Sections 4.2 and 4.3: Higher order equations

Recall that we seek a solution of the form $x(t)=e^{r t}$ to the ODE

$$
\begin{equation*}
\ddot{x}+b \ddot{x}+c x=0 . \tag{1}
\end{equation*}
$$

Inserting $x=e^{r t}$ into (1) we find

$$
r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0
$$

Since $e^{r t} \neq 0$, we find that (1) is satisfied if and only if

$$
\begin{equation*}
r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

The roots of (2) are $r_{1}=-\frac{b}{2}+\sqrt{\frac{b^{2}}{4}-c}, \quad$ and $\quad r_{2}=-\frac{b}{2}-\sqrt{\frac{b^{2}}{4}-c}$.
Good news: Since (2) has always at least one root, there is at least one solution $x=e^{r t}$!
Less good news: The roots could be complex.
There are three different cases, depending on the sign of $b^{2} / 4-c$.
Case 1: $b^{2} / 4-c>0 \Rightarrow r_{1,2}=-b / 2 \pm \alpha$ where $\alpha=\sqrt{b^{2} / 4-c}$.
Case 2: $b^{2} / 4-c<0 \quad \Rightarrow \quad r_{1,2}=-b / 2 \pm i \beta$ where $\beta=\sqrt{c-b^{2} / 4}$.
Case 3: $b^{2} / 4-c=0 \Rightarrow r=r_{2}=r_{2}=-b / 2$.

Recall: Solution of $\ddot{x}+b \ddot{x}+c x=0$ depends on the roots $r_{1,2}=-\frac{b}{2}+\sqrt{b^{2} / 4-c}$ of $r^{2}+b r+c=0$.
Case 1: $b^{2} / 4-c>0$ Set $\alpha=\sqrt{b^{2} / 4-c}$ so $r_{1,2}=-b / 2 \pm \alpha$. Then the solution is

$$
x(t)=A e^{r_{1} t}+B e^{r_{2} t}
$$

Case 2: $b^{2} / 4-c<0$ Set $\beta=\sqrt{c-b^{2} / 4}$ so $r_{1,2}=-b / 2 \pm i \beta$. Then the solution is $x(t)=A e^{r_{1} t}+B e^{r_{2} t}=A e^{-b t / 2+i \beta t}+B e^{-b t / 2-i \beta t}$ $=e^{-b t / 2}\left(A e^{i \beta t}+B e^{-i \beta t}\right)=e^{-b t / 2}(A \cos (\beta t)+i A \sin (\beta t)+B \cos (\beta t)-i B \sin (\beta t))$
$=(A+B) e^{-b t / 2} A \cos (\beta t)+(i A-i B) e^{-b t / 2} \sin (\beta t)=C e^{-b t / 2} A \cos (\beta t)+D e^{-b t / 2} \sin (\beta t)$,
where we defined new constants $C=A+B$ and $D=i A-i B$.

Case 3: $b^{2} / 4-c=0$ Now we have a double-root $r=r_{1}=r_{2}=-b / 2$. In this case, one solution is given by

$$
x(t)=e^{r t}=e^{-b t / 2}
$$

But what is the other solution? ... One can show (and we will!) that the other solution is $x(t)=t e^{-b t / 2}$, so the final general solution is

