Applied Analysis (APPM 5440): Section exam 3

8:30am – 9:50am, Nov. 30, 2009. Closed books.

Problem 1: (24p) With X a Banach space, which statements are necessarily true (please motivate):

(a) If $S, T \in \mathcal{B}(X)$ and T is compact, then ST is compact.

(b) If $S, T \in \mathcal{B}(X)$ and T is compact, then TS is compact.

(c) Suppose that for n = 1, 2, 3, ..., we know that $T_n \in \mathcal{B}(X)$ has finite dimensional range, and that there exists an operator $T \in \mathcal{B}(X)$ such that T_n converges strongly to T. Then T is compact.

Problem 2: (28p) Set $X = \ell^3$. Define the operator $T \in \mathcal{B}(X)$ via

$$T(x_1, x_2, x_3, \dots) = (\frac{1}{1}x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots).$$

Which of the following statements are necessarily true? Motivate your answers.

- (a) $\operatorname{Ran}(T)$ is a linear subspace.
- (b) $\operatorname{Ker}(T)$ is a linear subspace.
- (c) $\operatorname{Ran}(T)$ is topologically closed.
- (d) $\operatorname{Ker}(T)$ is topologically closed.

Problem 3: (24p) Set $X = \ell^{\infty}$. Define for any positive integer n a linear map φ_n from X to \mathbb{R} via

$$\varphi_n(x) = \frac{1}{n} \sum_{j=1}^n x_j.$$

- (a) Prove that φ_n is bounded and determine its norm.
- (b) Does $(\varphi_n)_{n=1}^{\infty}$ converge in norm in X^* ?
- (c) Does $(\varphi_n)_{n=1}^{\infty}$ converge weakly in X^* ?

For 6 points extra credit: Answer (a), (b), and (c), again, but now for the space $X = \ell^1$.

Problem 4: (24p) Let X be a topological space that satisfies the Hausdorff property. Let K be a compact subset of X.

- (a) State the definition of the Hausdorff property.
- (b) State the definition of a compact set in a general topological space.
- (c) Prove that K is necessarily closed.