Applied Analysis (APPM 5440): Final exam

1:30pm - 4:00pm, Dec. 14, 2009. Closed books.
Problem 1: $(20 \mathrm{p})$ Set $I=[0,1]$. Prove that there is a continuous function u on I such that

$$
\begin{equation*}
u(x)-\frac{1}{5} \int_{0}^{x} \sin \left(u(t)^{2}\right) d t=\cos (x), \quad x \in I \tag{1}
\end{equation*}
$$

Solution: Define the operator T via

$$
[T u](x)=\frac{1}{5} \int_{0}^{x} \sin \left(u(t)^{2}\right) d t+\cos (x)
$$

Clearly $T u$ is continuous whenever u is continuous so T maps $C(I)$ to $C(I)$. Now (1) takes the form

$$
\begin{equation*}
u=T u . \tag{2}
\end{equation*}
$$

Define $\Omega=\{u \in C(I):\|u\| \leq M\}$ where the norm is the uniform norm and M is a real number to be determined. Ω is a closed subset of the complete space $C(I)$, so if we can determine M so that T maps Ω to Ω, and T is a contraction on Ω, then the contraction mapping theorem will apply.

First we observe that $|\sin \alpha| \leq|\alpha|$ and $|\sin \alpha-\sin \beta| \leq|\alpha-\beta|$ for any real numbers α and β.
Ensure that T maps Ω to Ω : Suppose that $u \in \Omega$. Then

$$
\|T u\|=\sup _{x \in I}\left|\frac{1}{5} \int_{0}^{x} \sin \left(u(t)^{2}\right) d t+\cos (x)\right| \leq \sup _{x \in I}\left(\frac{1}{5} \int_{0}^{x}\left|\sin \left(u(t)^{2}\right)\right| d t+|\cos (x)|\right) \leq \frac{1}{5} \int_{0}^{1} 1 d t+1=\frac{6}{5}
$$

We see that $T u \in \Omega$ if $M \geq 6 / 5$.
Ensure that T is a contraction: If $u, v \in \Omega$, then

$$
\begin{aligned}
& \|T u-T v\|=\sup _{x \in I}\left|\frac{1}{5} \int_{0}^{x}\left(\sin u(t)^{2}-\sin v(t)^{2}\right)\right| d t \leq \frac{1}{5} \int_{0}^{1}\left|\sin u(t)^{2}-\sin v(t)^{2}\right| d t \\
& \quad \leq \frac{1}{5} \int_{0}^{1}\left|u(t)^{2}-v(t)^{2}\right| d t=\frac{1}{5} \int_{0}^{1}|u(t)-v(t)||u(t)+v(t)| d t \\
& \leq \frac{1}{5} \int_{0}^{1}|u(t)-v(t)|(|u(t)|+|v(t)|) d t \leq \frac{1}{5} \sup _{x \in I} \int_{0}^{1}\|u-v\|(M+M) d t=\frac{2 M}{5}\|u-v\| .
\end{aligned}
$$

We see that T is a contraction if $M<5 / 2$.
Conclusion: Picking, say, $M=2$, we see that T becomes a contraction on the complete metric space Ω. Consequently, (2) has a unique solution.

Problem 2: (25p) Let X be a set.
(a) (6p) State the definitions of a metric on X and a topology on X.
(b) (4p) Given a metric d on X, define the topology \mathcal{T} induced by d.
(c) (8 p) Prove that the \mathcal{T} that you defined in (b) satisfies the axioms of a topology.
(d) (7p) Set $Y=\mathbb{R}^{2}$, and define on $Y \times Y$ the function

$$
b(x, y)=b\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left(\left|x_{1}-y_{1}\right|^{1 / 2}+\left|x_{2}-y_{2}\right|^{1 / 2}\right)^{2} .
$$

Is (Y, b) a metric space? Motivate.

Solution:

(a) See text book.
(b) A subset G of X belongs to \mathcal{T} if and only if the following condition holds:

For any $x \in G$, there is an $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq G$, where $B_{\varepsilon}(x)=\{y \in X: d(x, y)<\varepsilon\}$.
(c) \emptyset and X obviously satisfy the criterion in (b).

Let $\left\{G_{\alpha}\right\}_{\alpha \in A}$ be an arbitrary collection of sets in \mathcal{T}. Set $G=\bigcup_{\alpha \in A} G_{\alpha}$. We need to show that $G \in \mathcal{T}$. Suppose $x \in G$. Then $x \in G_{\beta}$ for some $\beta \in A$. Since $G_{\beta} \in \mathcal{T}$, there is a $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq G_{\beta}$. But then $B_{\varepsilon}(x) \subseteq G_{\beta} \subseteq \bigcup_{\alpha \in A} G_{\alpha}=G$.