$$
x(t)=A e^{-b t / 2}+B t e^{-b t / 2}
$$

Example: Solve the initial value problem

$$
\ddot{x}+b \ddot{x}+4 x=0, \quad x(0)=1, \quad \dot{x}(0)=0
$$

for the values $b=0, b=2, b=5$, and $b=4$.
Suppose $b=0$: We seek to solve

$$
\ddot{x}+4 x=0 .
$$

The characteristic equation is

$$
r^{2}+4=0
$$

with roots

$$
r_{1}=2 i \quad r_{2}=-2 i
$$

The general solution is

$$
x(t)=A \cos (2 t)+B \sin (2 t)
$$

Using the initial conditions, we find

$$
A \cos (0)+B \sin (0)=1 \quad-2 A \sin (0)+2 B \cos (0)=0
$$

with solution $A=1$ and $B=0$. So the final solution is

$$
x(t)=\cos (2 t)
$$

Example: Solve the initial value problem

$$
\ddot{x}+b \ddot{x}+4 x=0, \quad x(0)=1, \quad \dot{x}(0)=0
$$

for the values $b=0, b=2, b=5$, and $b=4$.
Suppose $b=2$: We seek to solve

$$
\ddot{x}+2 \dot{x}+4 x=0 .
$$

The characteristic equation is

$$
r^{2}+2 r+4=0
$$

with roots

$$
r_{1}=-1+i \sqrt{3} \quad r_{2}=-1-i \sqrt{3}
$$

The general solution is

$$
x(t)=A e^{-t} \cos (\sqrt{3} t)+B e^{-t} \sin (\sqrt{3} t)
$$

Using the initial conditions, we find

$$
A=1 \quad-A+\sqrt{3} B=0
$$

with solution $A=1$ and $B=1 / \sqrt{3}$. So the final solution is

$$
x(t)=e^{-t}\left(\cos (\sqrt{3} t)+\frac{1}{\sqrt{3}} \sin (\sqrt{3} t)\right)
$$

Example: Solve the initial value problem

$$
\ddot{x}+b \ddot{x}+4 x=0, \quad x(0)=1, \quad \dot{x}(0)=0
$$

for the values $b=0, b=2, b=5$, and $b=4$.
Suppose $b=5$: We seek to solve

$$
\ddot{x}+5 \dot{x}+4 x=0 .
$$

The characteristic equation is

$$
r^{2}+5 r+4=0
$$

with roots

$$
r_{1}=-1 \quad r_{2}=-4
$$

The general solution is

$$
x(t)=A e^{-t}+B e^{-4 t}
$$

Using the initial conditions, we find

$$
A+B=1 \quad-A-4 B=0
$$

with solution $A=4 / 3$ and $B=-1 / 3$. So the final solution is

$$
x(t)=\frac{4}{3} e^{-t}-\frac{1}{3} e^{-4 t}
$$

Example: Solve the initial value problem

$$
\ddot{x}+b \ddot{x}+4 x=0, \quad x(0)=1, \quad \dot{x}(0)=0
$$

for the values $b=0, b=2, b=5$, and $b=4$.
Suppose $b=4$: We seek to solve

$$
\ddot{x}+4 \dot{x}+4 x=0 .
$$

The characteristic equation is

$$
r^{2}+4 r+4=0
$$

with double root

$$
r=-2
$$

The general solution is

$$
x(t)=A e^{-2 t}+B t e^{-2 t}
$$

Using the initial conditions, we find

$$
A=1 \quad-2 A+B=0
$$

with solution $A=1$ and $B=2$. So the final solution is

$$
x(t)=(1+2 t) e^{-2 t}
$$

Solution curves to $\ddot{x}+b \dot{x}+4 x=0, \quad x(0)=1, \quad \dot{x}(0)=1$.

Phase plots to $\ddot{x}+b \dot{x}+4 x=0, \quad x(0)=1, \quad \dot{x}(0)=1$.

Plot of max $\left(r e a l\left(-b / 2 \pm \sqrt{b^{2} / 4-c}\right)\right)$.

The min at $b=4$ corresponds to critical damping - the fastest return to equilibrium.

Theorem: Let (a, b) be an interval on the real line, and let $t_{0} \in(a, b)$.
Let p and q be continuous functions on (a, b). Then:

1. For any real numbers x_{0} and y_{0}, there is a unique solution on (a, b) to the equation

$$
\left\{\begin{align*}
\ddot{x}+p \dot{x}+q x & =0 \tag{3}\\
x\left(t_{0}\right) & =x_{0} \\
\dot{x}\left(t_{0}\right) & =y_{0} .
\end{align*}\right.
$$

2. If x_{1} and x_{2} are two linearly independent solutions of $\ddot{x}+p \dot{x}+q x=0$, then any solution of (3) takes the form $x=c_{1} x_{1}+c_{2} x_{2}$, for some constants c_{1} and c_{2}.
3. The set $V=\left\{x \in C^{2}(I): \ddot{x}+p \dot{x}+q x=0\right\}$ is a two-dimensional vector space.

