Sections 4.2 and 4.3: Higher order equations

Recall that we seek a solution of the form x(t) = e'* to the ODE
(1) X+bx+cx=0.
Inserting x = €' into (1) we find

2 L pre +ce = 0.

r
Since et £ 0, we find that (1) is satisfied if and only if

(2) r’+br+c=0.
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The roots of (2) are rqy = —g + bz —C, and o = —g — bz —C.

Good news: Since (2) has always at least one root, there is at least one solution x = e’
Less good news: The roots could be complex.

There are three different cases, depending on the sign of b2/4 — C.
Case1:b°/4—c>0 = ripo=—b/2+awhere a = \/b2/4 — C.

Case2:b2/4—c<0 = r172:—b/2iiﬁwhere5:\/c—b2/4.
Case3: b°/4—c=0 = r=ro=ro=—-b/2.



Recall: Solution of x + bx + ¢x = 0 depends on the roots ry o = —g ++/b%2/4 —cofr?+br+c=0.

Case 1: b?/4 —c > 0/Set o = \/b2/4 —C S0 ryp=—b/2+ a. Then the solution is
x(t) = Ae"t + Be2!,

Case 2: b°/4 —c <0 Set § = \/c —b2/4s0ry 2= —b/2+ip. Then the solution is
x(t) = Aelt 1 Belt — A bt/2+ibt | gg—bt/2—ifit
— g b1/2 (A Pt 4 Be_"ﬁt) — g b1/2 (A cos(St) + i A sin(St) + B cos(5t) — i B sin(St))
— (A+B) e P12 A cos(Bt)+(iA—iB) e P/ sin(Bt) = Ce Pl/2 A cos(pt) + De P2 sin(st),

where we defined new constants C=A + B and D = A — iB.

Case 3: b%/4 — c = 0/ Now we have a double-root r = ry = r, = —b/2. In this case, one

solution is given by

x(t) = et — g=bt/2
But what is the other solution? ... One can show (and we will!) that the other solution is
x(t) = teP!/2  s0 the final general solution is

x(t)=Ae P2 L Bte=bt/2,



Example: Solve the initial value problem
X+bx+4x=0, x(0) =1, x(0)=0
forthe valuesb=0,b=2,b =5, and b = 4.

Suppose b = 0: We seek to solve

X+4x=0.

The characteristic equation is
r’+4 =0,

with roots
r1 = 2] r2 = —2].

The general solution is
x(t) = A cos(2t) + B sin(2t).

Using the initial conditions, we find
A cos(0) + B sin(0) = 1 — 2A sin(0) + 2B cos(0) = 0,
with solution A = 1 and B = 0. So the final solution is

x(t) = cos(2t).



Example: Solve the initial value problem
X+bx+4x=0, x(0)=1, x(0)
forthe valuesb=0,b=2,b =5, and b = 4.

Suppose b = 2: We seek to solve

X+2x+4x=0.

The characteristic equation is
r°+2r+4=0,

with roots

r1:—1—|—i\/§ I’2:—1—i\/§.

The general solution is

x(t) = Ae 'cos(V3t) + Be tsin(V3t).

Using the initial conditions, we find
A =1 —~A++V3B =0,
with solution A = 1 and B = 1/+/3. So the final solution is

x(t)=e! (Cos(\@t) . sin(\@t)) .
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Example: Solve the initial value problem

X+bx+4x =0, x(0) =1, x(0)

forthe valuesb=0,b=2,b =5, and b = 4.

Suppose b = 5: We seek to solve

X+5x+4x=0.

The characteristic equation is
r°+5r+4=0,

with roots

The general solution is
x(t)=Aet+Be ¥

Using the initial conditions, we find

A+B=1 —A—-4B =0,
with solution A =4/3 and B = —1/3. So the final solution is
1
x(t) = ie_t —_e ¥
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Example: Solve the initial value problem
X+bx+4x=0, x(0) =1, x(0)=0
forthe valuesb=0,b=2,b =5, and b = 4.

Suppose b = 4: We seek to solve

X+4x +4x =0.

The characteristic equation is
r°+4r+4 =0,

with double root
r = —2.

