Homework set 10 - APPM5440

Problem 5.4:

You can compute the eigenvalues of A using standard techniques. This directly leads to a formula for $r(A)$.

Try to find explicit formulas for $A^{2 n}$ and $A^{2 n+1}$. To do this, it might be worth it to evaluate analytically A^{2}, A^{3}, A^{4}, etc. This should give you an idea of what the general expression should be. Then prove your "guess" via induction.

Problem 5.5:

Set $b=\sup _{x} \int_{0}^{1}|k(x, y)| d y$.
First we observe that

$$
\begin{aligned}
\|K u\|=\sup _{x}\left|\int_{0}^{1} k(x, y) u(y) d y\right| \leq \sup _{x} & \int_{0}^{1}|k(x, y)||u(y)| d y \\
& \leq \sup _{x} \int_{0}^{1}|k(x, y)|\|u\| d y=b\|u\|
\end{aligned}
$$

which proves that $\|K\| \leq b$. Next, prove that there exists a sequence $\left(u_{n}\right)_{n=1}^{\infty}$ of continuous functions such $\left|u_{n}(y)\right| \leq 1$ for all y, and

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}| | k(x, y)\left|-u_{n}(y)\right| d y=0
$$

(Prove that such a sequence exists!) Then $\left\|u_{n}\right\|=1$ so

$$
\|K\| \geq\left\|K u_{n}\right\| \rightarrow b
$$

(Fill in details!)

Problem 5.7: Observe that

$$
\sin (\pi(x-y))=\sin (\pi x) \cos (\pi y)-\cos (\pi x) \sin (\pi y) .
$$

Consequently

$$
[K f](x)=\sin (\pi x) \int_{0}^{1} \cos (\pi y) f(y) d y-\cos (\pi x) \int_{0}^{1} \sin (\pi y) f(y) d y .
$$

From this formula, it is not hard to prove that the range of K is the linear span of the functions $u_{1}(x)=\sin (\pi x)$ and $u_{2}(x)=\cos (\pi x)$. The kernel consists of all functions u such that

$$
\int_{0}^{1} \cos (\pi y) u(y) d y=0, \quad \text { and } \quad \int_{0}^{1} \sin (\pi y) u(y) d y=0 .
$$

Problem 5.8: Review the definition of equivalent norms. Assume that two norms on S are equivalent, and then prove that the corresponding operator norms are equivalent. Then go in the other direction.

