Applied Analysis (APPM 5440): Section exam 2 - solutions

8:30am - 9:50am, Oct. 28, 2009. Closed books.
Problem 1: (24 points) For each of the statements below, state whether it is TRUE or FALSE. ("TRUE" of course means "necessarily true".) No motivation required.
(a) Define for $n=1,2,3, \ldots$ the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto e^{-(x-n)^{2}}$. The sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges pointwise to zero.
(b) With f_{n} defined as in (a), the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges uniformly to zero.
(c) With f_{n} defined as in (a), the set $\Omega=\left\{f_{n}\right\}_{n=1}^{\infty}$ is equicontinuous.
(d) With f_{n} defined as in (a), the set $\left\{f_{n}\right\}_{n=1}^{\infty}$ is pre-compact in $C_{\mathrm{b}}(\mathbb{R})$.
(e) Let $\left(g_{n}\right)_{n=1}^{\infty}$ be a sequence of real-valued functions on the set $I=[0,1]$ that converges pointwise to a function g. Suppose further that the set $\left\{g_{n}\right\}_{n=1}^{\infty}$ is equicontinuous. Then g is continuous.
(f) Suppose that $\left(h_{n}\right)_{n=1}^{\infty}$ is a sequence of functions $h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ that converges uniformly to zero. Then $\int_{-\infty}^{\infty} h_{n}(t) d t \rightarrow 0$.
(g) The set of continuously differentiable functions on the interval $I=[0,1]$ is (topologically) closed in $C_{\mathrm{b}}(I)$.
(h) The set $\Omega=\left\{f \in C_{\mathrm{b}}(I):\|f\|_{\mathrm{u}} \leq 2: \operatorname{Lip}(f) \leq 3\right\}$ is compact in $C_{\mathrm{b}}(I)$.

Solution:

(a) TRUE. (For any fixed x we have $\lim _{n \rightarrow \infty} e^{-(x-n)^{2}}=0$.)
(b) FALSE. (In fact $\left\|f_{n}\right\|_{u}=1$ for all n.)
(c) TRUE. (Uniformly equicontinuous in fact since $\left\|f_{n}^{\prime}\right\|_{\mathrm{u}}=\sqrt{2} e^{-1 / 2}$.)
(d) FALSE. (For instance, it is clear that no subsequence of $\left(f_{n}\right)$ can converge uniformly. Note that since \mathbb{R} is not compact, the A-A theorem does not apply.)
(e) TRUE. (Exercise 2.12.)
(f) FALSE. (Consider for instance $h_{n}(x)=1 / n$.)
(g) FALSE.
(h) TRUE. (A-A theorem and the fact that if $\operatorname{Lip}\left(f_{n}\right) \leq C$ and $\left\|f_{n}-f\right\|_{\mathrm{u}} \rightarrow 0$, then $\operatorname{Lip}(f) \leq C$.)

Problem 2: (26 points) Set $A=\left\{f \in C_{\mathrm{b}}(\mathbb{R}): \lim _{t \rightarrow \infty}|f(t)|=\lim _{t \rightarrow-\infty}|f(t)|=0\right\}$.
(a) Prove that A is closed in $C_{\mathrm{b}}(\mathbb{R})$.
(b) Prove that A is the closure of the set of compactly supported functions in $C_{\mathrm{b}}(\mathbb{R})$.
(c) Is the set A equipped with the uniform norm a Banach space? Motivate your answer briefly.
(d) Set $B=\left\{f \in C_{\mathbf{b}}(\mathbb{R}): \sup _{t \in \mathbb{R}} e^{|t|}|f(t)|<\infty\right\}$. Prove that B is not closed in $C_{\mathrm{b}}(\mathbb{R})$.

