Sections 4.2 and 4.3: Higher order equations

Recall that we seek a solution of the form $x(t) = e^{rt}$ to the ODE

$$\ddot{x} + b\ddot{x} + cx = 0.$$

Inserting $x = e^{rt}$ into (1) we find

$$r^2 e^{rt} + br e^{rt} + c e^{rt} = 0.$$

Since $e^{rt} \neq 0$, we find that (1) is satisfied if and only if

(2)
$$r^2 + br + c = 0.$$

The roots of (2) are $r_1 = -\frac{b}{2} + \sqrt{\frac{b^2}{4} - c}$, and $r_2 = -\frac{b}{2} - \sqrt{\frac{b^2}{4} - c}$. *Good news:* Since (2) has always at least one root, there is at least one solution $x = e^{rt}$! *Less good news:* The roots could be *complex*.

There are three different cases, depending on the sign of $b^2/4 - c$. **Case 1:** $b^2/4 - c > 0 \Rightarrow r_{1,2} = -b/2 \pm \alpha$ where $\alpha = \sqrt{b^2/4 - c}$. **Case 2:** $b^2/4 - c < 0 \Rightarrow r_{1,2} = -b/2 \pm i\beta$ where $\beta = \sqrt{c - b^2/4}$. **Case 3:** $b^2/4 - c = 0 \Rightarrow r = r_2 = r_2 = -b/2$. **Recall:** Solution of $\ddot{x} + b\ddot{x} + cx = 0$ depends on the roots $r_{1,2} = -\frac{b}{2} + \sqrt{b^2/4 - c}$ of $r^2 + br + c = 0$.

Case 1: $b^2/4 - c > 0$ Set $\alpha = \sqrt{b^2/4 - c}$ so $r_{1,2} = -b/2 \pm \alpha$. Then the solution is $x(t) = A e^{r_1 t} + B e^{r_2 t}$.

Case 2: $b^2/4 - c < 0$ Set $\beta = \sqrt{c - b^2/4}$ so $r_{1,2} = -b/2 \pm i\beta$. Then the solution is $x(t) = A e^{r_1 t} + B e^{r_2 t} = A e^{-bt/2 + i\beta t} + B e^{-bt/2 - i\beta t}$ $= e^{-bt/2} (A e^{i\beta t} + B e^{-i\beta t}) = e^{-bt/2} (A \cos(\beta t) + iA \sin(\beta t) + B \cos(\beta t) - iB \sin(\beta t)))$ $= (A+B) e^{-bt/2} A \cos(\beta t) + (iA - iB) e^{-bt/2} \sin(\beta t) = C e^{-bt/2} A \cos(\beta t) + D e^{-bt/2} \sin(\beta t),$ where we defined new constants C = A + B and D = iA - iB.

Case 3: $b^2/4 - c = 0$ Now we have a double-root $r = r_1 = r_2 = -b/2$. In this case, one solution is given by

$$x(t)=e^{rt}=e^{-bt/2}.$$

But what is the other solution? ... One can show (and we will!) that the other solution is $x(t) = t e^{-bt/2}$, so the final general solution is

 $x(t) = A e^{-bt/2} + B t e^{-bt/2}$.

$$\ddot{x} + b\ddot{x} + 4x = 0,$$
 $x(0) = 1,$ $\dot{x}(0) = 0$

for the values b = 0, b = 2, b = 5, and b = 4.

Suppose b = 0: We seek to solve

$$\ddot{x}+4x=0.$$

The characteristic equation is

$$r^2 + 4 = 0,$$

with roots

$$r_1 = 2i$$
 $r_2 = -2i$.

The general solution is

$$x(t) = A \cos(2t) + B \sin(2t).$$

Using the initial conditions, we find

 $A \cos(0) + B \sin(0) = 1$ $-2A \sin(0) + 2B \cos(0) = 0$,

with solution A = 1 and B = 0. So the final solution is

 $x(t)=\cos(2t).$

$$\ddot{x} + b\ddot{x} + 4x = 0,$$
 $x(0) = 1,$ $\dot{x}(0) = 0$

for the values b = 0, b = 2, b = 5, and b = 4.

Suppose b = 2: We seek to solve

$$\ddot{x}+2\dot{x}+4\,x=0.$$

The characteristic equation is

$$r^2 + 2r + 4 = 0,$$

with roots

$$r_1 = -1 + i\sqrt{3}$$
 $r_2 = -1 - i\sqrt{3}$.

