Linear stability analysis: Consider an autonomous system of non-linear equations

$$
\begin{aligned}
\dot{x} & =f(x, y) \\
\dot{y} & =g(x, y)
\end{aligned}
$$

Step 1: Find every equilibrium point (\hat{x}, \hat{y}) for which $f(\hat{x}, \hat{y})=g(\hat{x}, \hat{y})=0$.
Step 2: For each equilibrium point (\hat{x}, \hat{y}), compute the Jacobian

$$
J=\left[\begin{array}{cc}
f_{x}(\hat{x}, \hat{y}) & f_{y}(\hat{x}, \hat{y}) \\
g_{x}(\hat{x}, \hat{y}) & g_{y}(\hat{x}, \hat{y})
\end{array}\right]
$$

Step 3: Compute the eigenvalues and eigenvectors of J.
Step 4: Inspect the eigenvalues to determine the nature of the equilibrium point. E.g.:

$$
\begin{array}{ccccc}
\lambda_{1}<0 & \text { and } & \lambda_{2}>0 & \Rightarrow & \text { Unstable (saddle point) } \\
\lambda_{1,2}=\alpha \pm i \beta & \text { with } & \alpha<0 & \Rightarrow & \text { Asympt.-stable (spiral) }
\end{array}
$$

Warning 1: Linear analysis may fail if J is singular.
Warning 2: Linear analysis is inconclusive if $\lambda_{1,2}= \pm i \beta$. The solution can be a center, or a repelling spiral (unstable), or an attracting spiral (asy-stable).

Example: Find equilibria and determine their type for $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=x(x-1)\end{array}\right.$
Determine Jacobian: $J=\left[\begin{array}{rr}0 & 1 \\ 2 x-1 & 0\end{array}\right]$.
Find equilibria: $(\mathrm{A})\left(x_{0}, y_{0}\right)=(1,0)$ and $(\mathrm{B})\left(x_{0}, y_{0}\right)=(0,0)$.

Analyze point $(A): J=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] . \quad \lambda_{1}=1 \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \lambda_{2}=-1 \quad \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
unstable (saddle point)

Analyze point (B): $J=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right] . \quad \lambda_{1}=i \quad \mathbf{v}_{1}=\left[\begin{array}{c}1 \\ i\end{array}\right] \quad \lambda_{2}=-i \quad \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -i\end{array}\right]$.

Example: Find equilibria and determine their type for $\left\{\begin{array}{l}\dot{x}=y-x^{3} \\ \dot{y}=-x-y^{3}\end{array}\right.$
Determine Jacobian: $J=\left[\begin{array}{rr}-3 x^{2} & 1 \\ -1 & -3 y^{2}\end{array}\right]$.
Find equilibria: $(\mathrm{A})\left(x_{0}, y_{0}\right)=(0,0)$.

Analyze point (A): $J=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right] . \quad \lambda_{1}=i \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ i\end{array}\right] \quad \lambda_{2}=-i \quad \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -i\end{array}\right]$.

Example: Find equilibria and determine their type for $\left\{\begin{array}{l}\dot{x}=y+x^{3} \\ \dot{y}=-x+y^{3}\end{array}\right.$
Determine Jacobian: $J=\left[\begin{array}{rr}3 x^{2} & 1 \\ -1 & 3 y^{2}\end{array}\right]$.
Find equilibria: $(\mathrm{A})\left(x_{0}, y_{0}\right)=(0,0)$.

Analyze point (A): $J=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right] . \quad \lambda_{1}=i \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ i\end{array}\right] \quad \lambda_{2}=-i \quad \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -i\end{array}\right]$.

Example: Find equilibria and determine their type for $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-\sin (x)\end{array}\right.$
(Note: This is the system form of the mathematical pendulum $\ddot{x}+\sin (x)=0$.)
Determine Jacobian: $J=\left[\begin{array}{rr}0 & 1 \\ -\cos (x) & 0\end{array}\right]$.
Find equilibria: $(\mathrm{A})(x, y)=(\pi 2 n, 0)$ and $(\mathrm{B})(x, y)=(\pi(2 n+1), 0)$.
Analyze point $(A): J=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right] . \quad \lambda_{1}=i \quad \mathbf{v}_{1}=\left[\begin{array}{c}1 \\ i\end{array}\right] \quad \lambda_{2}=-i \quad \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$.
Analyze point (B): $J=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] . \quad \lambda_{1}=1 \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \lambda_{2}=-1 \quad \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.

Example: Find equilibria and determine their type for $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-\sin (x)-y\end{array}\right.$
Note: This is the system form of the mathematical pendulum $\ddot{x}+\dot{x}+\sin (x)=0$.
Observe that the term \dot{x} represents friction. The system is now losing energy.

Determine Jacobian: $J=\left[\begin{array}{rr}0 & 1 \\ -\cos (x) & -1\end{array}\right]$.
Find equilibria: $(\mathrm{A})(x, y)=(\pi 2 n, 0)$ and $(\mathrm{B})(x, y)=(\pi(2 n+1), 0)$.
Analyze point $(A): J=\left[\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right] . \quad \lambda_{1,2}=-\frac{1}{2} \pm i \sqrt{3} / 2$.
asymptotically stable spiral
Analyze point (B): $J=\left[\begin{array}{rr}0 & 1 \\ 1 & -1\end{array}\right] . \quad \lambda_{1,2}=-\frac{1}{2} \pm \sqrt{5} / 2$

