
Sections 4.2 and 4.3: Higher order equations

Recall that we seek a solution of the form x(t) = ert to the ODE

(1) ẍ + b ẍ + c x = 0.

Inserting x = ert into (1) we find

r2 ert + br ert + c ert = 0.

Since ert 6= 0, we find that (1) is satisfied if and only if

(2) r2 + br + c = 0.

The roots of (2) are r1 = −b2 +

√
b2
4 − c, and r2 = −b2 −

√
b2
4 − c.

Good news: Since (2) has always at least one root, there is at least one solution x = ert!

Less good news: The roots could be complex.

There are three different cases, depending on the sign of b2/4− c.

Case 1: b2/4− c > 0 ⇒ r1,2 = −b/2± α where α =
√

b2/4− c.

Case 2: b2/4− c < 0 ⇒ r1,2 = −b/2± iβ where β =
√
c − b2/4.

Case 3: b2/4− c = 0 ⇒ r = r2 = r2 = −b/2.



Recall: Solution of ẍ + bẍ + cx = 0 depends on the roots r1,2 = −b
2 +

√
b2/4− c of r2 + br + c = 0.

Case 1: b2/4− c > 0 Set α =
√

b2/4− c so r1,2 = −b/2± α. Then the solution is
x(t) = Aer1t + B er2t.

Case 2: b2/4− c < 0 Set β =
√

c − b2/4 so r1,2 = −b/2± iβ. Then the solution is

x(t) = Aer1t + B er2t = Ae−bt/2+iβt + B e−bt/2−iβt

= e−bt/2
(
Aeiβt + B e−iβt

)
= e−bt/2

(
A cos(βt) + i A sin(βt) + B cos(βt)− i B sin(βt)

)
= (A+B)e−bt/2A cos(βt)+(iA−iB)e−bt/2 sin(βt) = C e−bt/2A cos(βt) + De−bt/2 sin(βt),
where we defined new constants C = A + B and D = iA− iB.

Case 3: b2/4− c = 0 Now we have a double-root r = r1 = r2 = −b/2. In this case, one
solution is given by

x(t) = ert = e−bt/2.
But what is the other solution? ... One can show (and we will!) that the other solution is
x(t) = t e−bt/2, so the final general solution is

x(t) = Ae−bt/2 + B t e−bt/2.



Example: Solve the initial value problem

ẍ + b ẍ + 4 x = 0, x(0) = 1, ẋ(0) = 0

for the values b = 0, b = 2, b = 5, and b = 4.

Suppose b = 0: We seek to solve

ẍ + 4 x = 0.

The characteristic equation is
r2 + 4 = 0,

with roots
r1 = 2i r2 = −2i.

The general solution is
x(t) = A cos(2t) + B sin(2t).

Using the initial conditions, we find

A cos(0) + B sin(0) = 1 − 2A sin(0) + 2B cos(0) = 0,

with solution A = 1 and B = 0. So the final solution is

x(t) = cos(2t).



Example: Solve the initial value problem

ẍ + b ẍ + 4 x = 0, x(0) = 1, ẋ(0) = 0

for the values b = 0, b = 2, b = 5, and b = 4.

Suppose b = 2: We seek to solve

ẍ + 2ẋ + 4 x = 0.

The characteristic equation is
r2 + 2r + 4 = 0,

with roots
r1 = −1 + i

√
3 r2 = −1− i

√
3.

The general solution is

x(t) = Ae−t cos(
√
3t) + B e−t sin(

√
3t).

Using the initial conditions, we find

A = 1 − A +
√
3B = 0,

with solution A = 1 and B = 1/
√
3. So the final solution is

x(t) = e−t
(
cos(
√
3t) + 1√

3
sin(
√
3t)
)
.



Example: Solve the initial value problem

ẍ + b ẍ + 4 x = 0, x(0) = 1, ẋ(0) = 0

for the values b = 0, b = 2, b = 5, and b = 4.

Suppose b = 5: We seek to solve

ẍ + 5ẋ + 4 x = 0.

The characteristic equation is
r2 + 5r + 4 = 0,

with roots
r1 = −1 r2 = −4.

The general solution is
x(t) = Ae−t + B e−4t.

Using the initial conditions, we find

A + B = 1 − A− 4B = 0,

with solution A = 4/3 and B = −1/3. So the final solution is

x(t) = 4
3 e−t − 1

3 e−4t.



Example: Solve the initial value problem

ẍ + b ẍ + 4 x = 0, x(0) = 1, ẋ(0) = 0

for the values b = 0, b = 2, b = 5, and b = 4.

Suppose b = 4: We seek to solve

ẍ + 4ẋ + 4 x = 0.

The characteristic equation is
r2 + 4r + 4 = 0,

with double root
r = −2.

The general solution is
x(t) = Ae−2t + B t e−2t.