The general solution is

$$x(t) = A e^{-t} \cos(\sqrt{3}t) + B e^{-t} \sin(\sqrt{3}t).$$

Using the initial conditions, we find

$$A=1 \qquad -A+\sqrt{3}B=0,$$

with solution A = 1 and $B = 1/\sqrt{3}$. So the final solution is

$$x(t) = e^{-t} \left(\cos(\sqrt{3}t) + \frac{1}{\sqrt{3}} \sin(\sqrt{3}t) \right)$$

$$\ddot{x} + b\ddot{x} + 4x = 0,$$
 $x(0) = 1,$ $\dot{x}(0) = 0$

for the values b = 0, b = 2, b = 5, and b = 4.

Suppose b = 5: We seek to solve

$$\ddot{x}+5\dot{x}+4\,x=0.$$

The characteristic equation is

$$r^2 + 5r + 4 = 0,$$

with roots

$$r_1 = -1$$
 $r_2 = -4$.

The general solution is

$$x(t) = A e^{-t} + B e^{-4t}.$$

Using the initial conditions, we find

$$A+B=1$$
 $-A-4B=0$,

with solution A = 4/3 and B = -1/3. So the final solution is

$$x(t) = \frac{4}{3}e^{-t} - \frac{1}{3}e^{-4t}.$$

$$\ddot{x} + b\ddot{x} + 4x = 0,$$
 $x(0) = 1,$ $\dot{x}(0) = 0$

for the values b = 0, b = 2, b = 5, and b = 4.

Suppose b = 4: We seek to solve

$$\ddot{x}+4\dot{x}+4\,x=0.$$

The characteristic equation is

$$r^2 + 4r + 4 = 0$$
,

with *double root*

r = −2.

The general solution is

$$x(t) = A e^{-2t} + B t e^{-2t}$$
.

Using the initial conditions, we find

$$A = 1 \qquad -2A + B = 0,$$

with solution A = 1 and B = 2. So the final solution is

 $x(t)=\left(1+2t\right)e^{-2t}.$

Solution curves to $\ddot{x} + b\dot{x} + 4x = 0$, x(0) = 1, $\dot{x}(0) = 1$.

Phase plots to $\ddot{x} + b\dot{x} + 4x = 0$, x(0) = 1, $\dot{x}(0) = 1$.

Plot of max(real(
$$-b/2 \pm \sqrt{b^2/4 - c}$$
)).

The min at b = 4 corresponds to *critical damping* — the fastest return to equilibrium.

Theorem: Let (a, b) be an interval on the real line, and let $t_0 \in (a, b)$.

Let p and q be *continuous* functions on (a, b). Then:

1. For any real numbers x_0 and y_0 , there is a unique solution on (a, b) to the equation

(3)
$$\begin{cases} \ddot{x} + p \, \dot{x} + q \, x = 0 \\ x(t_0) = x_0 \\ \dot{x}(t_0) = y_0. \end{cases}$$

2. If x_1 and x_2 are two linearly independent solutions of $\ddot{x} + p \dot{x} + q x = 0$, then any solution of (3) takes the form $x = c_1 x_1 + c_2 x_2$, for some constants c_1 and c_2 .

3. The set
$$V = \{x \in C^2(I) : \ddot{x} + p\dot{x} + qx = 0\}$$
 is a two-dimensional vector space.

Proof: Rewrite as a *system* of first order equations, and apply Picard's theorem. See book for details.

Theorem: Let (a, b) be an interval on the real line, and let $t_0 \in (a, b)$.

Let p and q be *continuous* functions on (a, b). Then:

1. For any real numbers x_0 and y_0 , there is a unique solution on (a, b) to the equation

(3)
$$\begin{cases} \ddot{x} + p \, \dot{x} + q \, x = 0 \\ x(t_0) = x_0 \\ \dot{x}(t_0) = y_0. \end{cases}$$

2. If x_1 and x_2 are two linearly independent solutions of $\ddot{x} + p \dot{x} + q x = 0$, then any solution of (3) takes the form $x = c_1 x_1 + c_2 x_2$, for some constants c_1 and c_2 .