Solution:

(a) We show that the complement of A is open. Pick $f \in A^{c}$. There exists an $\varepsilon>0$ and a sequence of points $\left(t_{n}\right)$ such that $\left|t_{n}\right| \rightarrow \infty$ and $\left|f\left(t_{n}\right)\right| \geq \varepsilon$. We will show that $B_{\varepsilon / 2}(f) \subseteq A^{\mathrm{c}}$. To this end, suppose $g \in B_{\varepsilon / 2}(f)$. Then $\left|f\left(t_{n}\right)-g\left(t_{n}\right)\right| \leq \varepsilon / 2$, so $\left|g\left(t_{n}\right)\right| \geq \varepsilon / 2$. This proves that $g \in A^{\mathrm{c}}$.
(b) Since we show in (a) that A is closed, it is sufficient to prove that C_{c} is dense in A. To this end, pick $f \in A$, and an arbitrary $\varepsilon>0$. We will construct a function $g \in C_{\mathrm{c}}$ such that $\|f-g\|_{\mathrm{u}} \leq \varepsilon$. Since $f \in A$, there is an R such that $|f(t)| \leq \varepsilon$ whenever $|t| \geq R$. Set

$$
\varphi_{R}(t)= \begin{cases}1 & |t| \leq R \tag{1}\\ R-|t| & R<|t|<R+1 \\ 0 & R+1 \leq|t|\end{cases}
$$

Set $g(t)=\varphi_{R}(t) f(t)$. Then $\|f-g\| \leq \varepsilon$.
(c) Yes; it is a topologically closed subspace of a complete space, and hence complete itself.
(d) We will construct a convergent sequence of functions in B that does not have a limit in B. For instance, set $f(x)=1 /\left(1+t^{2}\right)$, and set $f_{n}(t)=\varphi_{n}(t) f(t)$, where φ_{n} is defined as in (1). Then $\left\|f_{n}-f\right\|_{\mathrm{u}} \rightarrow 0$, each $f_{n} \in C_{\mathrm{c}} \subseteq B$, but $f \notin B$.

Problem 3: (25 points) State the Arzelà-Ascoli theorem. (No proof necessary.) Set $I=[0,1]$ and let $k: I^{2} \rightarrow \mathbb{R}$ be continuous. Define on $C_{\mathrm{b}}(I)$ the integral operator

$$
[A u](x)=\int_{0}^{1} k(x, y) u(y) d y .
$$

Let $\left(u_{n}\right)_{n=1}^{\infty}$ be a bounded sequence in $C_{\mathrm{b}}(I)$. Prove that $\left(A u_{n}\right)_{n=1}^{\infty}$ has a uniformly convergent subsequence.

Solution: The statement of the theorem is given in the text book and the class notes.
We will show that the set $\Omega=\left\{A u_{n}\right\}$ is pre-compact. According to the A-A theorem, we will have done so once we have shown that Ω is bounded and equicontinuous.

Set $C=\sup _{n}\left\|u_{n}\right\|_{\mathrm{u}}$.
Proof that Ω is bounded: Set $M=\sup _{(x, y) \in I^{2}}|k(x, y)|$. Since k is a continuous function on a compact set, $M<\infty$. It follows that

$$
\left|\left[A u_{n}\right](x)\right|=\left|\int_{0}^{1} k(x, y) u_{n}(y) d y\right| \leq \int_{0}^{1}|k(x, y)|\left|u_{n}(y)\right| d y \leq M C
$$

Take the sup over x to obtain $\left\|A u_{n}\right\|_{\mathrm{u}} \leq M C$.
Proof that Ω is (uniformly) equicontinuous: Fix $\varepsilon>0$. Since k is a continuous function on a compact set, it is uniformly continuous. In consequence, there is a $\delta>0$ such that $\mid k(x, y)-$ $k\left(x^{\prime}, y\right) \mid<\varepsilon / C$ whenever $\left|x-x^{\prime}\right|<\delta$. Now suppose that $\left|x-x^{\prime}\right|<\delta$. Then

$$
\begin{aligned}
\left|\left[A u_{n}\right](x)-\left[A u_{n}\right]\left(x^{\prime}\right)\right|=\mid \int_{0}^{1}(k(x, y)- & \left.k\left(x^{\prime}, y\right)\right) u_{n}(y) d y \mid \\
& \leq \int_{0}^{1}\left|k(x, y)-k\left(x^{\prime}, y\right)\right|\left|u_{n}(y)\right| d y \leq \int_{0}^{1} \frac{\varepsilon}{C} C d y=\varepsilon
\end{aligned}
$$

Problem 4: (25 points) State and prove the contraction mapping theorem.

Solution: See text book or class notes.

