Applied Analysis (APPM 5450): Midterm 1

$5.00 \mathrm{pm}-6.20 \mathrm{pm}$, Feb. 20, 2006. Closed books.
Problem 1: No motivation is required.
(a) Set $H=L^{2}(-\pi, \pi)$, and define $[A u](x)=\left(1+x^{3}\right) u(x)$. What is $\sigma(A)$? (2p)
(b) Consider the Hilbert space $H=l^{2}(\mathbb{N})$. Give an example of an operator $A \in \mathcal{B}(H)$ that is both unitary and skew-symmetric. (2p)
(c) Let H be a Hilbert space and let $A \in \mathcal{B}(H)$. Give a formula that relates the range of A to the kernel of A^{*}. (2p)
(d) Let H be a Hilbert space. Is it true that any set that is bounded and closed in the norm topology is necessarily compact in the weak topology? $(2 \mathrm{p})$

Problem 2: Consider the Hilbert space $H=L^{2}(I)$, where $I=[-\pi, \pi]$. Let $k(x, y)$ be a continuous function on $I \times I$, and let the operator $A \in \mathcal{B}(H)$ be defined by

$$
[A u](x)=\int_{-\pi}^{\pi} k(x, y) u(y) d y
$$

(a) Construct the operator A^{*}. (3p)
(b) Give a necessary and sufficient condition for A to be self-adjoint. (2p)

Problem 3: Consider the Hilbert space $H=L^{2}(I)$, where $I=[-\pi, \pi]$. Please motivate your answers to the following questions:
(a) Does the sequence $\varphi_{n}(x)=x \sin (n x)$ converge weakly in H ? (3p)
(b) Does the sequence $\psi_{n}(x)=n \sin (n x)$ converge weakly in H ? (3p)

Problem 4: Consider the Hilbert space $H=l^{2}(\mathbb{N})$. Let $L \in \mathcal{B}(H)$ denote the left-shift operator, defined by

$$
L\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

Recall that $L^{*}=R$, where R is the right-shift operator,

$$
R\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)
$$

(a) Set $X=\{z \in \mathbb{C}:|z|>1\}$. Prove that $X \subseteq \rho(L)$, and that $X \subseteq \rho(R)$. (2p)
(b) Set $Y=\{z \in \mathbb{C}:|z|<1\}$. Prove that $Y \subseteq \sigma_{\mathrm{p}}(L)$. (2p)
(c) Prove that for any operator A on a Hilbert space H, it is the case that if $\lambda \in \sigma_{\mathrm{r}}(A)$, then $\bar{\lambda} \in \sigma_{\mathrm{p}}\left(A^{*}\right)$. (3p)
(d) Set $Z=\{z \in \mathbb{C}:|z| \leq 1\}$. Prove that $\sigma(L)=Z$. (2p)

The last problem is deliberately given only a measly amount of points. It would probably not be a good idea to try it unless you finish the first four rapidly.
Problem 5: Let A be an $n \times n$ Hermitian matrix and set $B=(A+i I)^{-1}(A-i I)$, where $i=\sqrt{-1}$. Prove that $\|B x\|=\|x\|$, where $\|x\|=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{2}\right)^{1 / 2}$. $(2 \mathrm{p})$