Using the initial conditions, we find

A = 1 − 2A + B = 0,

with solution A = 1 and B = 2. So the final solution is

x(t) =
(
1 + 2t

)
e−2t.



Solution curves to ẍ + b ẋ + 4 x = 0, x(0) = 1, ẋ(0) = 1.

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x

 

 

b=0

b=2

b=5

b=4



Phase plots to ẍ + b ẋ + 4 x = 0, x(0) = 1, ẋ(0) = 1.
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Plot of max(real(−b/2±
√

b2/4− c)).

0 1 2 3 4 5 6 7 8
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

b

m
a

x
(r

e
a

l(
−

b
/2

 +
−

 s
q

rt
(b

*b
/4

 −
 4

))

The min at b = 4 corresponds to critical damping — the fastest return to equilibrium.



Theorem: Let (a,b) be an interval on the real line, and let t0 ∈ (a,b).
Let p and q be continuous functions on (a,b). Then:
1. For any real numbers x0 and y0, there is a unique solution on (a,b) to the equation

(3)


ẍ + p ẋ + q x = 0

x(t0) = x0
ẋ(t0) = y0.

2. If x1 and x2 are two linearly independent solutions of ẍ + p ẋ + q x = 0, then any
solution of (3) takes the form x = c1 x1 + c2 x2, for some constants c1 and c2.

3. The set V = {x ∈ C2(I) : ẍ + p ẋ + q x = 0} is a two-dimensional vector space.

Proof: Rewrite as a system of first order equations, and apply Picard’s theorem.
See book for details.



Theorem: Let (a,b) be an interval on the real line, and let t0 ∈ (a,b).
Let p and q be continuous functions on (a,b). Then:
1. For any real numbers x0 and y0, there is a unique solution on (a,b) to the equation

(3)


ẍ + p ẋ + q x = 0

x(t0) = x0
ẋ(t0) = y0.

2. If x1 and x2 are two linearly independent solutions of ẍ + p ẋ + q x = 0, then any
solution of (3) takes the form x = c1 x1 + c2 x2, for some constants c1 and c2.

3. The set V = {x ∈ C2(I) : ẍ + p ẋ + q x = 0} is a two-dimensional vector space.

Let b be a real number, and let us apply the theorem to the equation ẍ − 2b ẋ + b2 x = 0.
The characteristic equation is r2 − 2b r + b2 = 0, which has the double root r = b.
So we know that x1(t) = ebt is one solution.
Now consider the function x2(t) = t ebt.
We find that ẋ2 = ebt + b t ebt and ẍ2 = 2b ebt + b2 t ebt, so

ẍ − 2b ẋ + b2 x = 2b ebt + b2 t ebt − 2b ebt − 2b2 t ebt + b2 t ebt = 0.

We have found two solutions to the ODE. The set {x1, x2} is linearly independent. The
theorem shows that any solution to ẍ − 2b ẋ + b2 x = 0 is of the form x = Aebt + B t ebt.



Theorem: Let (a,b) be an interval on the real line, and let t0 ∈ (a,b).
Let p and q be continuous functions on (a,b). Then:
1. For any real numbers x0 and y0, there is a unique solution on (a,b) to the equation

(3)


ẍ + p ẋ + q x = 0

x(t0) = x0
ẋ(t0) = y0.

2. If x1 and x2 are two linearly independent solutions of ẍ + p ẋ + q x = 0, then any
solution of (3) takes the form x = c1 x1 + c2 x2, for some constants c1 and c2.

3. The set V = {x ∈ C2(I) : ẍ + p ẋ + q x = 0} is a two-dimensional vector space.

Corollary: Suppose that b is a real number, and consider the ODE

(4) ẍ − 2b ẋ + b2 x = 0.

The characteristic equation is r2 − 2b r + b2 which has the double root r = b. Then
1. The functions x1(t) = ebt and x2(t) = t ebt both solve (4).
2. Any solution to (4) takes the form x = c1 x1 + c2 x2 for some constants c1 and c2.



The existence theorem can be generalized to higher order equations:

Theorem: Let (a,b) be an interval on the real line, and let t0 ∈ (a,b).
Let a0, a1, a2, . . . , an−1 be continuous functions on (a,b). Then the equation

(5) dxn
dtn + an−1(t)

dxn−1

dtn−1
+ · · · + a1(t)

dx
dt + a0(t) x(t) = 0

has a solution space of dimension precisely n. Moreover, for any t0 ∈ (a,b), and for any
real numbers b0, b1, b2, . . . , bn−1, there is precisely one solution of (5) that satisfies

x(t0) = b0, x′(t0) = b1, x′′(t0) = b2, x(n−1)(t0) = bn−1.

