Applied Analysis (APPM 5440): Section exam 1

8:30am – 9:50am, Sep. 21, 2009. Closed books.

Problem 1: In what follows, (X, d_X) and (Y, d_Y) are metric spaces.

- (a) Define what it means for a function $f: X \to Y$ to be <u>continuous</u>.
- (b) Define what it means for a subset Ω of X to be compact.
- (c) Define what a completion of (X, d_X) is.
- (d) Let Ω be a subset of X. Define the <u>closure</u> of Ω .

Solution:

- (a) For instance: f is continuous if $f^{-1}(G)$ is open whenever G is open.
- (b) Ω is compact if every open cover has a finite subcover.

Many provided the answer that Ω is compact if it is totally bounded and complete. One could define compactness this way, so the answer gave full credit, but it is non-standard.

- (c) A metric space (Y, d_Y) is a completion of (X, d_X) if:
 - (1) There is an isometry $i: X \to Y$.
 - (2) i(X) is dense in Y.
 - (3) (Y, d_Y) is complete.

Answering that you "add the limit points" is too imprecise, and does not result in full credit.

(d) The closure is the intersection of all closed sets that contain Ω . Alternatively, you could define the closure as the set of all limit points of sequences in Ω .

The answer "the smallest closed set that contains Ω " gave full credit but is not great since you would then have to prove that such a smallest set in fact exists.

Problem 2: Let \mathbb{Q} denote the set of rational numbers. On \mathbb{Q} , we define the discrete metric

$$d(x,y) = \begin{cases} 0, & \text{when } x = y, \\ 1, & \text{when } x \neq y. \end{cases}$$

- (a) What subsets of \mathbb{Q} are open in (\mathbb{Q}, d) ? Prove your claim.
- (b) Specify which sequences in (\mathbb{Q}, d) are convergent. No motivation required.
- (c) Set $\Omega = \{q \in \mathbb{Q} : q^2 < 2\}$. What is the <u>closure</u> of Ω in (\mathbb{Q}, d) ? No motivation required.
- (d) Set $\Omega = \{q \in \mathbb{Q} : q^2 < 2\}$. What is the completion of (Ω, d) ? No motivation required.

Solution:

(a) All subsets are open. To prove this, let Ω be an arbitrary subset of Ω . Let $x \in \Omega$. We need to prove that for some ε , there is an ε -ball centered at x that is entirely contained in Ω . Set $\varepsilon = 1/2$. Then $B_{\varepsilon}(x) = \{x\}$ which is clearly contained in Ω .

(b) A sequence $(x_n)_{n=1}^{\infty}$ is convergent iff it is constant beyond a certain point. In other words:

 $(x_n)_{n=1}^{\infty}$ is convergent $\Leftrightarrow \exists N \text{ such that } x_n = x_N \text{ when } n \geq N.$

The " \Leftarrow " should be obvious. To prove " \Rightarrow ", suppose that (x_n) is Cauchy. Then there exists N such that $d(x_n, x_N) < 1/2$ when $n \ge N$. Note that if $d(x_n, x_N) < 1/2$, then $x_n = x_N$.

(c) Since every subset in (\mathbb{Q}, d) is open, every subset is also closed. Therefore, $\overline{\Omega} = \Omega$.

(d) Since only sequences that become constant are Cauchy, (Ω, d) is complete in its own right. Therefore, the completion of (Ω, d) is (Ω, d) . **Problem 3:** Let $(x_n)_{n=1}^{\infty}$ be a sequence of real numbers. Set $y_n = x_{2n}$. Which of the following two statements must necessarily be true:

(a)
$$\limsup_{n \to \infty} x_n \le \limsup_{n \to \infty} y_n,$$

(b)
$$\limsup_{n \to \infty} y_n \le \limsup_{n \to \infty} x_n.$$

Motivate your answers carefully. State the definition of "limsup" that you use and make sure that your argument follows directly from this definition.

Solution: Definition of "limsup":
$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} (\sup\{x_k : k \ge n\})$$

(a) This is not necessarily true. For a counterexample, set $x_n = (-1)^{n+1}$ so that $x_n = 1$ if n is odd and $x_n = -1$ if n is even. We have

$$\limsup_{n \to \infty} x_n = 1.$$
$$= -1.$$
 so

On the other hand, $y_n = x_{2n} = (-1)^{2n+1} = -1$, so

$$\limsup_{n \to \infty} y_n = -1.$$

(b) This is true. We have

$$\begin{split} \limsup_{n \to \infty} y_n &= \lim_{n \to \infty} \sup\{x_{2k} : \ k \ge n\} \le \lim_{n \to \infty} \sup\{x_{2k}, \ x_{2k+1} : \ k \ge n\} \\ &= \lim_{n \to \infty} \sup\{x_k : \ k \ge 2n\} = \limsup_{n \to \infty} x_n. \end{split}$$

The inequality in the second step holds since we enlarge the set over which the sup is taken.