Let $\left\{G_{j}\right\}_{j=1}^{n}$ be a finite collection of sets in \mathcal{T}. Set $G=\bigcap_{j=1}^{n} G_{j}$. We need to show that $G \in \mathcal{T}$. Pick $x \in G$. Then $x \in G_{j}$ for every j, so for each j we can pick an $\varepsilon_{j}>0$ such that $B_{\varepsilon_{j}}(x) \subseteq G_{j}$. Set $\varepsilon=\min _{1 \leq j \leq n} \varepsilon_{j}$. Since the min is over a finite number of elements, $\varepsilon>0$. Moreover, $B_{\varepsilon}(x) \subseteq G_{j}$ for every j, so $B_{\varepsilon}(x) \subseteq G$.
(d) No, the given b does not satisfy the triangle inequality. Consider the points

$$
x=[1,0], \quad y=[0,1], \quad z=[1,1] .
$$

We have

$$
b(x, y)=\left(1^{1 / 2}+1^{1 / 2}\right)^{2}=4,
$$

and

$$
b(x, z)+b(z, y)=\left(0^{1 / 2}+1^{1 / 2}\right)^{2}+\left(0^{1 / 2}+1^{1 / 2}\right)^{2}=2 .
$$

Problem 3: (10p)
(a) (5p) State the Hahn-Banach theorem.
(b) (5p) Define what it means for a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in a Banach space X to converge weakly.

Solution:

(a) Let M be a linear subspace of a NLS X, and let ψ be a bounded linear functional on M. Then there exists a bounded linear functional φ on X such that

$$
\varphi(x)=\psi(x), \quad \forall x \in M,
$$

and

$$
\|\varphi\|\left\|_{X^{*}}=\right\| \psi \|_{M^{*}}
$$

Alternative formulation: Every bounded linear functional of a subspace of a NLS can be extended to the entire space without enlarging the norm.
(b) A sequence $\left(x_{n}\right)_{n=1}^{\infty}$ converges weakly if there exists an element $x \in X$ such that

$$
\varphi\left(x_{n}\right) \rightarrow \varphi(x) \quad \text { for every } \varphi \in X^{*}
$$

Problem 4: (25p) Let H be a Hilbert space with a closed convex subset M.
(a) (13p) Suppose that $x \in H$ and that $x \notin M$. Prove that there exists a unique $z \in M$ such that

$$
\|x-z\|=\inf _{y \in M}\|x-y\| .
$$

(b) (12p) Now consider the particular case of $H=L^{2}(I)$ where $I=[0,1]$. The set H is equipped with the usual inner product $(f, g)=\int_{0}^{1} \overline{f(t)} g(t) d t$. Let M denote the linear space of polynomials of degree two or less, and set $f(t)=t^{3}$. Evaluate

$$
d=\operatorname{dist}(M, f)=\inf _{g \in M}\|f-g\| .
$$

Solution:

(a) See lecture notes for Chapter 6. (Observe that M is only a subset of H, not a subspace.)
(b) The unique minimizer z assured in part (a) takes the form

$$
z(t)=a+b t+c t^{2}
$$

where a, b, and c are some numbers to determined. We know that $f-z \in M^{\perp}$. Since the functions $u_{1}(t)=1, u_{2}(t)=t$, and $u_{3}(t)=t^{2}$ form a basis for M, the condition that $f-z \in M^{\perp}$ is satisfied iff

$$
\begin{aligned}
& 0=\left(f-z, u_{1}\right)=\int_{0}^{1}\left(t^{3}-a-b t-c t^{2}\right) d t=\frac{1}{4}-a-\frac{1}{2} b-\frac{1}{3} c, \\
& 0=\left(f-z, u_{2}\right)=\int_{0}^{1}\left(t^{4}-a-b t^{2}-c t^{3}\right) d t=\frac{1}{5}-\frac{1}{2} a-\frac{1}{3} b-\frac{1}{4} c, \\
& 0=\left(f-z, u_{3}\right)=\int_{0}^{1}\left(t^{5}-a-b t^{3}-c t^{4}\right) d t=\frac{1}{6}-\frac{1}{3} a-\frac{1}{4} b-\frac{1}{5} c .
\end{aligned}
$$

