Applied Analysis (APPM 5440): Section exam 2 — solutions

8:30am – 9:50am, Oct. 28, 2009. Closed books.

Problem 1: (24 points) For each of the statements below, state whether it is TRUE or FALSE. ("TRUE" of course means "necessarily true".) No motivation required.

(a) Define for n = 1, 2, 3, ... the function $f_n : \mathbb{R} \to \mathbb{R} : x \mapsto e^{-(x-n)^2}$. The sequence $(f_n)_{n=1}^{\infty}$ converges pointwise to zero.

(b) With f_n defined as in (a), the sequence $(f_n)_{n=1}^{\infty}$ converges uniformly to zero.

(c) With f_n defined as in (a), the set $\Omega = \{f_n\}_{n=1}^{\infty}$ is equicontinuous.

(d) With f_n defined as in (a), the set $\{f_n\}_{n=1}^{\infty}$ is pre-compact in $C_{\rm b}(\mathbb{R})$.

(e) Let $(g_n)_{n=1}^{\infty}$ be a sequence of real-valued functions on the set I = [0, 1] that converges pointwise to a function g. Suppose further that the set $\{g_n\}_{n=1}^{\infty}$ is equicontinuous. Then g is continuous.

(f) Suppose that $(h_n)_{n=1}^{\infty}$ is a sequence of functions $h_n : \mathbb{R} \to \mathbb{R}$ that converges uniformly to zero. Then $\int_{-\infty}^{\infty} h_n(t) dt \to 0$.

(g) The set of continuously differentiable functions on the interval I = [0, 1] is (topologically) closed in $C_{\rm b}(I)$.

(h) The set $\Omega = \{f \in C_{\mathrm{b}}(I) : ||f||_{\mathrm{u}} \leq 2 : \operatorname{Lip}(f) \leq 3\}$ is compact in $C_{\mathrm{b}}(I)$.

Solution:

- (a) TRUE. (For any fixed x we have $\lim_{n\to\infty} e^{-(x-n)^2} = 0.$)
- (b) FALSE. (In fact $||f_n||_u = 1$ for all n.)

(c) TRUE. (Uniformly equicontinuous in fact since $||f'_n||_u = \sqrt{2} e^{-1/2}$.)

(d) FALSE. (For instance, it is clear that no subsequence of (f_n) can converge uniformly. Note that since \mathbb{R} is not compact, the A-A theorem does not apply.)

- (e) TRUE. (Exercise 2.12.)
- (f) FALSE. (Consider for instance $h_n(x) = 1/n$.)
- (g) FALSE.

(h) TRUE. (A-A theorem and the fact that if $\operatorname{Lip}(f_n) \leq C$ and $||f_n - f||_u \to 0$, then $\operatorname{Lip}(f) \leq C$.)

Problem 2: (26 points) Set $A = \{ f \in C_{\rm b}(\mathbb{R}) : \lim_{t \to \infty} |f(t)| = \lim_{t \to -\infty} |f(t)| = 0 \}.$

- (a) Prove that A is closed in $C_{\rm b}(\mathbb{R})$.
- (b) Prove that A is the closure of the set of compactly supported functions in $C_{\rm b}(\mathbb{R})$.

(c) Is the set A equipped with the uniform norm a Banach space? Motivate your answer briefly.

(d) Set $B = \{ f \in C_{\mathbf{b}}(\mathbb{R}) : \sup_{t \in \mathbb{R}} e^{|t|} |f(t)| < \infty \}$. Prove that B is not closed in $C_{\mathbf{b}}(\mathbb{R})$.

Solution:

(a) We show that the complement of A is open. Pick $f \in A^c$. There exists an $\varepsilon > 0$ and a sequence of points (t_n) such that $|t_n| \to \infty$ and $|f(t_n)| \ge \varepsilon$. We will show that $B_{\varepsilon/2}(f) \subseteq A^c$. To this end, suppose $g \in B_{\varepsilon/2}(f)$. Then $|f(t_n) - g(t_n)| \le \varepsilon/2$, so $|g(t_n)| \ge \varepsilon/2$. This proves that $g \in A^c$.

(b) Since we show in (a) that A is closed, it is sufficient to prove that C_c is dense in A. To this end, pick $f \in A$, and an arbitrary $\varepsilon > 0$. We will construct a function $g \in C_c$ such that $||f - g||_u \le \varepsilon$. Since $f \in A$, there is an R such that $|f(t)| \le \varepsilon$ whenever $|t| \ge R$. Set

(1)
$$\varphi_R(t) = \begin{cases} 1 & |t| \le R, \\ R - |t| & R < |t| < R + 1, \\ 0 & R + 1 \le |t|. \end{cases}$$

Set $g(t) = \varphi_R(t) f(t)$. Then $||f - g|| \le \varepsilon$.

(c) Yes; it is a topologically closed subspace of a complete space, and hence complete itself.

(d) We will construct a convergent sequence of functions in B that does not have a limit in B. For instance, set $f(x) = 1/(1+t^2)$, and set $f_n(t) = \varphi_n(t) f(t)$, where φ_n is defined as in (1). Then $||f_n - f||_u \to 0$, each $f_n \in C_c \subseteq B$, but $f \notin B$. **Problem 3:** (25 points) State the Arzelà-Ascoli theorem. (No proof necessary.) Set I = [0, 1]and let $k : I^2 \to \mathbb{R}$ be continuous. Define on $C_{\rm b}(I)$ the integral operator

$$[A u](x) = \int_0^1 k(x, y) u(y) \, dy$$

Let $(u_n)_{n=1}^{\infty}$ be a bounded sequence in $C_b(I)$. Prove that $(A u_n)_{n=1}^{\infty}$ has a uniformly convergent subsequence.

Solution: The statement of the theorem is given in the text book and the class notes.

We will show that the set $\Omega = \{A u_n\}$ is pre-compact. According to the A-A theorem, we will have done so once we have shown that Ω is bounded and equicontinuous.

Set $C = \sup_n ||u_n||_u$.

Proof that Ω is bounded: Set $M = \sup_{(x,y) \in I^2} |k(x,y)|$. Since k is a continuous function on a compact set, $M < \infty$. It follows that

$$|[A u_n](x)| = \left| \int_0^1 k(x, y) u_n(y) \, dy \right| \le \int_0^1 |k(x, y)| \, |u_n(y)| \, dy \le M C,$$

Take the sup over x to obtain $||A u_n||_{u} \leq M C$.

Proof that Ω is (uniformly) equicontinuous: Fix $\varepsilon > 0$. Since k is a continuous function on a compact set, it is uniformly continuous. In consequence, there is a $\delta > 0$ such that $|k(x,y) - k(x',y)| < \varepsilon/C$ whenever $|x - x'| < \delta$. Now suppose that $|x - x'| < \delta$. Then

$$|[A u_n](x) - [A u_n](x')| = \left| \int_0^1 (k(x, y) - k(x', y)) u_n(y) \, dy \right|$$

$$\leq \int_0^1 |k(x, y) - k(x', y)| \, |u_n(y)| \, dy \leq \int_0^1 \frac{\varepsilon}{C} C \, dy = \varepsilon.$$

Problem 4: (25 points) State and prove the contraction mapping theorem.

Solution: See text book or class notes.