Problem 4: Let $(X, || \cdot ||)$ be a normed linear space. Suppose that every sequence $(x_n)_{n=1}^{\infty}$ in X such that $||x_m - x_n|| \le 1/N$ whenever $m, n \ge N$ converges to a point in X. Is $(X, || \cdot ||)$ necessarily complete? Prove this if you answer yes, and give a counterexample if you answer no.

Solution: Yes, the set must be complete, as we will prove.

Let $(y_n)_{n=1}^{\infty}$ be an arbitrary Cauchy sequence.

From (y_n) , we pick a rapidly convergent subsequence as follows:

- Pick n_1 such that $m, n \ge n_1 \implies ||y_m y_n|| \le 1$.
- Pick for $j = 2, 3, \ldots$ an integer $n_j > n_{j-1}$ such that $m, n \ge n_j \implies ||y_m y_n|| \le 1/j$.

The sequence $(y_{n_j})_{j=1}^{\infty}$ satisfies $i, j \ge J \implies ||y_{n_i} - y_{n_j}|| \le 1/J$, so our assumption on $(X, || \cdot ||)$ implies that there exists a point $y \in X$ such that $y_{n_j} \to y$ as $j \to \infty$.

It only remains to prove that $y_n \to y$ as $n \to \infty$. Pick $\varepsilon > 0$. Since $(y_n)_{n=1}^{\infty}$ is Cauchy, there exists an N such that

$$m, n \ge N \quad \Rightarrow \quad ||y_m - y_n|| < \varepsilon/2.$$

Now pick j_0 such that $n_{j_0} \ge N$ and $d(y_{n_{j_0}}, y) < \varepsilon/2$. Then if $n \ge N$, we have
 $d(y_n, y) \le d(y_n, y_{n_{j_0}}) + d(y_{n_{j_0}}, y) \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$

Problem 5: Let (X, d) be a compact metric space. Let $C_{\rm b}(X)$ denote the set of all bounded real-valued continuous functions on X, equipped with the uniform norm,

$$||f||_{\mathbf{u}} = \sup_{x \in X} |f(x)|.$$

Prove that $C_{\rm b}(X)$ is complete.

Solution: The assumption that X is compact is a red herring — this property is not required for the statement to be true.

Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in (X, d). We will construct a limit function, and then prove that it is bounded, that it is indeed the limit of the sequence in the uniform norm, and finally that it is continuous.

Step 1 — construct the limit point f: Fix $x \in X$. Since $|f_n(x) - f_m(x)| \le ||f_n - f_m||$ and $(f_n)_{n=1}^{\infty}$ is Cauchy, the sequence $(f_n(x))_{n=1}^{\infty}$ is Cauchy in \mathbb{R} . Since \mathbb{R} is complete, the sequence is convergent, we can therefore define a function f via

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Step 2 — prove that f is bounded: We have

$$\sup_{x \in X} |f(x)| = \sup_{x \in X} \left(\lim_{n \to \infty} |f_n(x)| \right) \le \liminf_{n \to \infty} \left(\sup_{x \in X} |f_n(x)| \right) = \liminf_n ||f_n|| < \infty,$$

where in the last step we used that (f_n) is Cauchy, and therefore bounded.

Step 3 — prove that $f_n \to f$ uniformly: Fix $\varepsilon > 0$. Pick N such that $||f_m - f_n|| < \varepsilon/2$ when $m, n \ge N$. Then for $n \ge N$, we have

$$\begin{aligned} ||f_n - f|| &= \sup_{x \in X} |f_n(x) - f(x)| = \sup_{x \in X} \left(\lim_{m \to \infty} |f_n(x) - f_m(x)| \right) \\ &\leq \liminf_{m \to \infty} \left(\sup_{x \in X} |f_n(x) - f_m(x)| \right) = \liminf_{m \to \infty} ||f_n - f_m|| \leq \varepsilon/2 < \varepsilon. \end{aligned}$$

Step 4 — prove that f is continuous: This follows directly from the fact that each f_n is continuous and $f_n \to f$ uniformly (since uniform convergence preserves continuity).

Steps 2 and 4 prove that $f \in C_b(X)$, and step 3 proves that f is the limit point of (f_n) . The proof is therefore complete.