Linear stability analysis: Consider an autonomous system of non-linear equations

$$\dot{x} = f(x, y),$$

 $\dot{y} = g(x, y).$

Step 1: Find every equilibrium point (\hat{x}, \hat{y}) for which $f(\hat{x}, \hat{y}) = g(\hat{x}, \hat{y}) = 0$.

Step 2: For each equilibrium point (\hat{x}, \hat{y}) , compute the Jacobian

$$J = egin{bmatrix} f_X(\hat{x}, \hat{y}) & f_Y(\hat{x}, \hat{y}) \ g_X(\hat{x}, \hat{y}) & g_Y(\hat{x}, \hat{y}) \end{bmatrix}$$

Step 3: Compute the eigenvalues and eigenvectors of *J*.

Step 4: Inspect the eigenvalues to determine the nature of the equilibrium point. E.g.:

$\lambda_1 < 0$	and	$\lambda_2 > 0$	\Rightarrow	Unstable (saddle point)
$\lambda_{1,2} = \alpha \pm i\beta$	with	$\alpha < 0$	\Rightarrow	Asymptstable (spiral)

Warning 1: Linear analysis may fail if J is singular.

Warning 2: Linear analysis is inconclusive if $\lambda_{1,2} = \pm i\beta$. The solution can be a center, or a repelling spiral (unstable), or an attracting spiral (asy-stable).

$$\dot{x} = y$$
$$\dot{y} = x(x - 1)$$

Determine Jacobian:
$$J = \begin{bmatrix} 0 & 1 \\ 2x - 1 & 0 \end{bmatrix}$$
.

Find equilibria: (A) $(x_0, y_0) = (1, 0)$ and (B) $(x_0, y_0) = (0, 0)$.

Analyze point (A):
$$J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. $\lambda_1 = 1$ $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\lambda_2 = -1$ $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

unstable (saddle point)

Analyze point (B):
$$J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. $\lambda_1 = i$ $\mathbf{v}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$ $\lambda_2 = -i$ $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$.
test is inconclusive (spiral of some sort)

$$\begin{cases} \dot{x} = y - x^3 \\ \dot{y} = -x - y^3 \end{cases}$$

Determine Jacobian:
$$J = \begin{bmatrix} -3x^2 & 1 \\ -1 & -3y^2 \end{bmatrix}$$
.

Find equilibria: (A) $(x_0, y_0) = (0, 0)$.

Analyze point (A):
$$J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. $\lambda_1 = i$ $\mathbf{v}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$ $\lambda_2 = -i$ $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$.
test is inconclusive (spiral of some sort)

$$\begin{cases} \dot{x} = y + x^3 \\ \dot{y} = -x + y^3 \end{cases}$$

Determine Jacobian:
$$J = \begin{bmatrix} 3x^2 & 1 \\ -1 & 3y^2 \end{bmatrix}$$
.

Find equilibria: (A) $(x_0, y_0) = (0, 0)$.

Analyze point (A):
$$J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. $\lambda_1 = i$ $\mathbf{v}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$ $\lambda_2 = -i$ $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$.
test is inconclusive (spiral of some sort)

Example: Find equilibria and determine their type for $\begin{cases} \dot{x} = y \\ \dot{y} = -\sin(x) \end{cases}$

(Note: This is the system form of the mathematical pendulum $\ddot{x} + \sin(x) = 0$.)

Determine Jacobian: $J = \begin{vmatrix} 0 & 1 \\ -\cos(x) & 0 \end{vmatrix}$.

Find equilibria: (A) $(x, y) = (\pi 2n, 0)$ and (B) $(x, y) = (\pi (2n + 1), 0)$.

Analyze point (A):
$$J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. $\lambda_1 = i$ $\mathbf{v}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$ $\lambda_2 = -i$ $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$.
test is inconclusive (spiral of some sort

Analyze point (B):
$$J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
. $\lambda_1 = 1$ $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\lambda_2 = -1$ $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
saddle point

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\sin(x) - y \end{cases}$$

Note: This is the system form of the mathematical pendulum $\ddot{x} + \dot{x} + \sin(x) = 0$. Observe that the term \dot{x} represents *friction*. The system is now losing energy.

Determine Jacobian:
$$J = \begin{bmatrix} 0 & 1 \\ -\cos(x) & -1 \end{bmatrix}$$
.
Find equilibria: (A) $(x, y) = (\pi 2n, 0)$ and (B) $(x, y) = (\pi (2n + 1), 0)$.
Analyze point (A): $J = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$. $\lambda_{1,2} = -\frac{1}{2} \pm i\sqrt{3}/2$.
asymptotically stable spiral

Analyze point (B):
$$J = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$
. $\lambda_{1,2} = -\frac{1}{2} \pm \sqrt{5}/2$

saddle point

