Homework set 8 - APPM5440 - Solutions

3.6: Set $X=C([-a, a])$ and define on X the operator

$$
[F u](x)=\frac{1}{\pi} \int_{-a}^{a} \frac{1}{1+(x-y)^{2}} u(y) d y+1
$$

Then the given equation can be formulated as a fixed point problem $u=F(u)$. We find that

$$
\begin{aligned}
\|F(u)-F(v)\|=\sup _{x \in[-a, a]} \left\lvert\, \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1+(x-y)^{2}}\right. & (u(y)-v(y)) d y \mid \\
& \leq \cdots \leq \frac{2 \arctan (a)}{\pi}\|u-v\|
\end{aligned}
$$

(you should be able to fill in the missing steps). The contraction mapping principle now proves that the equation has a unique solution in X.

To prove that the solution is positive, note that if $u(x) \geq 0$ for all x, then $[T u](x) \geq 0$ for all x. Combine this fact with the fact that f is non-negative, and that

$$
u=(I-T)^{-1} f=\sum_{n=0}^{\infty} T^{n} f
$$

For the case $a=\infty$, note that uniqueness cannot hold. If u is a solution, then so is any shift of u.
3.7: Set $X=\{u \in C(I): u(0)=u(1)=0\}$. Convolve given BVP with the Green's function $g(x, y)$ (defined by eqn (3.22)) and obtain

$$
\begin{equation*}
u+\lambda T u=h, \tag{1}
\end{equation*}
$$

where T is the operator on X given by

$$
[T u](x)=\int_{0}^{1} g(x, y) \sin (u(y)) d y
$$

and

$$
h(x)=\int_{0}^{1} g(x, y) f(y) d y .
$$

Note that $T f \in X$, so (1) is an equation on X. Now

$$
\|T u-T v\| \leq \sup _{x} \int_{0}^{1}|g(x, y)||\sin (u(y))-\sin (v(y))| d y
$$

Use that

$$
|\sin (u(y))-\sin (v(y))| \leq|u(y)-v(y)| \leq\|u-v\|
$$

to obtain

$$
\|T u-T v\| \leq \beta\|u-v\|,
$$

where

$$
\beta=\sup _{x} \int_{0}^{1}|g(x, y)| d y .
$$

We see that if $\lambda<1 / \beta$, equation (1) has a unique solution in X (by the contraction mapping theorem).

Problem 4: Consider the integral equation

$$
\begin{equation*}
u(x)=\pi^{2} \sin (x)+\frac{3}{2} \int_{0}^{\cos (x)}|x-y| u(y) d y . \tag{*}
\end{equation*}
$$

Prove that $\left({ }^{*}\right)$ has a unique solution in $C([0,1])$.
Solution: Set $X=C([0,1])$ and define the operator T on X by

$$
[T u](x)=\frac{3}{2} \int_{0}^{\cos (x)}|x-y| u(y) d y
$$

We find that

$$
\begin{aligned}
\|T u-T v\| & \leq \sup _{x} \frac{3}{2} \int_{0}^{\cos (x)}|x-y||u(y)-v(y)| d y \\
& \leq \sup _{x} \frac{3}{2} \int_{0}^{1}|x-y||u(y)-v(y)| d y \\
& \leq \sup _{x} \frac{3}{2} \int_{0}^{1}|x-y| d y\|u-v\| .
\end{aligned}
$$

Now

$$
\sup _{x} \int_{0}^{1}|x-y| d y=\sup _{x}\left(\frac{1}{2} x^{2}+\frac{1}{2}(1-x)^{2}\right)=\frac{1}{2}
$$

so

$$
\|T u-T v\| \leq \frac{3}{4}\|u-v\| .
$$

Since T is a contraction, the equation

$$
(I-T) u=f
$$

has a unique solution for every f. (In particular, for $f(x)=\pi^{2} \sin (x)$.)

Problem 1: Let X be a set with infinitely many members. We define a collection \mathcal{T} of subsets of X by saying that a set $\Omega \in \mathcal{T}$ if either $\Omega^{\mathrm{c}}=X \backslash \Omega$ is finite, or if Ω is the empty set. Verify that \mathcal{T} is a topology on X. This topology is called the "co-finite" topology on X. Describe the closed sets.

Solution: The verification should be straight-forward. The closed sets are the finite sets, and the entire set.

Problem 2: Let X denote a finite set, and let \mathcal{T} be a metrizable topology on X. Prove that \mathcal{T} is the discrete topology on X.

Solution: Enumerate the points in X so that $X=\left\{x_{n}\right\}_{n=1}^{N}$. Set

$$
\varepsilon_{n}=\min \left\{d\left(x_{n}, x_{m}\right): m \neq n\right\}, \quad \text { for } n=1,2, \ldots, N .
$$

Since the minimum is taken over a finite set of positive numbers, $\varepsilon_{n}>0$, and it follows that the set $B_{\varepsilon_{n} / 2}\left(x_{n}\right)=\left\{x_{n}\right\}$, must be open. Since any union of open set must itself be open, it follows that all subsets of X are open.

Problem 3: Consider the set $X=\{a, b, c\}$, and the collection of subsets $\mathcal{T}=\{\emptyset,\{a\},\{a, b\},\{a, c\},\{a, b, c\}\}$. Is \mathcal{T} a topology? Is \mathcal{T} a metrizable topology?

Solution: Yes it is a topology (and union or intersection of the given sets is itself a member of the set.

No, it cannot be metrizable. If it were, then the argument given in Problem 2 would demonstrate that $\{b\}$ would have to be an open set, and it is not.