Proof: Rewrite as a system of first order equations, and apply Picard's theorem. See book for details.

Theorem: Let (a, b) be an interval on the real line, and let $t_{0} \in(a, b)$.
Let p and q be continuous functions on (a, b). Then:

1. For any real numbers x_{0} and y_{0}, there is a unique solution on (a, b) to the equation

$$
\left\{\begin{align*}
\ddot{x}+p \dot{x}+q x & =0 \tag{3}\\
x\left(t_{0}\right) & =x_{0} \\
\dot{x}\left(t_{0}\right) & =y_{0} .
\end{align*}\right.
$$

2. If x_{1} and x_{2} are two linearly independent solutions of $\ddot{x}+p \dot{x}+q x=0$, then any solution of (3) takes the form $x=c_{1} x_{1}+c_{2} x_{2}$, for some constants c_{1} and c_{2}.
3. The set $V=\left\{x \in C^{2}(I): \ddot{x}+p \dot{x}+q x=0\right\}$ is a two-dimensional vector space.

Let b be a real number, and let us apply the theorem to the equation $\ddot{x}-2 b \dot{x}+b^{2} x=0$.
The characteristic equation is $r^{2}-2 b r+b^{2}=0$, which has the double root $r=b$.
So we know that $x_{1}(t)=e^{b t}$ is one solution.
Now consider the function $x_{2}(t)=t e^{b t}$.
We find that $\dot{x}_{2}=e^{b t}+b t e^{b t}$ and $\ddot{x}_{2}=2 b e^{b t}+b^{2} t e^{b t}$, so

$$
\ddot{x}-2 b \dot{x}+b^{2} x=2 b e^{b t}+b^{2} t e^{b t}-2 b e^{b t}-2 b^{2} t e^{b t}+b^{2} t e^{b t}=0 .
$$

We have found two solutions to the ODE. The set $\left\{x_{1}, x_{2}\right\}$ is linearly independent. The theorem shows that any solution to $\ddot{x}-2 b \dot{x}+b^{2} x=0$ is of the form $x=A e^{b t}+B t e^{b t}$.

Theorem: Let (a, b) be an interval on the real line, and let $t_{0} \in(a, b)$.
Let p and q be continuous functions on (a, b). Then:

1. For any real numbers x_{0} and y_{0}, there is a unique solution on (a, b) to the equation

$$
\left\{\begin{align*}
\ddot{x}+p \dot{x}+q x & =0 \tag{3}\\
x\left(t_{0}\right) & =x_{0} \\
\dot{x}\left(t_{0}\right) & =y_{0} .
\end{align*}\right.
$$

2. If x_{1} and x_{2} are two linearly independent solutions of $\ddot{x}+p \dot{x}+q x=0$, then any solution of (3) takes the form $x=c_{1} x_{1}+c_{2} x_{2}$, for some constants c_{1} and c_{2}.
3. The set $V=\left\{x \in C^{2}(I): \ddot{x}+p \dot{x}+q x=0\right\}$ is a two-dimensional vector space.

Corollary: Suppose that b is a real number, and consider the ODE

$$
\begin{equation*}
\ddot{x}-2 b \dot{x}+b^{2} x=0 . \tag{4}
\end{equation*}
$$

The characteristic equation is $r^{2}-2 b r+b^{2}$ which has the double root $r=b$. Then

1. The functions $x_{1}(t)=e^{b t}$ and $x_{2}(t)=t e^{b t}$ both solve (4).
2. Any solution to (4) takes the form $x=c_{1} x_{1}+c_{2} x_{2}$ for some constants c_{1} and c_{2}.

