Homework set 2 — APPM5440, Fall 2009

Problem 1.10: Prove that

(1)
$$\limsup_{n \to \infty} \inf_{\alpha} x_{n,\alpha} \le \inf_{\alpha} \limsup_{n \to \infty} x_{n,\alpha}$$

and that

(2)
$$\sup_{\alpha} \liminf_{n \to \infty} x_{n,\alpha} \le \liminf_{n \to \infty} \sup_{\alpha} x_{n,\alpha},$$

Solution: Set $y_n = \inf_{\alpha} x_{n,\alpha}$. Then clearly

$$y_n \leq x_{n,\alpha}, \quad \forall \alpha.$$

Take the limsup of both sides:

$$\limsup y_n \le \limsup x_{n,\alpha}, \qquad \forall \alpha.$$

Finally take the infimum over α , nothing that $\limsup y_n$ does not depend on α :

$$\limsup y_n \le \inf_{\alpha} \limsup x_{n,\alpha}.$$

This relation is (1).

To prove (2), analogously set $z_n = \sup_{\alpha} x_{n,\alpha}$. Then $x_{n,\alpha} \leq z_n$ for all α . Take the limit to get limit $x_{n,\alpha} \leq \liminf_{n \neq \infty} z_n$, and finally take the sup over α to get (2).

Problem 2: Suppose that $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ are Cauchy sequences in a metric space (X, d). Prove that the sequence $(d(x_n, y_n))_{n=1}^{\infty}$ converges.

Solution: Set $\alpha_m = d(x_m, y_m)$. Since \mathbb{R} is complete, all we need to prove is that (α_m) is a Cauchy sequence.

Fix any two natural integers m and n. Via two applications of the triangle inequality, we obtain

$$d(x_m, y_m) \le d(x_m, x_n) + d(x_n, y_m) \le d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m).$$

It follows that

(3)
$$d(x_m, y_m) - d(x_n, y_n) \le d(x_m, x_n) + d(y_n, y_m)$$

An analogous argument shows that

(4)
$$d(x_n, y_n) - d(x_m, y_m) \le d(x_m, x_n) + d(y_n, y_m)$$

Together, (3) and (4) imply that

(5) $|d(x_m, y_m) - d(x_n, y_n)| \le d(x_m, x_n) + d(y_m, y_n).$

Fix $\varepsilon > 0$. Since (x_n) and (y_n) are Cauchy, there exist N_1 and N_2 such that

(6)
$$m, n \ge N_1 \quad \Rightarrow \quad d(x_m, x_n) < \varepsilon/2,$$

(7)
$$m, n \ge N_2 \quad \Rightarrow \quad d(y_m, y_n) < \varepsilon/2.$$

Set $N = \max(N_1, N_2)$. Then (5), (6), (7) imply that

$$m, n \ge N \qquad \Rightarrow \qquad |\alpha_m - \alpha_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$