Applied Analysis (APPM 5440): Section exam 2

8:30am – 9:50am, Oct. 28, 2009. Closed books.

Problem 1: (24 points) For each of the statements below, state whether it is TRUE or FALSE. ("TRUE" of course means "necessarily true".) No motivation required.

(a) Define for n = 1, 2, 3, ... the function $f_n : \mathbb{R} \to \mathbb{R} : x \mapsto e^{-(x-n)^2}$. The sequence $(f_n)_{n=1}^{\infty}$ converges pointwise to zero.

(b) With f_n defined as in (a), the sequence $(f_n)_{n=1}^{\infty}$ converges uniformly to zero.

(c) With f_n defined as in (a), the set $\Omega = \{f_n\}_{n=1}^{\infty}$ is equicontinuous.

(d) With f_n defined as in (a), the set $\{f_n\}_{n=1}^{\infty}$ is pre-compact in $C_{\rm b}(\mathbb{R})$.

(e) Let $(g_n)_{n=1}^{\infty}$ be a sequence of real-valued functions on the set I = [0, 1] that converges pointwise to a function g. Suppose further that the set $\{g_n\}_{n=1}^{\infty}$ is equicontinuous. Then g is continuous.

(f) Suppose that $(h_n)_{n=1}^{\infty}$ is a sequence of functions $h_n : \mathbb{R} \to \mathbb{R}$ that converges uniformly to zero. Then $\int_{-\infty}^{\infty} h_n(t) dt \to 0$.

(g) The set of continuously differentiable functions on the interval I = [0, 1] is (topologically) closed in $C_{\rm b}(I)$.

(h) The set $\Omega = \{f \in C_{\mathbf{b}}(I) : ||f||_{\mathbf{u}} \le 2 : \operatorname{Lip}(f) \le 3\}$ is compact in $C_{\mathbf{b}}(I)$.

Problem 2: (26 points) Set $A = \{f \in C_{\mathbf{b}}(\mathbb{R}) : \lim_{t \to \infty} |f(t)| = \lim_{t \to -\infty} |f(t)| = 0\}.$

- (a) Prove that A is closed in $C_{\rm b}(\mathbb{R})$.
- (b) Prove that A is the closure of the set of compactly supported functions in $C_{\rm b}(\mathbb{R})$.
- (c) Is the set A equipped with the uniform norm a Banach space? Motivate your answer briefly.

(d) Set
$$B = \{ f \in C_{\mathbf{b}}(\mathbb{R}) : \sup_{t \in \mathbb{R}} e^{|t|} |f(t)| < \infty \}$$
. Prove that B is not closed in $C_{\mathbf{b}}(\mathbb{R})$.

Problem 3: (25 points) State the Arzelà-Ascoli theorem. (No proof necessary.) Set I = [0, 1]and let $k : I^2 \to \mathbb{R}$ be continuous. Define on $C_{\rm b}(I)$ the integral operator

$$[A \, u](x) = \int_0^1 k(x, y) \, u(y) \, dy.$$

Let $(u_n)_{n=1}^{\infty}$ be a bounded sequence in $C_b(I)$. Prove that $(A u_n)_{n=1}^{\infty}$ has a uniformly convergent subsequence.

Problem 4: (25 points) State and prove the contraction mapping theorem.