The existence theorem can be generalized to higher order equations:
Theorem: Let (a, b) be an interval on the real line, and let $t_{0} \in(a, b)$.
Let $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$ be continuous functions on (a, b). Then the equation

$$
\begin{equation*}
\frac{d x^{n}}{d t^{n}}+a_{n-1}(t) \frac{d x^{n-1}}{d t^{n-1}}+\cdots+a_{1}(t) \frac{d x}{d t}+a_{0}(t) x(t)=0 \tag{5}
\end{equation*}
$$

has a solution space of dimension precisely n. Moreover, for any $t_{0} \in(a, b)$, and for any real numbers $b_{0}, b_{1}, b_{2}, \ldots, b_{n-1}$, there is precisely one solution of (5) that satisfies

$$
x\left(t_{0}\right)=b_{0}, \quad x^{\prime}\left(t_{0}\right)=b_{1}, \quad x^{\prime \prime}\left(t_{0}\right)=b_{2}, \quad x^{(n-1)}\left(t_{0}\right)=b_{n-1} .
$$

Now suppose that we somehow (it doesn't matter how!) find a set of solutions $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ to (5). Do these form a basis for the solution space?

- If $m<n$, then no - they cannot possibly span an n-dimensional space.
- If $m>n$, then no - they cannot possibly be linearly independent.
- If $m=n$, you need to check if they are linearly indep. If they are, then yes!

Wronskians: Suppose that we are given a set $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ of functions on an interval I, and want to know if the set is linearly independent. One technique that is conceptually straight-forward, but can take some work to execute if n is larger than 3 , is to form the so called Wronskian,

$$
W(t)=\operatorname{det}\left[\begin{array}{ccccc}
f_{1}(t) & f_{2}(t) & f_{3}(t) & \cdots & f_{n}(t) \\
f_{1}^{\prime}(t) & f_{2}^{\prime}(t) & f_{3}^{\prime}(t) & \cdots & f_{n}^{\prime}(t) \\
f_{1}^{\prime \prime}(t) & f_{2}^{\prime \prime}(t) & f_{3}^{\prime \prime}(t) & \cdots & f_{n}^{\prime \prime}(t) \\
\vdots & \vdots & \vdots & & \vdots \\
f_{1}^{(n)}(t) & f_{2}^{(n)}(t) & f_{3}^{(n)}(t) & \cdots & f_{n}^{(n)}(t)
\end{array}\right] .
$$

The Wronskian can be used to detect linear independence:

$$
W(t) \neq 0 \text { for some } t \in I \quad \Rightarrow \quad \text { the set is linearly independent. }
$$

In general, it might be that $W(t)=0$ for every t even for a linearly independent set.
However: If $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ all solve a n 'th order linear DE, then we have

$$
W(t)=0 \text { for some } t \in I \quad \Rightarrow \quad \text { the set is linearly dependent. }
$$

Example: Let $I=[1,3]$, and consider for t in this interval, the equation

$$
\begin{equation*}
t^{3} y^{\prime \prime \prime}-t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0 \tag{6}
\end{equation*}
$$

Set $y_{1}(t)=t, \quad y_{2}(t)=t^{2}, \quad y_{3}(t)=t \log (t)$.
Prove that any solution of (6) takes the form $x=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}$!
Solution: For $t \in I$, we have $t^{3} \neq 0$, so (6) $\Leftrightarrow y^{\prime \prime \prime}-\frac{1}{t} y^{\prime \prime}+\frac{2}{t^{2}} y^{\prime}-\frac{2}{t^{3}} y=0$.
Existence theorem applies, and the solution space has dimension three. So the claim follows if we can prove (a) that every y_{j} is a solution and (b) that $\left\{y_{1}, y_{2}, y_{3}\right\}$ is lin. indep.