The general solution is
x(t)=Ae 2 +Bte 2.

Using the initial conditions, we find
A=1 —2A+B =0,
with solution A = 1 and B = 2. So the final solution is

x(t) = (1+2t)e .



0.8

0.6

0.4

0.2

Solution curvestox + bx +4x =0, x(0) =1,

x(0) = 1.

O OO O

~ 01N O




O O O O

A~ 01D O




Plot of max(real(—b/2 + /b2 /4 — c)).

O | | | | | | |

The min at b = 4 corresponds to critical damping — the fastest return to equilibrium.



Theorem: Let (a,b) be an interval on the real line, and let t; € (a, b).
Let p and g be continuous functions on (a, b). Then:
1. For any real numbers xy and yq, there is a unique solution on (a, b) to the equation

X+px+gx= 0
(3) X(f) = Xo
x(to) = Yo
2. If x4 and x, are two linearly independent solutions of x + px + g x = 0, then any
solution of (3) takes the form x = ¢4 X1 + ¢5 X5, for some constants ¢4 and c.
3.Theset V = {x € C%(I): Xx+px+qx =0} is atwo-dimensional vector space.

Proof: Rewrite as a system of first order equations, and apply Picard’s theorem.
See book for details.



Theorem: Let (a,b) be an interval on the real line, and let t; € (a, b).
Let p and g be continuous functions on (a, b). Then:
1. For any real numbers xy and yq, there is a unique solution on (a, b) to the equation
X+px+gx=0
(3) X(f) = Xo
x(to) = Yo
2. If x4 and x, are two linearly independent solutions of x + px + g x = 0, then any
solution of (3) takes the form x = ¢4 X1 + ¢5 X5, for some constants ¢4 and c.
3.Theset V = {x € C%(I): Xx+px+qx =0} is atwo-dimensional vector space.

Let b be a real number, and let us apply the theorem to the equation X — 2bx + b% x = 0.
The characteristic equation is r° — 2br + b® = 0, which has the double root r = b.
So we know that x4(t) = ! is one solution.

Now consider the function x(t) = t e?!.
We find that x, = ! + bteP! and X, = 2beP! + b2t e, so

X—2bx+b%x =2bePt + p2tebPt —opebt —op2teht 4 p2tebt — 0.

We have found two solutions to the ODE. The set {x4, x>} is linearly independent. The
theorem shows that any solution to X — 2bx + b® x = 0 is of the form x = AeP! + Bt eb!.



Theorem: Let (a,b) be an interval on the real line, and let t; € (a, b).

Let p and g be continuous functions on (a, b). Then:
1. For any real numbers xy and yq, there is a unique solution on (a, b) to the equation

X+px+gx= 0
(3) X(f) = Xo
x(to) = Yo
2. If x4 and x, are two linearly independent solutions of x + px + g x = 0, then any
solution of (3) takes the form x = ¢4 X1 + ¢5 X5, for some constants ¢4 and c.
3.Theset V = {x € C%(I): Xx+px+qx =0} is atwo-dimensional vector space.

Corollary: Suppose that b is a real number, and consider the ODE
(4) X —2bx +b%x =0.
The characteristic equation is r — 2br + b? which has the double root r = b. Then

1. The functions x4(t) = eP! and x»(t) = t e®! both solve (4).
2. Any solution to (4) takes the form x = ¢4 x1 + ¢» x5 for some constants ¢4 and C».



The existence theorem can be generalized to higher order equations:

Theorem: Let (a,b) be an interval on the real line, and let t; € (a, b).
Let ag, a4, a0, ..., a,_1 be continuous functions on (a, b). Then the equation

ax" axN— dx
(5) ——|-an_1(t) dtn_1 —|—'°’—|-a1(t)a—|—ao(t)X(t):O

has a solution space of dimension precisely n. Moreover, for any f; € (a, b), and for any
real numbers by, by, bo, ..., b,_1, there is precisely one solution of (5) that satisfies

x(tg) =bg,  X'(tg) =by,  x"(t) =bp,  x""tg) =b,_1.