3. The set $V = \{x \in C^2(I) : \ddot{x} + p\dot{x} + qx = 0\}$ is a two-dimensional vector space.

Let *b* be a real number, and let us apply the theorem to the equation $\ddot{x} - 2b\dot{x} + b^2x = 0$. The characteristic equation is $r^2 - 2br + b^2 = 0$, which has the double root r = b. So we know that $x_1(t) = e^{bt}$ is one solution. Now consider the function $x_2(t) = t e^{bt}$. We find that $\dot{x}_2 = e^{bt} + bt e^{bt}$ and $\ddot{x}_2 = 2b e^{bt} + b^2 t e^{bt}$, so $\ddot{x} - 2b\dot{x} + b^2 x = 2b e^{bt} + b^2 t e^{bt} - 2b e^{bt} - 2b^2 t e^{bt} + b^2 t e^{bt} = 0$.

We have found two solutions to the ODE. The set $\{x_1, x_2\}$ is linearly independent. The theorem shows that *any* solution to $\ddot{x} - 2b\dot{x} + b^2x = 0$ is of the form $x = Ae^{bt} + Bte^{bt}$.

Theorem: Let (a, b) be an interval on the real line, and let $t_0 \in (a, b)$.

Let p and q be *continuous* functions on (a, b). Then:

1. For any real numbers x_0 and y_0 , there is a unique solution on (a, b) to the equation

(3)
$$\begin{cases} \ddot{x} + p \, \dot{x} + q \, x = 0 \\ x(t_0) = x_0 \\ \dot{x}(t_0) = y_0. \end{cases}$$

2. If x_1 and x_2 are two linearly independent solutions of $\ddot{x} + p \dot{x} + q x = 0$, then any solution of (3) takes the form $x = c_1 x_1 + c_2 x_2$, for some constants c_1 and c_2 .

3. The set $V = \{x \in C^2(I) : \ddot{x} + p\dot{x} + qx = 0\}$ is a two-dimensional vector space.

Corollary: Suppose that *b* is a real number, and consider the ODE

$$\ddot{x}-2b\,\dot{x}+b^2\,x=0$$

The characteristic equation is $r^2 - 2br + b^2$ which has the double root r = b. Then 1. The functions $x_1(t) = e^{bt}$ and $x_2(t) = t e^{bt}$ both solve (4).

2. Any solution to (4) takes the form $x = c_1 x_1 + c_2 x_2$ for some constants c_1 and c_2 .

The existence theorem can be generalized to higher order equations:

Theorem: Let (a, b) be an interval on the real line, and let $t_0 \in (a, b)$. Let $a_0, a_1, a_2, \ldots, a_{n-1}$ be continuous functions on (a, b). Then the equation

(5)
$$\frac{dx^n}{dt^n} + a_{n-1}(t)\frac{dx^{n-1}}{dt^{n-1}} + \dots + a_1(t)\frac{dx}{dt} + a_0(t)x(t) = 0$$

has a solution space of dimension precisely *n*. Moreover, for any $t_0 \in (a, b)$, and for any real numbers $b_0, b_1, b_2, \ldots, b_{n-1}$, there is precisely one solution of (5) that satisfies

$$x(t_0) = b_0,$$
 $x'(t_0) = b_1,$ $x''(t_0) = b_2,$ $x^{(n-1)}(t_0) = b_{n-1},$

Now suppose that we *somehow* (it doesn't matter how!) find a set of solutions $\{x_1, x_2, ..., x_m\}$ to (5). Do these form a basis for the solution space?

- If m < n, then no they cannot possibly span an *n*-dimensional space.
- If m > n, then no they cannot possibly be linearly independent.
- If m = n, you need to check if they are *linearly indep*. If they are, then yes!

Wronskians: Suppose that we are given a set $\{f_1, f_2, ..., f_n\}$ of functions on an interval *I*, and want to know if the set is linearly independent. One technique that is conceptually straight-forward, but can take some work to execute if *n* is larger than 3, is to form the so called *Wronskian*,

$$W(t) = \det \begin{bmatrix} f_1(t) & f_2(t) & f_3(t) \cdots & f_n(t) \\ f'_1(t) & f'_2(t) & f'_3(t) \cdots & f'_n(t) \\ f''_1(t) & f''_2(t) & f''_3(t) \cdots & f''_n(t) \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n)}(t) & f_2^{(n)}(t) & f_3^{(n)}(t) \cdots & f_n^{(n)}(t) \end{bmatrix}.$$

The Wronskian can be used to detect linear independence:

 $W(t) \neq 0$ for some $t \in I \implies$ the set is linearly independent.