Now suppose that we somehow (it doesn’t matter how!) find a set of solutions
{x1, x2, . . . , xm} to (5). Do these form a basis for the solution space?

• If m < n, then no — they cannot possibly span an n-dimensional space.
• If m > n, then no — they cannot possibly be linearly independent.
• If m = n, you need to check if they are linearly indep. If they are, then yes!



Wronskians: Suppose that we are given a set {f1, f2, . . . , fn} of functions on an interval
I, and want to know if the set is linearly independent. One technique that is conceptually
straight-forward, but can take some work to execute if n is larger than 3, is to form the so
called Wronskian,

W (t) = det



f1(t) f2(t) f3(t) · · · fn(t)
f ′1(t) f ′2(t) f ′3(t) · · · f ′n(t)
f ′′1 (t) f ′′2 (t) f ′′3 (t) · · · f ′′n (t)

... ... ... ...
f (n)1 (t) f (n)2 (t) f (n)3 (t) · · · f (n)n (t)


.

The Wronskian can be used to detect linear independence:

W (t) 6= 0 for some t ∈ I ⇒ the set is linearly independent.

In general, it might be that W (t) = 0 for every t even for a linearly independent set.

However: If {f1, f2, . . . , fn} all solve a n’th order linear DE, then we have

W (t) = 0 for some t ∈ I ⇒ the set is linearly dependent.



Example: Let I = [1,3], and consider for t in this interval, the equation

(6) t3 y′′′ − t2 y′′ + 2t y′ − 2y = 0.

Set y1(t) = t, y2(t) = t2, y3(t) = t log(t).

Prove that any solution of (6) takes the form x = c1 y1 + c2 y2 + c3 y3!

Solution: For t ∈ I, we have t3 6= 0, so (6)⇔ y′′′ − 1
t y
′′ +

2
t2

y′ − 2
t3
y = 0.

Existence theorem applies, and the solution space has dimension three. So the claim
follows if we can prove (a) that every yj is a solution and (b) that {y1, y2, y3} is lin. indep.

Verify that y3 is a solution: We find y′3 = log t + 1, y′′3 = 1/t, and y′′′3 = −1/t2. Inserting
into (6) we find t3 (−1/t2)− t2 (1/t) + 2t (log t + 1)− 2t log t = 0.

... you show that y1 and y2 are solutions analogously ...

Show that {y1, y2, y3} is linearly indep: We form the Wronskian

W (t) = det


t t2 t log t
1 2t 1 + log t
0 2 1/t

 = 2t + 0 + 2t log t − 0− 2t(1 + log t)− t = −t.

Since W (t) 6= 0 on I, we knot that {y1, y2, y3} is linearly independent!



Now consider a constant coefficient ODE

(7) x(n) + an−1 x(n−1) + an−2 x(n−2) + · · · + a1 x′ + a0 x = 0.

Inserting the test solution x(t) = ert into (7), we find(
rn + an−1 rn−1 + an−2 rn−2 + · · · + a1 r + a0

)
ert = 0.

The characteristic polynomial always has at least one root, so there is always at least
one solution of the form x(t) = ert.

Suppose that the characteristic polynomial has n distinct roots r1, r2, . . . , rn. Then{
er1t, er2t, . . . , ernt

}
is a basis for the solution space of (7), and so any solution can be written

x(t) = A1 er1t + A2 er2t + · · · + An ernt.



Example: Find the general solution to
dx4

dt4
− 16 x = 0.

Solution: First observe that the characteristic equation is

r4 − 16 = 0.

The roots of this equation are

r1 = 2, r2 = −2, r3 = 2i, r4 = −2i,

and so the general solution is

x(t) = c1 e2t + c2 e−2t + c3 ei2t + c4 e−i2t.

If we want a purely real formulation, then observe that

x(t) = c1 e2t + c2 e−2t + (c3 + c4) cos(2t) + (ic3 − ic4) sin(2t).

Now set d1 = c3 + c4 and d2 = ic3 − c4 to obtain

x(t) = c1 e2t + c2 e−2t + d1 cos(2t) + d2 sin(2t).



Example: Find the general solution to

x′′′ + 5 x′′ + 3 x′ − 9 = 0.

Hint: One solution is given by x(t) = et!

Solution: First observe that the characteristic equation is

r3 + 5r2 + 3r − 9 = 0.

The hint tells us that r1 = 1 is one solution, which allows us to factor

r3 + 5r2 + 3r − 9 = (r − 1) (r2 + 6r + 9).

The remaining two roots are then

r2,3 = −3±
√
32 − 9 = −3.

Since −3 is a double root, we find that the general solution is

x(t) = Aet + B e−3t + C t e−3t.



Exam 1 Exam 2 Exam 3 Final
Mean 64 72

Median 65 73
SD 15

C- cutoff 38 49
High score 99 (× 3) 100 (× 5)


