Applied Analysis (APPM 5450): Midterm 2
$5.00 \mathrm{pm}-6.20 \mathrm{pm}$, Mar 22, 2006. Closed books.

Note: The problems are worth two points each, for a total of 16 points.
Problem 1: In this problem, $\partial=(d / d x)$, and $\delta \in \mathcal{S}^{*}(\mathbb{R})$ denotes the Dirac delta function.
(a) For $T \in \mathcal{S}^{*}(\mathbb{R})$, define ∂T, and prove that what you define is a continuous functional on $\mathcal{S}(\mathbb{R})$. (You may use the fact that $\partial: \mathcal{S} \rightarrow \mathcal{S}$ is continuous.)
(b) Set $U(x)=x[\partial \delta](x)$, and calculate, for $\varphi \in \mathcal{S},\langle U, \varphi\rangle$.
(c) Set $V(x)=x \delta(x)$, and calculate, for $\varphi \in \mathcal{S},\langle\partial V, \varphi\rangle$.

Problem 2: We define the functions $\varphi_{n} \in \mathcal{S}$ by setting $\varphi_{n}(x)=\frac{x^{2}}{\sqrt{x^{2}+1 / n}} e^{-x^{2}}$. Does the sequence converge in \mathcal{S} as $n \rightarrow \infty$? If so, to what?

Problem 3: Let H be a Hilbert space and let A be a compact self-adjoint operator on H. Let b be a non-zero real number, and set $f(x)=(x-i b)^{-1}$ where i is the imaginary unit. This question concerns different ways of defining $f(A)$.
(a) Noting that f has the MacLaurin expansion $f(x)=(-1 / i b) \sum_{n=0}^{\infty}(x / i b)^{n}$, we define $B_{N}=(-1 / i b) \sum_{n=1}^{N}((1 / i b) A)^{n}$. Describe when, if ever, the sequence $\left(B_{N}\right)_{N=1}^{\infty}$ converges in norm in $\mathcal{B}(H)$.
(b) Let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ denote an orthonormal basis for H consisting of eigenvectors of A, so that $A \varphi_{n}=\lambda_{n} \varphi_{n}$. Define the operator C_{N} by setting, for $u \in H, C_{N} u=$ $\sum_{n=1}^{N} f\left(\lambda_{n}\right)\left(\varphi_{n}, u\right) \varphi_{n}$. Describe when, if ever, the sequence $\left(C_{N}\right)_{N=1}^{\infty}$ converges strongly in $\mathcal{B}(H)$.
(c) Describe when, if ever, the sequence $\left(C_{N}\right)_{N=1}^{\infty}$ converges in norm in $\mathcal{B}(H)$.

Problem 4: Let R denote a real number such that $0<R<\infty$ and define

$$
f_{n}(x)= \begin{cases}n \cos (n x) & \text { for }|x| \leq R \\ 0, & \text { for }|x|>R\end{cases}
$$

For which numbers R, if any, is it the case that $f_{n} \rightarrow 0$ in \mathcal{S}^{*} ?