In general, it might be that W(t) = 0 for every t even for a linearly independent set. However: If $\{f_1, f_2, ..., f_n\}$ all solve a n'th order linear DE, then we have W(t) = 0 for some $t \in I \implies$ the set is linearly dependent. **Example:** Let I = [1, 3], and consider for t in this interval, the equation

(6)
$$t^{3}y''' - t^{2}y'' + 2ty' - 2y = 0.$$

Set $y_1(t) = t$, $y_2(t) = t^2$, $y_3(t) = t \log(t)$.

Prove that any solution of (6) takes the form $x = c_1 y_1 + c_2 y_2 + c_3 y_3!$

Solution: For $t \in I$, we have $t^3 \neq 0$, so (6) $\Leftrightarrow y''' - \frac{1}{t}y'' + \frac{2}{t^2}y' - \frac{2}{t^3}y = 0$. Existence theorem applies, and the solution space has dimension three. So the claim follows if we can prove (a) that every y_j is a solution and (b) that $\{y_1, y_2, y_3\}$ is lin. indep.

Verify that y_3 is a solution: We find $y'_3 = \log t + 1$, $y''_3 = 1/t$, and $y'''_3 = -1/t^2$. Inserting into (6) we find $t^3 (-1/t^2) - t^2 (1/t) + 2t (\log t + 1) - 2t \log t = 0$.

... you show that y_1 and y_2 are solutions analogously ...

Show that $\{y_1, y_2, y_3\}$ is linearly indep: We form the Wronskian

$$W(t) = \det \begin{bmatrix} t & t^2 & t \log t \\ 1 & 2t & 1 + \log t \\ 0 & 2 & 1/t \end{bmatrix} = 2t + 0 + 2t \log t - 0 - 2t(1 + \log t) - t = -t.$$

Since $W(t) \neq 0$ on *I*, we knot that $\{y_1, y_2, y_3\}$ is linearly independent!

Now consider a *constant coefficient* ODE

(7)
$$x^{(n)} + a_{n-1}x^{(n-1)} + a_{n-2}x^{(n-2)} + \cdots + a_1x' + a_0x = 0.$$

Inserting the test solution $x(t) = e^{rt}$ into (7), we find

$$(r^{n} + a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + \cdots + a_{1}r + a_{0})e^{rt} = 0.$$

The characteristic polynomial always has at least one root, so there is *always* at least one solution of the form $x(t) = e^{rt}$.

Suppose that the characteristic polynomial has *n* distinct roots $r_1, r_2, ..., r_n$. Then

$$\{e^{r_1t}, e^{r_2t}, \ldots, e^{r_nt}\}$$

is a basis for the solution space of (7), and so any solution can be written

$$x(t) = A_1 e^{r_1 t} + A_2 e^{r_2 t} + \cdots + A_n e^{r_n t}.$$

Example: Find the general solution to

$$\frac{dx^4}{dt^4} - 16x = 0.$$

Solution: First observe that the characteristic equation is

$$r^4 - 16 = 0.$$

The roots of this equation are

$$r_1 = 2,$$
 $r_2 = -2,$ $r_3 = 2i,$ $r_4 = -2i,$

and so the general solution is

$$x(t) = c_1 e^{2t} + c_2 e^{-2t} + c_3 e^{i2t} + c_4 e^{-i2t}.$$

If we want a purely *real* formulation, then observe that

$$x(t) = c_1 e^{2t} + c_2 e^{-2t} + (c_3 + c_4) \cos(2t) + (ic_3 - ic_4) \sin(2t)$$

Now set $d_1 = c_3 + c_4$ and $d_2 = ic_3 - c_4$ to obtain

$$x(t) = c_1 e^{2t} + c_2 e^{-2t} + d_1 \cos(2t) + d_2 \sin(2t).$$

Example: Find the general solution to

$$x''' + 5x'' + 3x' - 9 = 0.$$

Hint: One solution is given by $x(t) = e^{t}$!

Solution: First observe that the characteristic equation is

$$r^3 + 5r^2 + 3r - 9 = 0.$$

The hint tells us that $r_1 = 1$ is one solution, which allows us to factor

$$r^{3} + 5r^{2} + 3r - 9 = (r - 1)(r^{2} + 6r + 9).$$

The remaining two roots are then

$$r_{2,3} = -3 \pm \sqrt{3^2 - 9} = -3$$

Since -3 is a double root, we find that the general solution is

$$x(t) = A e^{t} + B e^{-3t} + C t e^{-3t}$$

	Exam 1	Exam 2	Exam 3	Final
Mean	64	72		
Median	65	73		
SD		15		
C- cutoff	38	49		
High score	99 (× 3)	100 (× 5)		