Now suppose that we somehow (it doesn’t matter how!) find a set of solutions
{x1, X2, ..., Xm} 10 (5). Do these form a basis for the solution space?

e If m < n, then no — they cannot possibly span an n-dimensional space.

e If m > n, then no — they cannot possibly be linearly independent.

e If m = n, you need to check if they are linearly indep. If they are, then yes!



Wronskians: Suppose that we are given a set {f4, f5, ..., fp} of functions on an interval
[, and want to know if the set is linearly independent. One technique that is conceptually
straight-forward, but can take some work to execute if n is larger than 3, is to form the so
called Wronskian,

A R () falt)
HONEAGIEA R0
W(t)=det | f/(t) fi(t) FIt)--- FIt)

The Wronskian can be used to detect linear independence:

W(t) +# 0 for somet €/ = the set is linearly independent.

In general, it might be that W (t) = O for every t even for a linearly independent set.

However: If {f4, f5, ..., fp} all solve a n’th order linear DE, then we have

W(t) =0 forsomet €/ = the set is linearly dependent.



Example: Let / = [1, 3], and consider for t in this interval, the equation
(6) $3 y/// B t2y” 4 2ty’ _ 2y =0.
Sety (t)=t, yo(t)=1t%  ys(t) =t log(t).

Prove that any solution of (6) takes the form x = ¢4 ¥4 + Co Yo + C3 y3!

: 1 2 2
Solution: Fort € I, we have t3 +£ 0, so (6) < y"' — 7y” + t—zy’ - = 0.

Existence theorem applies, and the solution space has dimension three. So the claim
follows if we can prove (a) that every y; is a solution and (b) that {y4, y»,y3} is lin. indep.

Verify that y3 is a solution: We find y; = logt +1, y2 = 1/t, and yJ' = —1/t2. Inserting
into (6) we find t3 (—1/t2) —t2(1/t) + 2t (logt + 1) — 2tlogt = 0.

... you show that y4 and y» are solutions analogously ...

Show that {y1, yo, ya} is linearly indep: We form the Wronskian

t 12 tlogt
W(t)=det|12t1+logt| =2t+0+2tlogt —0—2{(1 +logt) —t = —t.
0 2 1/t

Since W(t) # 0 on /, we knot that {y4, ¥», ¥3} is linearly independent!



Now consider a constant coefficient ODE

n—2)

(7) xWpa, x=ypa x"2) 4. 4ax +ayx =0.

Inserting the test solution x(t) = 't into (7), we find

n—2

(M+a, (M1 +a, or"2+...+ayr+ay)e’=0.

The characteristic polynomial always has at least one root, so there is always at least
one solution of the form x(t) = e".

Suppose that the characteristic polynomial has n distinct roots rq, ro, ..., rn. Then
{er1t’ el’zt7 . ernt}
is a basis for the solution space of (7), and so any solution can be written

x(t) =AMt + Aye@l ... 4 Apell,



Example: Find the general solution to

Zliz‘: —16x = 0.
Solution: First observe that the characteristic equation is
r*—16=0.
The roots of this equation are
rqi=2, ro = —2, ry = 2i, ry = —2iI,

and so the general solution is

x(t)=cie? +cre? 1 e 4 c e '?

If we want a purely real formulation, then observe that

x(t) = cie? + coe™?

+ (C3 + C4) cOs(2t) + (icg — icy) sin(2t).
Now set dy = ¢35 + ¢4 and d5 = ic3 — ¢4 to obtain

x(t) = cq ! + coe7?! 4+ dy cos(2t) + d» sin(2t).



Example: Find the general solution to
x"'+5x"+3x"'—9=0.
Hint: One solution is given by x(t) = el
Solution: First observe that the characteristic equation is
r3+5r°+3r—9=0.
The hint tells us that ry = 1 is one solution, which allows us to factor
rP+5r°+3r—9=(r—1)(r°+6r+9).

The remaining two roots are then

rog=-3+V32-9= -3
Since —3 is a double root, we find that the general solution is

x(t)=Ael +Be 3+ Cte 3.



Exam 1| Exam 2|Exam 3 Final
Mean 64 72
Median 65 73
SD 15
C- cutoff 38 49
High score 99 (x 3) 100 (x 5)




