Applied Analysis, Spring 2006: Solutions to the final

Problem 1:

(a)

To ensure that A is a projection: $A^{2}=A$.
To ensure that A is orthogonal: $A^{*}=A$. $\left(\operatorname{Or} \operatorname{ker}(A)^{\perp}=\operatorname{ran}(A)\right.$, or $\|A\|=1$.)
(b)
(1) is true (see Proposition 9.15).
(2) is true (see Proposition 9.15).
(3) is false. (Example: $A\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, x_{2} / 2, x_{3} / 3, \ldots\right)$ on $l^{2}(\mathbb{N})$.)
(c)
$\varphi_{n} \rightarrow \varphi$ on $\mathcal{S}(\mathbb{R})$ iff $\lim _{n \rightarrow \infty}\left\|\varphi_{n}-\varphi\right\|_{\alpha, n}=0$ for all α and n, where
$\|\varphi\|_{\alpha, n}=\sup _{x}\left|\left(1+|x|^{2}\right)^{n / 2} \partial^{\alpha} \varphi(x)\right|$.
(d)
$2 \pi i \frac{\partial \delta}{\partial x_{2}}$ (for a full solution, see Problem 2 on Midterm 3).
(e)
(1) is not true. (Example: $\chi_{[-1,1]} \in L^{1}$, but $\hat{\chi}_{[-1,1]}=\frac{2 \sin t}{t} \notin L^{1}$.)
(2) is true.
(3) is true.
(f)

If $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of non-negative measurable functions, then

$$
\int\left(\liminf _{n \rightarrow \infty} f_{n}(x)\right) d \mu(x) \leq \liminf _{n \rightarrow \infty} \int f_{n}(x) d \mu(x) .
$$

(g)

$$
f^{\prime}(\varphi): C(I) \rightarrow C(I): h \mapsto \psi \int_{0}^{1} \cos (\varphi(x)) h(x) d x
$$

Problem 2: Since $\cos (2 x-2 y)=\cos (2 x) \cos (2 y)+\sin (2 x) \sin (2 y)$, we have

$$
[A u](x)=\alpha \cos (2 x) \int_{-\pi}^{\pi} \cos (2 y) u(y) d y+\alpha \sin (2 x) \int_{-\pi}^{\pi} \sin (2 y) u(y) d y
$$

Setting $\varphi_{1}(x)=\frac{1}{\sqrt{\pi}} \cos (2 x)$ and $\varphi_{2}(x)=\frac{1}{\sqrt{\pi}} \sin (2 x)$, we can write A as

$$
\begin{equation*}
A u=\alpha \pi \varphi_{1}\left\langle\varphi_{1}, u\right\rangle+\alpha \pi \varphi_{2}\left\langle\varphi_{2}, u\right\rangle \tag{1}
\end{equation*}
$$

Since φ_{1} and φ_{2} are orthogonal and normalized, (1) is the spectral decomposition of A.
(a) $\operatorname{ran}(A)=\operatorname{span}\left\{\varphi_{1}, \varphi_{2}\right\}=\operatorname{span}\{\cos (2 x), \sin (2 x)\}$
(b) $\sigma(A)=\sigma_{\mathrm{p}}(A)=\{0, \pi \alpha\}$.

To see this, let $\left(\varphi_{n}\right)_{n=3}^{\infty}$ be an ON-basis for $\left(\operatorname{span}\left\{\varphi_{1}, \varphi_{2}\right\}\right)^{\perp}$ (so that $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is an ON-basis for H). Then $\alpha \pi$ is an eigenvalue with eigenvectors φ_{1} and φ_{2}, 0 is an eigenvalue with eigenvectors $\left(\varphi_{n}\right)_{n=3}^{\infty}$. If $\lambda \notin\{0, \alpha \pi\}$, then $(A-\lambda I)^{-1}$ is explicitly given by

$$
(A-\lambda I)^{-1} v=\frac{1}{\alpha \pi-\lambda}\left\langle\varphi_{1}, v\right\rangle \varphi_{1}+\frac{1}{\alpha \pi-\lambda}\left\langle\varphi_{2}, v\right\rangle \varphi_{2}+\sum_{n=3}^{\infty} \frac{1}{-\lambda}\left\langle\varphi_{n}, v\right\rangle \varphi_{n}
$$

Note that $\left\|(A-\lambda I)^{-1}\right\|=\max \left(\frac{1}{|\alpha \pi-\lambda|}, \frac{1}{|\lambda|}\right)$, so $(A-\lambda I)^{-1}$ is continuous.
(c) A is self-adjoint if and only if $\alpha \in \mathbb{R}$

To see this, note that (1) implies that

$$
A^{*} u=\bar{\alpha} \pi \varphi_{1}\left\langle\varphi_{1}, u\right\rangle+\bar{\alpha} \pi \varphi_{2}\left\langle\varphi_{2}, u\right\rangle
$$

so $A^{*}=A$ if and only if $\bar{\alpha}=\alpha$.
(d) A is not unitary for any α.

To see this, simply note that, e.g. $\left\|A \varphi_{3}\right\|=0 \neq\left\|\varphi_{3}\right\|$.
(e) A is a projection if and only if $\alpha \in\{0,1 / \pi\}$.

