+C . \tag{1}
\end{equation*}
$$

3. If you have an initial condition, you can determine C.
4. If possible, you can solve (1) for y, if you so desire.

Note: If you are given an initial condition, you can use definite integrals in step 3:

$$
\int_{y_{0}}^{y} \frac{1}{g(z)} d z=\int_{t_{0}}^{t} h(s) d s .
$$

Rigorous verification that the solution method works:

Consider a separable DE

$$
\begin{equation*}
\frac{d y}{d t}=h(t) g(y) \tag{2}
\end{equation*}
$$

On the previous slide, we in a questionable way derived the solution:

$$
\begin{equation*}
G(y(t))=H(t)+C . \tag{3}
\end{equation*}
$$

where

$$
G^{\prime}(y)=\frac{1}{g(y)} \quad \text { and } \quad H^{\prime}(t)=h(t)
$$

Let us differentiate the solution (3), using the chain rule,

$$
\frac{d y}{d t} G^{\prime}(y(t))=H^{\prime}(t) .
$$

This simplifies to

$$
\frac{d y}{d t} \frac{1}{g(y)}=h(t)
$$

Multiply by $g(y)$ to see that we do indeed satisfy the DE (2).

Example: Consider the equation

$$
\frac{d y}{d t}=-2 t y
$$

First note that $y=0$ is an equilibrium point.
Then collect terms (assuming $y \neq 0$):

$$
\frac{d y}{y}=-2 t d t
$$

Then integrate both sides:

$$
\log |y|=-t^{2}+C
$$

Solve for y :

$$
|y|=e^{-t^{2}+C}=e^{C} e^{-t^{2}}=\left\{\text { Set } D=e^{C}\right\}=D e^{-t^{2}}
$$

Observe that $D>0$. Removing the absolute value, we find

$$
y= \pm D e^{-t^{2}}
$$

We can summarize all solutions we found as:

$$
y(t)=A e^{-t^{2}} \text { where } A \text { is any real number. }
$$

The differential equation $d y / d t=-2^{*} t^{*} y$

The differential equation $d y / d t=-2^{*} t^{*} y$

The differential equation $d y / d t=-2^{*} t^{*} y$

Example: Consider the equation

$$
\frac{d y}{d t}=-\frac{t}{y}
$$

First observe that there are no equilibrium solutions. ($y=0$ is a singular point.)
Collect terms:

$$
y d y=-t d t
$$

Integrate:

$$
\frac{1}{2} y^{2}=-\frac{1}{2} t^{2}+C
$$

Reformulate slightly:

$$
y^{2}+t^{2}=2 C
$$

You could solve for y to get:

$$
y(t)= \pm \sqrt{2 C-t^{2}}
$$

The differential equation $d y / d t=-t / y$

The differential equation $d y / d t=-t / y$

The differential equation $d y / d t=-t / y$

Section 1.4: Euler's method for solving DEs

Consider a DE:

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y) \\
y(a)=y_{0}
\end{array}\right.
$$

We seek a solution on the interval $I=[a, b]$.
How would you find an approximate solution using a computer?
In the example that follows we solve the very simple equation

$$
\left\{\begin{array}{l}
y^{\prime}(t)=y \\
y(0)=y_{0}=0.3
\end{array}\right.
$$

The forwards Euler method - starting conditions ($h=0.50$)

The forwards Euler method - step $1(\mathrm{~h}=0.50)$

The forwards Euler method - step $2(\mathrm{~h}=0.50)$

The forwards Euler method - step $3(\mathrm{~h}=0.50)$

The forwards Euler method - step $4(\mathrm{~h}=0.50)$

The forwards Euler method: $\mathrm{N}=4$ error $=0.6980$

The forwards Euler method: $\mathrm{N}=8$ error $=0.4286$

The forwards Euler method: $\mathrm{N}=16$ error $=0.2417$

The forwards Euler method: $\mathrm{N}=32$ error $=0.1291$

| 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Section 1.4: Euler's method for solving DEs

Consider a DE:

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y), \\
y(a)=y_{0}
\end{array}\right.
$$

We seek a solution on the interval $I=[a, b]$.
Split the interval into N points, separated a distance $h=\frac{b-a}{N}$:

$$
t_{0}=a, \quad t_{1}=a+h, \quad t_{2}=a+2 h \quad t_{3}=a+3 h, \quad \cdots \quad t_{N}=b
$$

Now approximate $y(t)$ by a sequence of straight lines:

$$
\begin{aligned}
& y_{0}=y_{0} \\
& y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right) \\
& y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right) \\
& y_{3}=y_{2}+h f\left(t_{2}, y_{2}\right)
\end{aligned}
$$

Section 1.4: Euler's method for solving DEs

Key points about Euler's method (a.k.a. "the Forwards Euler method"):

- You should know the formula.
- You should know that the error depends on the number of intervals used. Roughly, if you double the number of intervals, you half the error. Technically, we say the error E satisfies $E=O(h)$ or, equivalently, $E=O(1 / N)$.
- This method is extremely simple to use, which is why we teach it in APPM2360. However, it is a very bad method.
- There are other easy-to-use methods that are much better! If you need to code up a method, then read up a little.
(Or take more APPM courses!)
- Even better, there are black-box numerical integrators that are extremely good and also very easy to use.
- You specify a desired error, the black-box figures out what h should be.
- The step-size changes from step-to-step!

Consider a DE: $\left\{\begin{array}{l}y^{\prime}(t)=f(t, y), \\ y(a)=y_{0} .\end{array}\right.$
An "ad hoc" scheme whose error decays as $1 / N^{2}$ as $N \rightarrow \infty$
First compute y_{1} using forwards Euler: $y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)$.
Then proceed via the formula: $y_{n+1}=y_{n-1}+2 h f\left(t_{n}, y_{n}\right)$
The second order "Runge-Kutta" method:
Given y_{n}, compute two intermediate values:

$$
\begin{aligned}
& k_{1}=f\left(t_{n}, y_{n}\right) \\
& k_{2}=f\left(t_{n}+(1 / 2) h, y_{n}+(1 / 2) h k_{1}\right)
\end{aligned}
$$

Then $y_{n+1}=y_{n}+h k_{2}$.
The fourth order "Runge-Kutta" method:
Given y_{n}, compute four intermediate values:

$$
\begin{aligned}
& k_{1}=f\left(t_{n}, y_{n}\right), \\
& k_{2}=f\left(t_{n}+(1 / 2) h, y_{n}+(1 / 2) h k_{1}\right), \\
& k_{3}=f\left(t_{n}+(1 / 2) h, y_{n}+(1 / 2) h k_{2}\right), \\
& k_{4}=f\left(t_{n}+h, y_{n}+h k_{3}\right) .
\end{aligned}
$$

Then $y_{n+1}=y_{n}+h \frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$.

