Solution for 2.4: Let's consider X = [-1, 1] instead. Then set f(x) = |x|, and

$$f_n(x) = \frac{1 + n x^2}{\sqrt{n + n^2 x^2}}.$$

Then $f_n \to f$ uniformly, $f_n \in C^{\infty}(X)$, and f is not differentiable. (To justify the shift we made initially, simply note that if we define $g_n \in C([0, 1])$ by $g_n(y) = f_n(2y - 1)$, then g_n is an answer to the original problem.)

Solution for 2.5: Set I = [a, b]. Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $C^1(I)$. Since

$$||f_n - f_m||_{\mathbf{u}} \le ||f_n - f_m||_{C^1},$$

the sequence (f_n) is Cauchy in C(I). Since C(I) is complete, there exists a function $f \in C(I)$ such that $f_n \to f$ uniformly.

Next set $g_n = f'_n$. Then

$$||g_n - g_m||_{\mathbf{u}} = ||f'_n - f'_m||_{\mathbf{u}} \le ||f_n - f_m||_{C^1},$$

so (g_n) is Cauchy in C(I). Therefore, there exists a function $g \in C(I)$ such that $g_n \to g$ uniformly.

It remains to prove that $f \in C^1(I)$, and that $f_n \to f$ in $C^1(I)$. Fix any $x \in I$, and any $h \in \mathbb{R}$ such that $x + h \in I$. Then

$$\frac{1}{h} (f(x+h) - f(x)) = \lim_{n \to \infty} \frac{1}{h} (f_n(x+h) - f_n(x))$$
$$= \lim_{n \to \infty} \frac{1}{h} \int_0^h f'_n(x+t) dt$$
$$= \lim_{n \to \infty} \frac{1}{h} \int_0^h g_n(x+t) dt.$$

Now recall that uniform convergence on a finite interval implies convergence of integrals. Since $g_n \to g$ uniformly, we find that

$$\frac{1}{h}(f(x+h) - f(x)) = \frac{1}{h} \int_0^h g(x+t) \, dt.$$

Since g is continuous, the limit as $h \to 0$ exists, and so

$$f'(x) = \lim_{h \to 0} \frac{1}{h} \left(f(x+h) - f(x) \right) = \lim_{h \to 0} \frac{1}{h} \int_0^h g(x+t) \, dt = g(x).$$

This proves that $f \in C^1(I)$. To prove that $f_n \to f$ in $C^1(I)$, we note that

$$||f - f_n||_{C^1} = ||f - f_n||_{\mathbf{u}} + ||f' - f'_n||_{\mathbf{u}} = ||f - f_n||_{\mathbf{u}} + ||g - g_n||_{\mathbf{u}}.$$

By the construction of f and g, it follows that $||f - f_n||_{C^1(I)} \to 0$.