
Solution for 2.4: Let’s consider X = [−1, 1] instead. Then set f(x) = |x|,
and

fn(x) =
1 + nx2

√
n + n2x2

.

Then fn → f uniformly, fn ∈ C∞(X), and f is not differentiable. (To justify
the shift we made initially, simply note that if we define gn ∈ C([0, 1]) by
gn(y) = fn(2y − 1), then gn is an answer to the original problem.)

Solution for 2.5: Set I = [a, b]. Let (fn)∞n=1 be a Cauchy sequence in
C1(I). Since

||fn − fm||u ≤ ||fn − fm||C1 ,

the sequence (fn) is Cauchy in C(I). Since C(I) is complete, there exists a
function f ∈ C(I) such that fn → f uniformly.

Next set gn = f ′n. Then

||gn − gm||u = ||f ′n − f ′m||u ≤ ||fn − fm||C1 ,

so (gn) is Cauchy in C(I). Therefore, there exists a function g ∈ C(I) such
that gn → g uniformly.

It remains to prove that f ∈ C1(I) , and that fn → f in C1(I). Fix any
x ∈ I, and any h ∈ R such that x + h ∈ I. Then

1
h

(
f(x + h)− f(x)

)
= lim

n→∞
1
h

(
fn(x + h)− fn(x)

)

= lim
n→∞

1
h

∫ h

0
f ′n(x + t) dt

= lim
n→∞

1
h

∫ h

0
gn(x + t) dt.

Now recall that uniform convergence on a finite interval implies convergence
of integrals. Since gn → g uniformly, we find that

1
h

(
f(x + h)− f(x)

)
=

1
h

∫ h

0
g(x + t) dt.

Since g is continuous, the limit as h → 0 exists, and so

f ′(x) = lim
h→0

1
h

(
f(x + h)− f(x)

)
= lim

h→0

1
h

∫ h

0
g(x + t) dt = g(x).

This proves that f ∈ C1(I). To prove that fn → f in C1(I), we note that

||f − fn||C1 = ||f − fn||u + ||f ′ − f ′n||u = ||f − fn||u + ||g − gn||u.
By the construction of f and g, it follows that ||f − fn||C1(I) → 0.
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