Verify that y_{3} is a solution: We find $y_{3}^{\prime}=\log t+1, y_{3}^{\prime \prime}=1 / t$, and $y_{3}^{\prime \prime \prime}=-1 / t^{2}$. Inserting into (6) we find $t^{3}\left(-1 / t^{2}\right)-t^{2}(1 / t)+2 t(\log t+1)-2 t \log t=0$.
... you show that y_{1} and y_{2} are solutions analogously ...
Show that $\left\{y_{1}, y_{2}, y_{3}\right\}$ is linearly indep: We form the Wronskian

$$
W(t)=\operatorname{det}\left[\begin{array}{rrr}
t & t^{2} & t \log t \\
1 & 2 t & 1+\log t \\
0 & 2 & 1 / t
\end{array}\right]=2 t+0+2 t \log t-0-2 t(1+\log t)-t=-t .
$$

Since $W(t) \neq 0$ on I, we knot that $\left\{y_{1}, y_{2}, y_{3}\right\}$ is linearly independent!

Now consider a constant coefficient ODE

$$
\begin{equation*}
x^{(n)}+a_{n-1} x^{(n-1)}+a_{n-2} x^{(n-2)}+\cdots+a_{1} x^{\prime}+a_{0} x=0 \tag{7}
\end{equation*}
$$

Inserting the test solution $x(t)=e^{r t}$ into (7), we find

$$
\left(r^{n}+a_{n-1} r^{n-1}+a_{n-2} r^{n-2}+\cdots+a_{1} r+a_{0}\right) e^{r t}=0
$$

The characteristic polynomial always has at least one root, so there is always at least one solution of the form $x(t)=e^{r t}$.

Suppose that the characteristic polynomial has n distinct roots $r_{1}, r_{2}, \ldots, r_{n}$. Then

$$
\left\{e^{r_{1} t}, e^{r_{2} t}, \ldots, e^{r_{n} t}\right\}
$$

is a basis for the solution space of (7), and so any solution can be written

$$
x(t)=A_{1} e^{r_{1} t}+A_{2} e^{r_{2} t}+\cdots+A_{n} e^{r_{n} t}
$$

Example: Find the general solution to

$$
\frac{d x^{4}}{d t^{4}}-16 x=0
$$

Solution: First observe that the characteristic equation is

$$
r^{4}-16=0
$$

The roots of this equation are

$$
r_{1}=2, \quad r_{2}=-2, \quad r_{3}=2 i, \quad r_{4}=-2 i
$$

and so the general solution is

$$
x(t)=c_{1} e^{2 t}+c_{2} e^{-2 t}+c_{3} e^{i 2 t}+c_{4} e^{-i 2 t}
$$

If we want a purely real formulation, then observe that

$$
x(t)=c_{1} e^{2 t}+c_{2} e^{-2 t}+\left(c_{3}+c_{4}\right) \cos (2 t)+\left(i c_{3}-i c_{4}\right) \sin (2 t)
$$

Now set $d_{1}=c_{3}+c_{4}$ and $d_{2}=i c_{3}-c_{4}$ to obtain

$$
x(t)=c_{1} e^{2 t}+c_{2} e^{-2 t}+d_{1} \cos (2 t)+d_{2} \sin (2 t)
$$

Example: Find the general solution to

$$
x^{\prime \prime \prime}+5 x^{\prime \prime}+3 x^{\prime}-9=0
$$

Hint: One solution is given by $x(t)=e^{t}$!
Solution: First observe that the characteristic equation is

$$
r^{3}+5 r^{2}+3 r-9=0
$$

The hint tells us that $r_{1}=1$ is one solution, which allows us to factor

$$
r^{3}+5 r^{2}+3 r-9=(r-1)\left(r^{2}+6 r+9\right)
$$

The remaining two roots are then

$$
r_{2,3}=-3 \pm \sqrt{3^{2}-9}=-3
$$

Since -3 is a double root, we find that the general solution is

$$
x(t)=A e^{t}+B e^{-3 t}+C t e^{-3 t}
$$

	Exam 1	Exam 2	Exam 3 Final	
Mean	64	72		
Median	65	73		
SD		15		
C- cutoff	38	49		
High score	$99(\times 3)$	$100(\times 5)$		

