Homework set 9 — APPM5440 — Fall 2009

From the textbook: 4.1, 4.2, 4.3, 4.5a, 4.6.

Problem 1: Set $X = \mathbb{R}^2$ and $Y = \mathbb{R}$, and define $f: X \to Y$ by setting $f([x_1, x_2]) = x_1$. Prove that f is continuous. Prove that f is open. Prove that f does not necessarily map close sets to close sets.

Problem 2: Prove that the co-finite topology is first countable if and only if X is countable.

Problem 3: Prove that the co-finite topology on \mathbb{R} weaker than the standard topology.

The last two problems are entirely optional.

Problem 4: The Hausdorff property is only one of many so called "separability" conditions on topological spaces. As an example, we say that a topological space X is T_j , for j = 0, 1, 2, 3, 4 if:

- T_0 : Given $x, y \in X$, there either exists an open set containing x but not y, or vice versa.
- T_1 : Given $x, y \in X$, there exists an open set that contains x but not y. T_2 : Given $x, y \in X$, there exist disjoint open sets G, H such that
- $x \in G, y \in H$. (Note that T_2 is the same as Hausdorff.)
- T_3 : X is T_1 , and: Given any closed set A, and any point $x \in A^c$, there exist disjoint open sets G, H such that $x \in G$, $A \subseteq H$.
- T_4 : Given any two closed disjoint sets A and B, there exists disjoint open set G, and H such that $A \subseteq G, B \subseteq H$.

Prove that if i < j, then any T_j space is T_i . Prove that the co-finite topology is T_1 but not T_2 . Prove that a topological space is T_1 if and only if the set $\{x\}$ is closed for every $x \in X$.

Problem 5: Consider the set $X = \mathbb{R}$. Let S denote the collection of sets of the form $(-\infty, a]$ or (a, ∞) for $a \in \mathbb{R}$.

- (a) Let \mathcal{B} denote the collection of sets obtained by taking finite intersections of sets in \mathcal{S} . Prove that if $G \in \mathcal{B}$, then either G is empty, or G = (a, b] for some a and b such that $-\infty < a < b < \infty$.
- (b) Let \mathcal{T} denote the topology generated by the base \mathcal{B} . Prove that all sets in \mathcal{B} are both open and closed in \mathcal{T} .
- (c) Prove that \mathcal{T} is first countable but not second countable. Hint: For any $x \in X$, any neighborhood base at x contains at least one set whose supremum is x.
- (d) Prove that \mathbb{Q} is dense in \mathcal{T} . (This proves that (X, \mathcal{T}) is separable but not second countable.)
- (e) Prove that (X, \mathcal{T}) is not metrizable.