Homework set 13 - APPM5440, Fall 2009
Note: This homework covers all of Chapter 6.
From the textbook: 6.1, 6.2, 6.3, 6.4. 6.6, 6.12.
Problem 1: Let H be a Hilbert space, and let $\left(e_{j}\right)_{j=1}^{n}$ be an orthonormal set in H. Let x be an arbitrary vector in H. Set $M=\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$, set

$$
y=\sum_{j=1}^{n}\left(e_{j}, x\right) e_{j},
$$

and set $z=x-y$. Prove that $z \in M^{\perp}$ (and consequently, that $y \perp z$). Prove that

$$
\|x-y\|=\inf _{y^{\prime} \in M}\left\|x-y^{\prime}\right\| .
$$

Prove that y is the unique minimizer (in other words, if $y^{\prime} \in M \backslash\{y\}$, then $\left.\left\|x-y^{\prime}\right\|>\|x-y\|\right)$. Prove these claims directly, without using the theorem about existence of a unique minimizer between a closed convex set and a point.

Problem 2: Set $I=[-1,1]$ and consider the Hilbert space $H=L^{2}(I)$. Let M denote the subspace of H consisting of all even functions (in other words, functions such that $f(x)=f(-x)$ for all $x)$. Given an $f \in H$, prove that

$$
\inf _{g \in M}\|f-g\|=\left(\int_{-1}^{1}\left(\frac{f(x)-f(-x)}{2}\right)^{2} d x\right)^{1 / 2}
$$

(Don't worry about issues relating to Lebesgue integration.)
The last problem was the "hard" problem on the final last year.
Problem 3: Let X be a separable infinite-dimensional Hilbert space. Prove that there exists a family of closed linear subspaces $\left\{\Omega_{t}: t \in[0,1]\right\}$ such that Ω_{s} is a strict subset of Ω_{t} whenever $s<t$.

