Applied Analysis (APPM 5440): Section exam 1

8:30am – 9:50am, Sep. 21, 2009. Closed books.

The following problems are worth 20 points each.

Problem 1: In what follows, (X, d_X) and (Y, d_Y) are metric spaces.

- (a) Define what it means for a function $f: X \to Y$ to be <u>continuous</u>.
- (b) Define what it means for a subset Ω of X to be compact.
- (c) Define what a completion of (X, d_X) is.
- (d) Let Ω be a subset of X. Define the <u>closure</u> of Ω .

Problem 2: Let \mathbb{Q} denote the set of rational numbers. On \mathbb{Q} , we define the discrete metric

$$d(x,y) = \begin{cases} 0, & \text{when } x = y, \\ 1, & \text{when } x \neq y. \end{cases}$$

- (a) What subsets of \mathbb{Q} are open in (\mathbb{Q}, d) ? Prove your claim.
- (b) Specify which sequences in (\mathbb{Q}, d) are convergent. No motivation required.
- (c) Set $\Omega = \{q \in \mathbb{Q} : q^2 < 2\}$. What is the <u>closure</u> of Ω in (\mathbb{Q}, d) ? No motivation required.
- (d) Set $\Omega = \{q \in \mathbb{Q} : q^2 < 2\}$. What is the completion of (Ω, d) ? No motivation required.

Problem 3: Let $(x_n)_{n=1}^{\infty}$ be a sequence of real numbers. Set $y_n = x_{2n}$. Which of the following two statements must necessarily be true:

(a)
$$\limsup_{n \to \infty} x_n \le \limsup_{n \to \infty} y_n,$$

(b)
$$\limsup_{n \to \infty} y_n \le \limsup_{n \to \infty} x_n.$$

Motivate your answers carefully. State the definition of "limsup" that you use and make sure that your argument follows directly from this definition.

Problem 4: Let $(X, || \cdot ||)$ be a normed linear space. Suppose that every sequence $(x_n)_{n=1}^{\infty}$ in X such that $||x_m - x_n|| \le 1/N$ whenever $m, n \ge N$ converges to a point in X. Is $(X, || \cdot ||)$ necessarily complete? Prove this if you answer yes, and give a counterexample if you answer no.

Problem 5: Let (X, d) be a compact metric space. Let $C_{\rm b}(X)$ denote the set of all bounded real-valued continuous functions on X, equipped with the uniform norm,

$$||f||_{\mathbf{u}} = \sup_{x \in X} |f(x)|.$$

Prove that $C_{\rm b}(X)$ is complete.