Solving the linear system

$$
\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
1 / 4 \\
1 / 5 \\
1 / 6
\end{array}\right]
$$

we find that

$$
a=\frac{1}{20}, \quad b=-\frac{3}{5}, \quad c=\frac{3}{2} .
$$

Now the laborious part is to evaluate the norm of the residual. After some work, we find

$$
\operatorname{dist}(M, f)=\|z\|=\left(\int_{0}^{1}\left(t^{3}-\frac{1}{20}+\frac{3}{5} t-\frac{3}{2} t^{2}\right)^{2} d t\right)^{1 / 2}=\cdots=\frac{1}{\sqrt{2800}}=\frac{1}{20 \sqrt{7}} .
$$

Alternate solution: It is possible to use Gram-Schmidt to orthonormalize $\left\{u_{1}, u_{2}, u_{3}\right\}$ to form an orthonormal set $\left\{v_{1}, v_{2}, v_{3}\right\}$; this is a bit of work, but results in the functions

$$
v_{1}(t)=1, \quad v_{2}(t)=2 \sqrt{3}(t-1 / 2), \quad v_{3}(t)=6 \sqrt{5}\left(t^{2}-t+1 / 6\right)
$$

Then $z=\left(v_{1}, f\right) v_{1}+\left(v_{2}, f\right) v_{2}+\left(v_{3} f\right) v_{3}$, and since $f-z \in M^{\perp}$, Pythagoras theorem yields

$$
\begin{aligned}
\|f-z\|^{2}=\|f\|^{2}-\|z\|^{2}=\frac{1}{7}-\left|\left(v_{1}, f\right)\right|^{2}-\left|\left(v_{2}, f\right)\right|^{2} & -\left|\left(v_{2}, f\right)\right|^{2} \\
& =\frac{1}{7}-\frac{1}{16}-\left(\frac{3 \sqrt{12}}{40}\right)^{2}-\left(\frac{\sqrt{5}}{20}\right)^{2}=\frac{1}{2800}
\end{aligned}
$$

Problem 5: (20p) Let (X, d) be a compact metric space. Let $C_{\mathrm{b}}(X)$ denote the set of all bounded real-valued continuous functions on X, equipped with the uniform norm,

$$
\|f\|_{\mathrm{u}}=\sup _{x \in X}|f(x)| .
$$

Prove that $C_{\mathrm{b}}(X)$ is complete.
Solution: The assumption that X is compact is a red herring - this property is not required for the statement to be true.

Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a Cauchy sequence in (X, d). We will construct a limit function, and then prove that it is bounded, that it is indeed the limit of the sequence in the uniform norm, and finally that it is continuous.

Step 1 - construct the limit point f : Fix $x \in X$. Since $\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|$ and $\left(f_{n}\right)_{n=1}^{\infty}$ is Cauchy, the sequence $\left(f_{n}(x)\right)_{n=1}^{\infty}$ is Cauchy in \mathbb{R}. Since \mathbb{R} is complete, the sequence is convergent, we can therefore define a function f via

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x) .
$$

Step 2 - prove that f is bounded: We have

$$
\sup _{x \in X}|f(x)|=\sup _{x \in X}\left(\lim _{n \rightarrow \infty}\left|f_{n}(x)\right|\right) \leq \liminf _{n \rightarrow \infty}\left(\sup _{x \in X}\left|f_{n}(x)\right|\right)=\liminf _{n}\left\|f_{n}\right\|<\infty
$$

where in the last step we used that $\left(f_{n}\right)$ is Cauchy, and therefore bounded.
Step 3 - prove that $f_{n} \rightarrow f$ uniformly: Fix $\varepsilon>0$. Pick N such that $\left\|f_{m}-f_{n}\right\|<\varepsilon / 2$ when $m, n \geq N$. Then for $n \geq N$, we have

$$
\begin{aligned}
\left\|f_{n}-f\right\|=\sup _{x \in X}\left|f_{n}(x)-f(x)\right|= & \sup _{x \in X}\left(\lim _{m \rightarrow \infty}\left|f_{n}(x)-f_{m}(x)\right|\right) \\
& \leq \liminf _{m \rightarrow \infty}\left(\sup _{x \in X}\left|f_{n}(x)-f_{m}(x)\right|\right)=\liminf _{m \rightarrow \infty}\left\|f_{n}-f_{m}\right\| \leq \varepsilon / 2<\varepsilon .
\end{aligned}
$$

Step 4 - prove that f is continuous: This follows directly from the fact that each f_{n} is continuous and $f_{n} \rightarrow f$ uniformly (since uniform convergence preserves continuity).

Steps 2 and 4 prove that $f \in C_{\mathrm{b}}(X)$, and step 3 proves that f is the limit point of $\left(f_{n}\right)$. The proof is therefore complete.

