Homework set 3 — APPM5450, Spring 2006

Problem 1: Consider the Hilbert space $H = l^2(\mathbb{N})$; let e_n denote the canonical basis elements. Which of the following sequences converge weakly? Which have convergent subsequences?

(a) $x_n = n e_n$. (b) $x_n = n^{-1/2} \sum_{j=1}^n e_j$. (c) $x_n = e_n + e_m$ where m = mod(n, 2).

Problem 2: Consider the Hilbert space $H = L^2(\mathbb{T})$, and the sequence of functions $\varphi_n(x) = x^2 \sin(nx)$. Does $(\varphi_n)_{n=1}^{\infty}$ converge weakly in H? If so, what does it converge to?

Problem 3: Let A be a self-adjoint operator on a Hilbert space H. Let u be an element of H, and set $u_n = e^{i n A} u$. Prove that $(u_n)_{n=1}^{\infty}$ has a weakly convergent subsequence.

Problem 4: Consider the Hilbert space $X = L^2(\mathbb{T})$, and let \mathcal{P} denote the space of trigonometric polynomials (which is dense in X). For $u \in \mathcal{P}$, let A denote the operator [Au](x) = 100 u(x) - 18 u''(x) + u''''(x). Prove that

$$\sup_{u \in \mathcal{P}, \ ||u||=1} (Au, u) = \infty$$

Conclude that A cannot be extended to a bounded linear operator on X. Prove that for $u, v \in \mathcal{P}$, it is the case that (Au, v) = (u, Av). Determine

$$\inf_{u \in \mathcal{P}, \ ||u||=1} (A u, u)$$

Prove that

$$a(u, v) = (A u, v)$$

is a bilinear form on \mathcal{P} . Prove that the norm $|| \cdot ||_A$ defined by

$$||u||_A = \sqrt{a(u, u)}$$

is equivalent to the norm

$$||u||_{H^2} = \sqrt{||u||^2 + ||u''||^2}$$

Conclude that the closure of \mathcal{P} under the norm $|| \cdot ||_A$ is $H^2(\mathbb{T})$ (as defined in Section 7.2).