To see this, note that (1) implies that

$$
A^{2} u=(\alpha \pi)^{2} \varphi_{1}\left\langle\varphi_{1}, u\right\rangle+(\alpha \pi)^{2} \varphi_{2}\left\langle\varphi_{2}, u\right\rangle=(\alpha \pi) A u
$$

Problem 3: We will prove that there exist finite C and N such that

$$
|T \varphi| \leq C \sum_{n,|\alpha| \leq N}\|\varphi\|_{\alpha, n}
$$

First we note that

$$
\begin{align*}
\langle T, \varphi\rangle & =\lim _{\varepsilon \backslash 0} \int_{\varepsilon}^{\infty} \frac{\varphi(x)-\varphi(-x)}{x} d x \tag{2}\\
& =\underbrace{\lim _{\varepsilon>0} \int_{\varepsilon}^{1} \frac{\varphi(x)-\varphi(-x)}{x} d x}_{=I}+\underbrace{\int_{1}^{\infty} \frac{\varphi(x)-\varphi(-x)}{x} d x}_{=J} .
\end{align*}
$$

To bound I, we note that

$$
\begin{equation*}
|I|=\left|\lim _{\varepsilon \searrow 0} \int_{\varepsilon}^{1} \frac{\int_{-x}^{x} \varphi^{\prime}(t) d t}{x} d x\right| \leq \int_{0}^{1} \frac{2 x\left\|\varphi^{\prime}\right\|_{\mathrm{u}}}{x} d x=2\|\varphi\|_{1,0} \tag{3}
\end{equation*}
$$

To bound J, we note that

$$
\begin{equation*}
|J|=\left|\int_{1}^{\infty} \frac{\varphi(x)-\varphi(-x)}{x} d x\right| \leq \int_{1}^{\infty} \frac{1}{x^{2}} 2|x \varphi(x)| d x=2\|\varphi\|_{0,1} \tag{4}
\end{equation*}
$$

Combining (2), (3), and (4), we obtain

$$
|\langle T, \varphi\rangle|=|I+J| \leq 2\|\varphi\|_{1,0}+2\|\varphi\|_{0,1}
$$

Problem 4: First note that

$$
\left|\frac{t}{1+t^{4}}\right| \leq \frac{1}{3^{1 / 4}} \leq 1 \quad \forall t \in \mathbb{R}
$$

It follows that, for all n and all x,

$$
\left|\frac{f_{n}(x) g(x)}{1+\left(f_{n}(x)\right)^{4}}\right| \leq|g(x)|
$$

Since $\int_{0}^{\infty}|g| d x \leq\|g\|_{1}<\infty$, the Lebesgue dominated convergence theorem applies, and

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{f_{n}(x) g(x)}{1+\left(f_{n}(x)\right)^{4}} d x=\int_{0}^{\infty}\left(\lim _{n \rightarrow \infty} \frac{f_{n}(x) g(x)}{1+\left(f_{n}(x)\right)^{4}}\right) d x=\int_{0}^{\infty} 0 d x=0
$$

Problem 5: If L^{p} were a Hilbert space, then the parallelogram law would imply that

$$
\begin{equation*}
\left\|f_{1}+f_{1}\right\|_{p}^{2}+\left\|f_{1}-f_{2}\right\|_{p}^{2}-2\left\|f_{1}\right\|_{p}^{2}-2\left\|f_{2}\right\|_{p}^{2}=0, \quad \forall f_{1}, f_{2} \in L^{p} \tag{5}
\end{equation*}
$$

We need to find f_{1} and f_{2} such that (5) does not hold. Almost any choices will do; a particularly simple choice is

$$
f_{1}=\chi_{\Omega_{1}}, \quad f_{2}=\chi_{\Omega_{2}}
$$

where Ω_{1} and Ω_{2} are two disjoint sets such that $\mu\left(\Omega_{1}\right)=\mu\left(\Omega_{2}\right)=1$. Then

$$
\left\|f_{1}+f_{2}\right\|_{p}=\left\|f_{1}-f_{2}\right\|_{p}=\left(\int\left(\chi_{\Omega_{1}}^{p}+\chi_{\Omega_{2}}^{p}\right)\right)^{1 / p}=\left(\mu\left(\Omega_{1}\right)+\mu\left(\Omega_{2}\right)\right)^{1 / p}=2^{1 / p}
$$

Moreover, for $j=1,2$,

$$
\left\|f_{j}\right\|_{p}=\left(\int \chi_{\Omega_{j}}^{p}\right)^{1 / p}=\mu\left(\Omega_{j}\right)^{1 / p}=1
$$

It follows that

$$
\left\|f_{1}+f_{1}\right\|_{p}^{2}+\left\|f_{1}-f_{2}\right\|_{p}^{2}-2\left\|f_{1}\right\|_{p}^{2}-2\left\|f_{2}\right\|_{p}^{2}=2^{2 / p}+2^{2 / p}-2-2
$$

which equals zero if and only if $p=2$.

Alternative solution: This is a shortcut I hadn't foreseen. It's entirely by the rules, though, so it gets full credit:

We know that for $p \in[1, \infty)$, the dual of $L^{p}\left(\mathbb{R}^{d}\right)$ is $L^{q}\left(\mathbb{R}^{d}\right)$, where q is the unique number in $[1, \infty]$ such that $(1 / p)+(1 / q)=1$. Since $L^{p} \neq L^{q}$, it follows that L^{p} cannot be a Hilbert space (if it were, then the Riesz representation theorem would state that the dual of L^{p} is L^{p} itself).
/// PGM, May 14, 2006

